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Abstract. We present a supervised method for Learning in Parallel Universes, 
i.e. problems given in mUltiple descriptor spaces. The goal is the construction of 
local models in individual universes and their fusion to a superior global model 
that comprises all the available information from the given universes. We employ 
a predictive clustering approach using Neighborgrams, a one-dimensional data 
structure for the neighborhood of a single object in a universe. We also present an 
intuitive visualization, which allows for interactive model construction and visual 
comparison of cluster neighborhoods across universes. 

1 Introduction 

Computer-driven learning techniques are based on a suitable data-representation of the 
objects being analyzed. The classical concepts and techniques that are typically applied 
are all based on the assumption of one appropriate unique representation. This repre
sentation, typically a vector of numeric or nominal attributes, is assumed to sufficiently 
describe the underlying objects. In many application domains, however, various differ
ent descriptions for an object are available. These different descriptor spaces for the 
same object domain typically reflect different characteristics of the underlying objects 
and as such often even have their own, unique semantics and can and should therefore 
not be merged into one descriptor. 

As most classical learning techniques are restricted to learning in exactly one de
scriptor space, the learning in the presence of several object representations is in prac
tice often solved by either reducing the analysis to one descriptor, ignoring the others; 
by constructing a joint descriptor space (which is often impossible); or by perform
ing independent analyses on each space. All these strategies have limitations because 
they either ignore or obscure the multiple facets of the objects (given by the descriptor 
spaces) or do not respect overlaps. This often makes them inappropriate for practical 
problems. 

As a result Learning in Parallel Universes [13] has emerged as a novel learning 
scheme that encompasses the simultaneous analysis of all given descriptor spaces, i.e. 
universes. It deals with the concurrent generation of local models for each universe, 
whereby these models cover local structures that are unique for individual universes 
and at the same time can also cover other structures that span multiple universes. The 
resulting global model outperforms the above mentioned schemes and often also pro
vides new insights with regard to overlapping as well as universe-specific structures. 
Although the learning task itself can be both supervised (e.g. building a classifier) and 
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unsupervised (e.g. clustering), we concentrate in the following on supervised problem 
scenarios. 

In this paper we discuss an extension to the Neighborgram algorithm [4,5] for lea rn
ing in parallel universes. It is a supervised learning method that has been designed to 
model small or medium sized data sets or to model a (set of) minority class(es). The 
latter is commonly encountered in the context of activity prediction for drug discov
ery. The key idea is to represent an object's neighborhoods, which are given by the 
various similarity measures in the different universes, by using neighborhood diagrams 
(so-called neighborgrams). The learning algorithm derives cluster candidates from each 
neighborgram and ranks these based on their qualities (e.g. coverage). The model con
struction is carried out in a sequential covering-like manner, i.e. starting with all neigh
borgrams and their cluster candidates, taking the numerically best one, adding it as 
cluster and proceeding with the remaining neighborgrams while ignoring the already 
covered objects. We will present and discuss extensions to this algorithm that reward 
clusters which group in different universes simultaneously, and thus respect overlaps. 
As we will see this can significantly improve the classification accuracy over just con
sidering the best cluster at a time. 

Another interesting usage scenario of the neighborgram data structure is the possi
bility of displaying them and thus involving the user in the learning process. Using the 
visualization techniques described in [4] in a grid view, which aligns the different uni
verses column by column, the user can inspect the different neighborhoods across the 
available universes and assess possible structural overlaps. 

2 Related Work 

Subspace Clustering. Subspace clustering methods [11] ope~ate on a single, typically 
very high-dimensional input space. The goal is to identify regions of the input space 
(a set of features), which exhibit a high similarity on a subset of the objects, or, more 
precisely, the objects' data representations. Subspace clustering methods are commonly 
categorized into bottom-up and top-down approaches. Bottom-up starts by considering 
density on individual features and then subsequently merging features/subspaces to sub
spaces of higher dimensionality, which still retain a high density. The most prominent 
example is CLIQUE [2], which partitions the input space using a static grid and then 
merges grid elements if they meet a given density constraint. Top-down techniques ini
tially consider the entire feature space and remove irrelevant features from clusters to 
compact the resulting subspace clusters. One example in this category is COSA [10], 
a general framework for this type of subspace clustering; it uses weights to encode 
the importance of features to subspace clusters. These weights influence the distance 
calculation and are optimized as part of the clustering procedure. Subspace clustering 
methods share with learning in parallel universes that they try to respect locality also in 
terms of the features space, although they do it on a different scale. They refer to indi
vidual features whereas we consider universes, i.e. semantically meaningful descriptor 
spaces, which are given a-priori. 

Multi~ View-Learning. In multi-view-Iearning [12] one assumes a similar setup as in 
learning in parallel universes, i.e. the availability of multiple descriptor spaces 
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(universes or views). This learning concept has a different learning scope since it ex
pects all universes/views to share the same structure. Therefore each individual u ni
verse would suffice for learning if enough training data were available. One of the fi rst 
works in the multi-view area was done by Blum and Mitchell [6], who concentrate on 
the classification of web pages. They introduce co-training in a semi-supervised set
ting, i.e. they have a relatively small set of labeled and a rather large set of unlabeled 
instances. The web pages are described using two different views, one based on the 
actual content of the web site (bag of words), the other one based on anchor texts of hy
perlinks pointing to that site - both views are assumed to be conditionally independe nt. 
Co-training creates a model on each view, whereby the training set is augmented with 
data that was labeled with high confidence by the model of the respectively other view. 
This way the two classifiers bootstrap each other. There is also a theoretical foundation 
for the co-training setup: It was shown that the disagreement rate between two indepen
dent views is an upper bound for the error rate of either hypothesis [9]. This princi ple 
already highlights the identical structure property of all views as the base assumption 
of multi-view learners, which is contrary to the setup of learning in parallel universes, 
where some information may only be available in a subset of universes. 

There exist a number of other similar learning setups. These include ensemble learn
ing, multi-in stance-learning and sensor fusion. We do not discuss these methods in de
tail but all have either a different learning input (no a-priori defined universes) or a 
distinct learning focus (no partially overlapping structures across universes while re
taining universe semantics). 

3 Learning in Parallel Universes 

Learning in parallel universes refers to the problem setting of multiple descriptor spaces, 
whereby single descriptors are not sufficient for learning. Instead we assume that the 
information is distributed among the available universes, i.e. individual universes may 
only explain a part of the data. We propose a learning concept, which overcomes the 
limitations outlined above by a simultaneous analysis of all available universes. The 
learning objective is twofold. First, we aim to identify structures that occur in only one 
or few universes (for instance groups of objects that cluster well in one universe but 
not in others). Secondly we want to detect and facilitate overlapping structures between 
multiple, not necessarily all, universes (for instance clusters that group in multiple uni
verses). The first aim addresses the fact that a universe is not a complete representation 
of the underlying objects, that is, it does not suffice for learning. The task of descriptor 
generation is in many application domains a science by itself, whereby single descrip
tors (i.e. universes) carry a semantic and mirror only certain properties of the objects. 
The second aim describes cases, in which structures overlap across different universes. 
For clustering tasks, for instance, this would translate to the identification of groups of 
objects that are self-similar in a subset of the universes. Note that in order to detect these 
overlaps and to support their formation it is necessary for information to be exchanged 
between the individual models during their construction. This is a major characteristic 
of learning in parallel universes, which cannot be realized with any of the other schemes 
outlined in the previous section. 



391 

3.1 Application Scenarios 

The challenge of learning ih parallel universes can be found in almost all applications 
that deal with the analysis of complex objects. We outline a few of these below. 

Molecular data. A typical example is the activity prediction of drug candidates, typ
ically small molecules. Molecules can be described in various ways, which potentially 
focus on different aspects [3]. It can be as simple as a vector of numerical properties 
such as molecular weight or number of rotatable bonds. Other descriptors concentrate 
on more specific properties such as charge distribution, 3D conformation or structural 
information. Apart from such semantic differences, descriptors can also be of a different 
type including vector of scalars, chemical fingerprints (bit vectors) or graph represen
tations. These diverse representations make it impossible to simply join the descriptors 
and construct a joint feature space. 

3D object data. Another interesting application is the mining of 3D objects [8]. The 
literature lists three main categories of descriptors: (1) image-based (features describing 
projections of the object, e.g. silhouettes and contours), (2) shape-based (like curvature 
measures) and (3) volume-based (partitioning the space into small volume elements 
and then considering elements that are completely occupied by the object or contain 
parts of its surface area, for instance). Which of these descriptions is appropriate for 
learning, mostly depends on the class of object being considered. For instance image
or volume-based descriptors fail on modeling a class of humans, taking different poses, 
since their projections or volumes differ, whereas shape-based descriptors have proven 
to cover this class nicely. 

Image data. There are also manifold techniques available to describe images. Descrip
tors can be based on properties of the color or gray value distribution; they can encode 
texture information or properties of the edges. Other universes can reflect user anno
tations like titles that are associated with the image. Also in this domain it depends 
sometimes on the descriptor, whether two images are similar or not. 

4 Neighborgrams in Parallel Universes 

In the following we describe the neighborgram data structure [4], discuss the fully au
tomated clustering algorithm and highlight the advantages of the visualization. We con
sider a set of objects i, each object being described in U, 1 :S u :S U, parallel universes. 
The object representation for object i in universe u is Xi ,u' Each object is assigned a class 
c (i). We further assume appropriate definitions of distance functions for each universe 
d (u) ( . .) xl ,U'x} ,U . 

4.1 Neighborgram Data Structure 

We define a neighborgram as a list of R-nearest neighbors to an object i in a universe u: 

NG (U) - ( ) i - X
I
(II) , • • • , X

I
(II) • 

i , l'u i,R ,tl 
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The subscript l;(~) reflects the ordering of the neighbors according to the distance to the , 

centroid. For the sake of simplicity we abbreviate I(u) with Ir and also omit the sec-
l ,r 

ond subscript u, always accounting for the fact that the list contains objects referr ing 
to a centroid object i in a specific universe u. The ordering implies for any neighbor-

gram li(t;) = II = i since the centroid is closest to itself. This list is not necessarily a 
unique ~epresentation of the neighborhood as objects may have an equal distance to the 
centroid. However, this is not a limitation to the algorithm. 

Neighborgrams are constructed for all objects of interest, i.e. either for all objects of 
a small- or medium-size data set or the objects belonging to one or more target classes, 
in all universes. 

As an illustrative example consider the data set in figure 1, which is given in a single 
universe. This universe is 2-dimensional (shown on the left) with two diff~rent classes 
(empty and filled circles). The neighborgrams for the three numbered empty objects 
are shown on the right. We use the Manhattan norm as distance function, i.e. the dis
tance between two objects is the number of steps on the grid (for instance the distance 
between CD and Q) is 3, two steps in horizontal and one in vertical direction). The cor
responding list representation is then 

We will use these neighborgrams in the following to introduce basic measures that help 
us to derive cluster candidates and to determine numeric quality measures. 

6 
Y 

~ 5 @ 0 0 d 

4 ~ 3 CD d 

2 00 CD 0 ~ x o I 2 3 d 0 I 2 3 4 5 6 7 

Fig. 1. Sample input space with neighborgrams for the objects CD, G and Ql 

4.2 Neighborgram Clustering Algorithm 

The basic idea of the learning algorithm is to consider each neighborgram in each uni
verse as a potential (labeled) cluster candidate. These candidates are derived from the 
list representation, are based on the class distribution around the centroid, and are as
signed the class of their respective centroids. Good clusters will have a high coverage, 
i.e. many objects of the same class as the centroid in the close vicinity, whereby cluster 
boundaries are represented by the distance of the farthest neighbor satisfying some pu
rity constraint. The basic clustering algorithm will iteratively add the cluster candidate 
with the highest coverage to the set of accepted clusters, remove the covered objects 
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from consideration, and start over by re-computing the coverage of the remaining can
didates . The interesting point here is that this basic algorithm is not restricted to learn 
in a single universe. In fact, this basic algorithm is free to choose the best cluster candi
date from all universes, thereby directly building a cluster set with cluster from different 
origins and hence a model for parallel universes. 

Before we provide the algorithm in pseudo-code let us define some measures that 
are used to define a cluster candidate and its numerical quality. Each of the following 
values is assigned to a single neighborgram (but computed for all): 

- Coverage li(u): The coverage describes how many objects of the same class as 
the centroid c (i) are within a certain length r in the neighborgram for object i in 
universe u. These objects are covered by the neighborgram. 

For example, the coverages for NG(D in figure 1 are: r(D(1) = 1, r(D(2) = 1, r(D(3) = 

2 and r(D(4) = 3. 

- Purity rr/u)(r): The purity denotes the ratio of objects of the correct class (i.e. same 
class as the centroid) to all objects that are contained within a certain neighborhood 
of length r: 

rr.(U)(r) = I {Xl" E NG~u) 11 :S r' :S r 1\ c (lr') = c (i) } I 

I I {Xl" E NG~u) I 1:S r' :S r}1 

For instance, object CD in figure 1 would have purities: IT(D(l) = 1, IT(D(2) = !, 
rr(D(3) = ~ and rr(D(5) = ~. 

- Optimal Length A/u
): The optimal length is the maximum length for which a given 

purity threshold Pmin is still valid. In practical applications it has shown to be rea
sonable to constrain the optimal length to be at least some minimum length value 
rmin in order to avoid clusters that cover only few objects. 

A (u) (p . r.) -i mm, mm -

max {r I rmin :S r' :S r 1\ rr/
u

) (r') ~ Pmin} . 

Note, this term may be undefined and practically often is for noisy data. In the 
example in figure 1 the optimal length values are for a minimum length r min = 1 
(unconstrained): ;\0 (1, 1) = 2 and ;\0(~' 1) = 3. 

Apart from the specification of a minimum purity Pmin and a minimum cluster size rmin, 
the user has to specify a minimum overall coverage lI'min. If the sum of coverage values 
of all accepted clusters is greater than this value, the algorithm terminates. The basic 
algorithm is outlined in algorithm 1. The initialization starts with the construction of 
neighborgrams for all objects of certain target classes (minority class(es) or all classes) 
in line 1. Prior to the learning process itself, it determines a cluster candidate for each 
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Algorithm 1. Basic Neighborgram Clustering Algorithm 

1: Vi, u: c (i) is target class =? construct NGju) 

2: VNGi
u

): compute A/
u
) = A/

u
) (Pmin , rmin) 

3: s <- 0 
4: ~ <- 0 

5: i <- undefined 
6: repeat 

7: VNGju) : compute Ij(u) (Ai(u)) 

8: (i,a) <- argmax(i,u) {lj(u) (A/ U
)) } 

9: if i is undefined then 

/* accumulated coverage */ 
/* (empty) result set */ 

/* current best Neighborgram */ 

10: h A (it) co <- ~ 
I 

1* optimal length best Neighborgram */ 

II : 

12: 

13: 

14: 

Mcovered <- {l}U; I 1 ~ r' ~ 0.)/\ c (l}u}) = c (1) } 
1.,1 i,1 

VNG~u): NG~u) <- NGju) \ {x j,u I j E Mcovered} 

s <- s+.r;(i1) (6.» 
I 

~ <- ~u{ (NG}L1) ,d) } 
15: end if 
16: until (s ~ ljI) V (i is undefined) 
17: return ~ 

neighborgram, which is based on user defined values for the minimum purity and the 
minimum size (line 2). The learning phase is shown in line 6 to 16: It iteratively adds 
the cluster candidate with the highest (remaining) coverage (line 8) to the cluster set 
JV~, while removing the covered objects from all remaining neighborgrams. The algo
rithm terminates if either no more cluster candidates satisfy the search constraints (miss 
the minimum size constraint) or the accumulated coverage is larger than the required 
coverage lI'min. 

This basic algorithm learns a set of clusters distributed over different universes, 
whereby each cluster is associated with a class (the class of its centroid). The pre
diction of unlabeled data is carried out by a best-matching approach, i.e. by identifying 
the cluster that covers the query object best. In case more than one cluster covers the 
query and these clusters are assigned different classes, the final class can be determined 
using a majority vote of the clusters. 

Universe Interaction. The basic algorithm inherently enables simultaneous learning 
in different universes by considering all neighborgrams as potential cluster candidates 
and removing covered objects in all universes. However, this is a rather weak interac
tion as it does not respect overlaps between universes. These are often of special interest 
for mainly two reasons: Firstly, they give new insights regarding recurrent structures in 
different universes and help the expert to better understand relations between universes. 
Secondly, they may help to build a more robust model. The basic algorithm described 
above penalizes such overlapping structures since it removes covered objects from all 
remaining neighborgrams. If two clusters group equally in two universes, the algorithm 
would choose anyone of the two clusters and remove the objects. The non-accepted 
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cluster will never be considered as a good cluster candidate again, because all its sup
porting objects were removed already. 

In order to take these overlaps into account, we modify the algorithm to detect Over
lapping clusters during the clustering process. More formally, we define the relat ive 
overlap v : NG x NG 1---7 [0,1] of two neighborgrams as 

whereby Mi(u) denotes the set of objects of the same class as the centroid that are covered 

by the cluster candidate derived from the Neighborgram NGru
) according to the user 

settings of minimum purity and size. This overlap is the cardinality of the intersection 
of these two sets divided by the size of the union. Two neighborgrams in different 
universes representing the same cluster will therefore have .a high overlap. 

Using the above formula we can numerically express the overlap between cluster 
candidates. We modify the basic algorithm to also add those candidates to the cluster 
set that have the highest overlap with the currently best cluster candidate in each uni
verse unless their overlap is below a given threshold Vmin. That is, in each iteration 
(refer to line 6-16 in algorithm 1) we determine the cluster with the highest remaining 
coverage in all universes. Before removing the covered objects from further considera
tion we identify the cluster candidates in all remaining (i.e. non-winner) universes with 
the highest overlap wih respect to the current winner. For each of these overlapping 
cluster candidates we test whether the overlap is at least Vmin and, if so, also accept it as 
cluster. This strategy of course increases the number of clusters in the final model bu t it 
also improves the prediction quality on test data considerably as we will see later. 

Weighted Coverage. Another beneficial modification to the algorithm is the usage 
of a different cluster representation by means of gradual degrees of coverage. In the 
previous sections we used sharp boundaries to describe a cluster. An object is either 
covered by a cluster or not, independent of its distance to the cluster centroid. By using 
a weighted coverage scheme that assigns high coverage (-t 1) to the objects in the 
cluster center and low values ( -t 0) to those at the cluster boundaries, we have a much 
more natural cluster representation [5]. As weighting scheme we use in the following a 

linear function; the degree of coverage J.1i(u) (j) for an object j to the cluster candidate 

for a neighborgram NGru
) with its centroid Xi ,u in universe u is: 

(£I ) . { ci- d(II ) ( : i,I/lX j ,lI) if d(u) (x · X · ) < d 
J.1i (J) = d 1,£1, j ,U -° else, 

whereby d represents the distance of the farthest object covered by the neighborgram 

according to the optimal length Ai(u). Note that due to the gradual coverage the algo
rithm needs to be slightly adapted: The coverage of a cluster is no longer a simple 
count of the contained objects but an accumulation of their weighted coverage. Also 
the removal of objects from consideration needs to be changed in order to reflect the 
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partial coverage of objects. These changes are straightforward and therefore we omit a 
repeated listing of the modified algorithm here. 

5 A k-Nearest Neighbor Classifier for Parallel Universes 

Before we present our results, we shall briefly discuss an extension to the k-nearest 
neighbor approach for parallel universes, which we will use to compare our results 
against. It is based on the idea presented in [7], who use a modified distance measure to 
perform 3D object retrievals. Similar to learning in parallel universes they are given data 
sets in multiple descriptor spaces. The distance between a query object and an object in 
the training set is composed of their distances in the different universes. The individual 
distance values are weighted by the I\.-.entropy impurity, which is the class entropy of the 
I\. nearest neighbors in the (labeled) training set in a universe around the query object, 
i.e. the object to be classified. The entropy impurity will be 0 if all I\. neighbors in the 
training set have an equal class attribute and accordingly larger if the neighborhood 
contains objects of different classes. If imp(u) (q, 1\.) denotes the I\.-entropy impurity in 
universe u for a query object q, then the accumulated overall distance 8 (q, i) between q 
and and object i is [7]: 

~ 1 d(u) (Xq,u,Xi,u) 
8(q,i)=£..1+· (u)() (u) 

u= 1 lmp q, I\. dmaxq 

Note the term df::lxq in the denominator of the distance coefficient: it is the maximum 
distance between q and the objects in the training set. It is used to overcome normaliza
tion problems that arise when accumulating distances from different domains/universes 
- a problem that the neighborgram approach fortunately does not suffer from as it does 
not compare distances across universes. 

We use the above distance function in a k-nearest neighbor algorithm in the following 
section as it has proven to be appropriate for the 3D data set being analyzed [7]. How
ever, its general applicability for parallel universe problems is questionable for mainly 
three reasons: (1) it does not scale for larger problem sizes (specifically because of 
query-based nearest neighbor searches in all universes), (2) it has the above-mentioned 
normalization problem (the normalization factor depends heavily on the data set), and 
(3) it does not produce an interpretable model in the form of rules or labeled clusters 
(as in the Neighborgram approach). 

6 Results 

We use a data set of 3D objects to demonstrate the practical usefulness of the presented 
neighborgram approach. The data set contains descriptions of 3D objects given in dif
ferent universes, which cover image-, volume- and shape based properties [1,7] . There 
are a total of 292 objects, which were manually classified into 17 different classes such 
as airplanes, humans, swords, etc. The objects are described by means of 16 different 
universes, whose dimensions vary from 31 to more than 500 dimensions. The number of 
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misclassification count (Vmin = 0.8) 

--- ----0/1 coverage I 
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min purity Pmin 

Fig. 2. Misclassification counts for sharp (011 coverage) vs. soft cluster boundaries (weighted 
coverage) 

objects per class ranges from 9 to 56. The descriptors mainly fall into three categories. 
The image-based descriptors extract properties from an object's projections (typically 
after normalizing and aligning the object). They typically encode in~ormation regard
ing an object's silhouette or depth information. There are 6 universes in this category. 
Volume-based descriptors reflect volumetric properties of an object, for instance a dis
tribution of voxels (small volume elements) in a unit cube being occupied by the object. 
There are 5 universes of this type. Finally, shape-based descriptors encode surface and 
curvature properties, e.g. based on the center points of the objects faces (center of the 
different polygons describing an object). The remaining 5 universes are of this type. 

Similar to the results presented in [7] we use the Manhattan norm on the unnormal
ized attributes in each universe and perform 2-fold cross validation to determine error 
rates (we list absolute error counts for the 292 objects to be classified below). 

We first ran a k-nearest neighbor approach to determine a reference value for the 
achievable error rate. We used the aggregated distance measure presented in section 5 
and tested different settings. The smallest error we could achieve was 40 misclassi
fications for K = 3 (to calculate a universe's K-entropy impurity) and k = 2 (nearest 
neighbor parameter), which matches the findings of [7]. 

In a first experiment with the neighborgram clustering approach we tested the ef
fect of the weighted coverage approach and compared it to the error rates when using 
a sharp cluster representation. We varied the minimum purity parameter Pmin from 0.7 
to 1.0 and set an overlap threshold Vmin = 0.8. A minimum size rmin for a cluster was 
not set to respect underrepresented classes. Figure 2 shows the results. The 011 cover
age curve indicates the error rates when using a sharp cluster representation, i.e. even 
objects at the cluster boundaries are fully covered. The weighted coverage approach 
improves the prediction quality considerably and yields error rates comparable to the 
k-nearest neighbor method. Note, using the weighted covering approach also increases 
the total number of clusters in the final model. If there are no further constraints regard
ing termination criterion or minimum cluster size, the cluster count can reach up to 600 
clusters (from a total of 16 · 292 = 4672 cluster candidates). 

In another experiment we evaluated the impact when identifying overlapping clus
ters across universes and adding those to the cluster set. This experiment compares the 
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Fig. 3. Misclassification rates and cluster counts using the Parallel Universe extension compared 
to models built on individual universes. 

basic algorithm shown in algorithm 1 with the extension discussed in section 4.2 (using 
weighted coverage in either case). The results are summarized in figure 3 along with the 
results of the two best single-universe classifiers. These were built in the universes DBF 
(depth buffer) and SIL (silhouette), both of which are image-based descriptors . The ba
sic algorithm in parallel universes already outperforms the single-universe classifiers 
in terms of both classification accuracy and numbers of clusters used. When addition
ally taking overlapping clusters into account (represented by the curve labeled "Paruni 
(overlap )"), the error rate drops considerably, showing the advantage of having some 
redundancy across universes in the cluster set. However, these re-occurring structures 
come at a price of an increased number of cluster, which is in the order of 500-600 
(omitted in the graph). This suggests that the basic algorithm is suitable if the focus 
is on building an understandable model with possibly only a few clusters, whereas the 
enhanced algorithm with overlap detection may be appropriate when the focus lies on 
building a classifier with good prediction performance. 
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Neighborgram Visualization 

Another advantage of the neighborgram data structure is the ability to visualize them 
and thus allow the user to visually assess a cluster's quality and potential overlaps across 
universes. Figure 4 shows an example. A row represents the neighborgrams for one 
object in four different universes (two image- (DBF & SIL), one shape- (SSD) and one 
volume-based (VOX)). We use the same visualization technique as in the illustrative 
example in figure 1, i.e. a distance plot, whereby the vertical stacking is only used 
to allow an individual selection of points. The plots show the 100 nearest neighbors; 
objects of the same class as the centroid are shown in dark grey and objects of all other 
classes in light grey. Objects of a (semi-automatically) selected cluster are additionally 
highlighted to see their occurrence also in the respective other neighborgrams/universes. 
2D depictions of these objects are also shown at the bottom of the figures, whereby we 
manually expanded the cluster to also cover some conflicting objects (shown on the 
bottom right). Figure 4 shows the largest cluster in the DBF universe, which covers 
the class "swords". Note this cluster also groups in the SIL universe, which is also 
image-based, though there seems to be no grouping in the shape- and volume-based 
descriptors SSD and VOX. In contrast, clusters of the class "huinans" form nicely in 
the shape-based universe SSD. 

There are more interesting clusters in this data set, for instance larger groups of 
cars, which cluster well in the DBF and VOX universe or a group of weeds, which only 
clusters in the volume-based descriptor space. We do not show these clusters in separate 
figures due to space constraints. However, this demonstrates nicely that depending on 
the type of object certain descriptors, i.e. universes, are better suited to group them. 
These results emphasize that learning in parallel universes is an important and well 
suited concept when dealing with such types of information. 
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Fig. 4. The largest cluster in universe DBF covers objects of class "sword" (highlighted by bor
der). 2D depictions of the covered objects are shown at the bottom. The cluster was manually 
expanded to cover also two conflict objects of class "spoon" (shown at bottom right). 



400 

7 Summary 

We presented a supervised method for the learning in parallel universes , i.e. for the 
simultaneous analysis of multiple descriptor spaces using neighborgrams. We showed 
that by using an overlap criterion for clusters between universes we can considerably 
improve the prediction accuracy. Apart from using neighborgrams as an underlying 
basis to learn a classification model, they can also be used as visualization technique to 
either involve the user in the clustering process or to allow for a visual comparison of 
different universes. 
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