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Introduction 

 
 
 
 

The Paths towards Knowledge 

The search for order and stability has traditionally been one of the fundamental 
objectives of economic science. We do not believe that there is any economist, 
whatever the school in which they have based their knowledge, who does not 
establish their decisions by thinking of obtaining an equilibrium or by thinking of 
breaking an existing equilibrium. But always with the idea of finding another, 
which may be more favourable for the interests which they wish to defend. 

If we focus on the field of the formalizing of the phenomena in the sphere of 
knowledge a marked confusion can be observed in researchers, when a reality full 
of disarray which makes life unstable can be seen to be treated in the same way as 
in situations of equilibrium, enveloped in stability.  It is this way because it results 
as difficult to accept that society, the economy and the activity of businesses such 
as those we have known up to now have no possibilities of survival in the 
immediate future in which many deep changes will be inevitable. When faced 
with this panorama there are no lack of studies which aim to find solutions by 
undertaking new paths in their economic studies, in which fluctuations and 
instability are taking an ever more fundamental position.  

In effect, in a context of changes such as those which we are currently 
witnessing, who is capable of predicting the evolution of events with the 
necessary precision of a prophet? Maybe we should be satisfied with less and 
better employ that which is available to us. For this, a brief reflexion based on the 
possibilities which the answers offered by the laboratories where the new 
scientific discoveries are taught may result as useful. This confirms to us that 
research activity has reached a crossroads at which the future of humanity is at 
stake. On the one hand the geometric conception of knowledge and on the other 
the Darwinian conception.  On the one side the sublime, monotonous and well-
known reiterative songs, renewed only in their forms. The imposition of some pre-
established beliefs from the blinding light of the Newtonian dawn, in which the 
reduction of the operation of the world to the predictability of a mechanism is 
dreamed of. And on the other side the emptiness of the unknown.  The varying 
and at times dissonant whispers of notes which sound disjointed and incoherent.  
The attraction of adventure.  The invitation to jump from the edge of a cliff where 
the distance to fall cannot be seen, only guided by the hope of opening new 
horizons.  The response to the calling of Ludwig Boltzmann, of Bertran Russell, 
of Lukasiewicz,of Zadeh, of Lorenz, of Prigogine and of Kaufmann.  The 
rejection of the yoke and burden of predestination and the proclamation of 
freedom of choice which time and again clashes against the wall of doubt. 
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Karl Popper1 stated “that all events are caused by an event, in such a way that 

all events may be predicted or explained.... On the other hand, common sense 
attributes to sane adults the capacity to freely choose between various paths....”. 
This kind of interior contradiction a greater problem which William James2 
designated “dilemma of determinism”.  When we move this dilemma to physics or 
economics then what is known as “the time paradox” appears, in which we gamble 
neither more nor less than our relationship with the world or with society. In 
effect, Is society already written or is it found to be in permanent construction? 
Over time economic science has fed on the knowledge supplied by physics and as 
from the Newtonian Dynamic to quantum physics temporal symmetry is accepted, 
without distinction between past and future, economic science has been seen 
impregnated by a nature of no time references.  On the other hand, our perception 
of economic phenomena leads us to think that past and future play a different part.  

The time paradox “was identified by the Viennese physicist Ludwig 
Boltzmann, who believed it possible to follow the example of Charles Darwin in 
biology and give an evolutionist description of physical phenomena.  His attempt 
had the effect of demonstrating the contradictions  between the laws of Newtonian 
Physics -based on the equivalence between past and future- and all attempts of 
evolutionist formulation which asserted an essential distinction between future and 
past”3. At present, however, this perception of reality and of time has changed, 
above all since the birth and development of non-equilibrium physics with 
concepts such as self-organisation and dissipative structures.  We are constantly 
more conscious that the deepest roots of the new ways of looking with which 
researchers scrutinise and examine social systems, economics and management 
are to be found in the 19th century when the first essences of evolutionism were 
born. 

In effect, in his fundamental work “On the Origin of Species” published in 
1859, Darwin considered that the fluctuations in biological species, thanks to 
natural selection, give rise to an irreversible biological evolution. That a self-
organisation of systems with a growing complexity takes place between the 
association of fluctuations (which is similar to the idea of chance, we would say 
uncertainty) and irreversibility.   

The evolutionary description is found associated with the concept of entropy, 
which, in thermodynamics, allows us to distinguish between reversible and 
irreversible processes. In 1865, Clausius4 associated entropy with the second 
principle of thermodynamics. His formulation of the two principles of 
thermodynamics is the following: “The energy of the universe is constant”.  “The 
entropy of the universe tends to a maximum”.  Faced with the energy which it 
continuously retains, entropy allows the establishment of a distinction between 

                                                           
1 Popper, K.: L'univers irrésolu. Plaidoyer pour l'indéterminisme. Ed. Hermann. París, 

1984, page. XV. 
2 James, W.: The dilemma of determinism, in The Will to Believe. Ed. Dover. New York, 

1956. 
3 Prigogine, I.: La fin des certitudes. Spanish translation with the title «El fin de las 

certidumbres». Ed. Taurus. Buenos Aires, 1997, page 8. 
4 Clausius, R.: Ann. Phys. CXXV, 1865, page 353. 
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reversible processes (constant entropy) and irreversible processes (entropy 
created).  Therefore, in an isolated system the entropy increases when irreversible 
processes exist and remains constant in the presence of reversible processes.  So, 
entropy reaches a maximum value when the system is nearing equilibrium and the 
irreversible process ends. It was Ludwig Boltzmann (1844-1906) who established 
a relationship between entropy and probability through the famous formula H = K.  
In P. 

In 1872 Boltzmann published his famous “H Theorem”.  This theorem exposed  
how in the heart of a population of particles, the collisions between these modifies 
the distribution of the value of this function H at each moment until a minimum 
which corresponds with that which has come to be called the Maxwell-
Boltzmann equilibrium distribution is reached. In this state the collisions no 
longer modify the distribution of velocities in the population and the magnitude H 
remains constant. In this way the collisions between particles lead to equilibrium. 

As much in the case of Darwin as in that of Boltzmann, chance (or, if 
prefered, uncertainty) and evolution are intimately related, but the results of their 
respective investigations lead to contrasting conclusions. For Boltzmann, the 
probability reaches its maximum when uniformity is being reached, while for 
Darwin evolution leads to new self-organised structures.          

In comparison with these approaches, and following the traditional physics 
prototype in which complete and certain knowledge are linked and in which from 
certain initial conditions the predictability of the future and the possibility of 
returning to the past are guaranteed, marginal economic theory is supported by the 
mechanics of movement, which describe processes of a  reversible and 
determinist character, where the direction of time plays no part whatsoever and in 
which there is no place for either uncertainty or irreversibility. To conclude, in 
classic studies, economic and management systems constitute great automata.  
But the incorporation of instability is causing  a substantial change in which the 
concept of “economic law” acquires a new meaning.  

It is true that some phenomena arising from the life of states, institutions and 
companies can be described through the use of determinist equations.  But, on 
the other hand, others entail uncertain processes or, in any case, stochastic 
processes.  Not only do they possess laws but also facts which do not result as a 
consequence of the laws and instead redefine their possibilities.  It may occur that 
our own existence, with all its complexity, is also engraved in the primordial event 
baptised with the name of the Big-Bang.  Ilya Prigogine5 asked if time made its 
first appearance with the Big-Bang of if time previously existed in our universe.  
In this way the frontier of our knowledge, reasoning and speculation are difficult 
to define. The Big-Bang may be conceived as an event associated with instability, 
which implies that it is the starting point of our universe, but not of time.  
Therefore, time does not have a beginning and it is possible that it does not have 
an end.  The reality is that economic science, which has searched so much for that 
which is permanent, symmetry and laws, has instead found that which is 
mutable, irreversible and complex. 
                                                           
5 Prigogine, I.: La fin des certitudes. Spanish version,  Ed. Taurus. Buenos Aires, 1997, 

pages. 11-12. 
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In this search, the scholars of economics and management are discovering 

processes in which the transition of chaos to order takes place, that is to say 
sequences which lead towards self-organisation.  The question posed is how this 
creation of new structures takes place, which is to say this self- organisation.  So, 
given the entropy of a system, if it is disturbed in such a way that a state remains 
sufficiently near to equilibrium the system itself responds by reestablishing the 
initial situation.  This is a stable system.  But, if a state is taken far enough from 
equilibrium, it enters a situation of instability in relation with the disturbance.  
This point is habitually named the bifurcation point6.  From this, new phenomena 
take place which may correspond to behaviour far from the original. In this 
context determinist processes have no usefulness for predicting which path will 
be chosen between those existing and bifurcation.  In many of these bifurcations 
symmetry rupture is produced. 

The notions of time and of determinism have been present in western thought 
since pre-Socratic times, causing deeply felt tension when attempting to give an 
impulse to objective knowledge at the same time as promoting the humanist ideal 
of freedom.  Science would fall into a contradiction if it were to opt for a 
determinist concept when we find ourselves involved in the task of developing a 
free society.  Neither science and certitude nor ignorance and possibility can be 
identified. A scientific activity is coming to light in which investigations are not 
limited to the study of simplified and ideal phenomena but which are determined 
to unravel the secrets of societies written in a real, essentially complex world.   

Irruption of Mathematical Spaces on Management Studies  

Over many decades, economists have lived facing away from these ideas, closing 
the door to renewal and blocking the arrival of this breath of fresh air.  Because of 
this, economic thought remained deeply-rooted as it had initially been, between 
1880 and 1914, in mechanistic mathematics. The classic mechanics of Lagrange 
was used, which gave an impression of severity, compared with that which 
Perroux called the “laxity of the economic discourse”. But on the other hand, the 
thoughts of researchers remain trapped by certain economic laws, parallel to the 
laws of nature, which prevent them from exercising one of their most prized 
treasures: imagination.  The inevitable consequence is that the automatisms of the 
mathematics of determinism have exerted great prestige and still prevail today in 
many spheres of scientific activity in economics and business management. 

But the search for new formal structures has not disappeared from the restless 
spirits of many researchers.  This is the case of Lotfi A. Zadeh.  The developments 
of physics and chaos and instability mathematics have provided, we believe, the 
important finding of Zadeh7, who, with his fuzzy sets has created a fundamental 
change in the panorama of research within the spheres of social sciences. And in 
the evolutionary onrush of new proposals, introduced with thanks to him, concepts 

                                                           
6 In a boolean environment the term bifurcation makes sense, but in multivalent logic 

trifurcation, pentafurcation..., or endecafurcation, can be produced, amongst others.   
7 Zadeh, L.: «Fuzzy Sets». Information and Control, 8th June 1965, pages 338-353. 
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as deeply-rooted as profitability, economy, productivity... expressed by cardinal 
functions, are losing their particular attraction in favour of other notions such as 
relation, grouping, assignment and ordering, which now acquire a new sense.  
This displacement is fundamental, because it means the transfer of non-
arithmetical elements, considered contemporary in traditional studies, to the 
privileged position they currently occupy. 

Little by little we are being provided with an arsenal of operative instruments of 
a non-numerical nature, in the shape of models and algorithms, capable of 
providing answers to the “aggressions” which our economics and management 
systems must withstand, coming from an environment full of turmoil.  Despite 
this, it seems that the agglutinating element that constitutes the basic support on 
which the findings accomplished and those in the immediate future may settle has 
not yet been found.  Can the notions of pretopology and topology help to 
achieve this objective? 

In the work which we are presenting, we dare to propose a set of elements from 
which we hope arise focuses capable of renewing those structures of economic 
thought which are upheld by the geometrical idea, so deeply-rooted in the 
worshipping circles of the orthodox which, monopolising the means of power, 
assign privileges and deny beauty.     

The concepts of pretopology and topology, habitually marginalized in 
economics and management studies, have centred our interest in recent times.  We 
consider that it is not possible to conceive formal structures capable of representing 
the Darwinism concept of economic behaviour today without recurring to this 
fundamental generalisation of metric spaces in one way or another.    

In our attempts to find a solid base to the structures proposed for the treatment 
of economic phenomena, we have frequently resorted to the theory of clans and 
the theory of affinities with results which we believe to be satisfactory.  We would 
like to go further, establishing, if possible, the connection between their 
axiomatics at the same time as developing some uncertain pretopologies and 
topologies capable of linking previously unconnected theories, at the same time 
easing the creation of other new theories.  Our aspirations are as ambitious as our 
enthusiasm is unflagging.  We think that even though the flight does not reach so 
high, we will be capable of reaching levels sufficient enough to capture the 
attention of those searching for new paths towards a knowledge closer to the 
complex realities of modern times. 

Now seems the right time to remember that in a “crude way”, topology can be 
conceived as a branch of science which studies space.  It therefore analyzes the 
idea of space and searches for properties common to all spaces. For this, it begins 
from the most general concept of space and studies the properties which belong as 
much to three-dimensional euclidean space R³ and the n- dimensionals Rn as to the 
infinite-dimensional space H of Hilbert, to non-euclidean space and to the 
geometrics of Riemann, to only quote the most well-known. Therefore, topology 
does not act directly in either the linking operations between real numbers or in 
their generalisations. 
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Brief Summary of This Work 

We believe that to arrive at such a high generalisation demands a certain trajectory 
to, in this way, imbue ourselves with the meaning and possibilities of these 
structures full of so much abstraction.  The immersion in pretopological studies 
could be a good entry point towards the objectives which we pursue.  For this 
reason, the axioms of the most general of pretopologies has been the starting point 
for our work.   

In the first part of this study we have made a brief reference to ordinary 
pretopology to later move on to fuzzification.  To better assume the meaning of 
pretopologies, we have begun with a principle example based on very singular 
financial products which have been passing all “tests” to the extent that new 
axioms were added to those of the most general pretopology until Moore's 
uncertain pretopology was reached.  The proposed pretopologies do not usually 
always pass the obstacles which new axioms provide.  We have wanted to develop 
a scheme of this nature, in an attempt to span the range of phenomena that 
economic and management reality may pose wider.  Most of the time, fortunately, 
it will not be necessary to make use of Moore's uncertain pretopology.  In many 
cases isotone uncertain pretopology or distributive uncertain pretopology will be 
enough. 

Being able to arrive at Moore's uncertain pretopology has been a basic element 
for our algorithms as it has allowed us, with all of the necessary adaptations, to 
reach Moore closings and thanks to this we have been able to use, in the sphere 
which concerns us, the theory of affinities.    

The task undertaken has obliged the following of a certain trajectory. Therefore, 
after a brief description of the fundamental concepts of uncertain ordinary 
pretopology, the conditions necessary for the existence of isotone uncertain 
pretopologies have been established. From here the existing relationships in a 
system are expressed by using a fuzzy graph.  We have considered that this was 
susceptible to treatment until the “closes” were to be found on one side and the 
“opens” on another.  

The traditional study of the fuzzy graph through its ∝-cuts has provided a set of 
boolean graphs with their range of Moore closing and their corresponding closes.  
In this first approximation uncertainty appears as a consequence of the possibility 
of accepting distinct levels.  Simultaneously it is noted that another kind of 
uncertainty is born from the subjectivity in the assignment of valuations for each 
of the elements of the fuzzy subset.  Moving into this field may lead, we hope, 
towards revealing proposals. Based on this reasoning we have proposed to deal 
with this approach in its integrity.  

At the beginning of this task a crossroads appeared at which an important 
decision for the later development of our work needed to be taken. We refer to the 
sense which should be given to the referential from which the set of base 
elements among which the functional application will be performed should arise. 
There may be two interpretations. The first considers a “crisp” referential while 
the second is developed from a referential of fuzzy subsets. 
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During this work, as much in reference to pretopologies as topologies dealt 

with in the second part, we have been able to show that both focuses result as 
useful for decision making in the economics and management sphere. The choice 
of one or the other depends on the information available and the objectives to 
achieve. 

We have started the second part of our work expounding the axioms which 
allow the definition of a topology in the most general way, which later allows an 
interesting game when passing to uncertainty. The notions of filter base and base 
on the one hand and the concept of neighbourhood on the other have helped us in 
this task. Immediately afterwards we have assumed the task of showing certain 
relationships of a singular importance which may exist between two or more 
topological spaces. In this way we will develop the concept of topological 
continuity and, leaning on the notion of inverse of an application, that of 
homeomorphism. Upon ending this block of knowledge in this way we hope to 
have brought the basic elements to achieve one of our main objectives to the 
surface: uncertain topology. 

We will dedicate the second block of this part to uncertain topology. The two 
focuses noted in the study of pretopologies in uncertainty now become evident 
under the same axioms. The transformation of deterministic structures into 
uncertain structures has captured all of our attention. But uncertainty does not 
always appear for the same reason and choosing one or another, consigning the 
others to oblivion, would be showing a lack of scientific sensitivity. 

We are able to isolate three ways in which to incorporate uncertainty. We have 
tested two of them in the pretopology of uncertainty, using a fuzzy subset as a 
descriptor of a physical or mental object and starting from a referential set 
formed by the referentials of the fuzzy subset in the first form and constructing 
the referential set with fuzzy subsets in the second form. The third and last form 
of incorporating uncertainty consists in converting the fuzzy elements into 
booleans by means of a breaking down in levels by ∝-cuts. We wish to express 
our conviction that we cannot expect that the paths of access to uncertainty are 
finished with that which we expound. On the contrary, we consider that these open 
doors should still provide interesting possibilities for future development. 

The conglomeration of elements put forward in the first and second part of this 
work constitutes a formal body which, we believe, possesses a high level of 
homogeneity. The axioms established for the pretopologies and topologies, from 
which it has been able to establish a great number of properties, should lead us to 
a third and final part closer to the formal objectives and material of business 
economics and management. In this part we have proposed the connection of 
some operative instruments already used by ourselves with elaborated formal 
structures. In this way, we have dedicated each one of the blocks of which this 
part consists to two interesting but incomplete theories: the theory of clans and 
the theory of affinities. We consider that the connection of the previously existing 
with that achieved can provide unquestionable advantages at the time of their use 
for economic and management problem solving.  

With this intention we connect the axioms of the theory of clans with those 
established for the distinct topologies. We have been able to verify that certain 
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concepts, basic in the sphere of topology, result as valid when they are transferred 
to the study of clans. For our own tranquility we perform a “test” using some 
problems form the area of economics management, which validate in practise as 
much as from a technical perspective.  

We end this third part with a block destined to recall the most significant 
elements of the theory of affinities to, once adequately restructured, affect 
pretopological spaces. In this sense the comparison between the isotone 
pretopology and Moore closing has constituted a good starting point. From here it 
results as essential, to our understanding, to find the sources from which the closes 
may be found and subsequently Moore closings. The connection of these elements 
with pretopologies and topologies therefore results as immediate. With this the 
definition of affinity acquires its greatest meaning. 

However, the practical needs, in the sense of capacity of use of this host of 
knowledge to deal with economics and management problems, demands the 
availability of operative methods. These would arrive in the form of algorithms 
of an alternative use: that of the maximum inverse correspondence and that of 
the maximum complete sub-matrices. We consider that with the presentation of 
these algorithms and with their use in a revealing supposition we can close our 
work, albeit in a provisional way. 

With this work we aim to begin the task of finding the bases on which to place 
the structure of economics and management systems, taking into account that 
the deep mutations produced in these go beyond, on many occasions, the limits 
within which the own strengths of the system allows a return to positions of 
equilibrium. Going beyond these limits means the birth of a new context, not 
connected to lineal processes. Our proposal is aimed at demonstrating the wide 
possibilities which, in this sense, uncertain pretopological and topological 
spaces acquire.    

A Return to the Origin?  

It seems that Epicuro was the first to expose the problem of the inseparability of 
the determinist world of the atoms and human freedom. It is true that the 
formulation of the laws of nature contributes an important element in not denying 
evolution in the name of the truth of being, but on the contrary trying to describe 
the movements characterised by a speed which varies with the passing of time. 
Despite their formulation, these laws entail the supremacy of the being over 
evolution, as evident in Newton's law which linked force and acceleration: it is 
deterministic and reversible in time. But, in spite of the fact that Newtonian 
physics was relegated by the two great discoveries of the 20th century, quantum 
mechanics and relativity, his determinism and temporal symmetry have 
survived. As it is known, quantum mechanics does not describe trajectories but 
wave functions, but its fundamental equation, the Schrödinger equation, is 
determinist and of reversible time. 

But, if for a great quantity of physicists, amongst whom one can find Einstein, 
the problem of determinism and of time has been resolved (“time is just an 
illusion”), for philosophers is continues to be a question mark on which the sense 
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of human existence depends. In this way Henri Bergson8 asserts that “time 
postpones or, better said, is a postponement. Therefore it must be elaboration. Will 
it not be then the vehicle for creation and election? Does the existence of time not 
then prove that there is indetermination in things?” In this way, for Bergson 
realism and indeterminism walk hand in hand. Karl Popper also considers that 
“the determinism of Laplace -confirmed as it appears to be by the determinism of 
physical theories and his brilliant success- is the most solid and serious obstacle in 
the way of an explanation and an apology of human freedom, creativity and 
responsibility”.9    

With these precedents we have undertaken the task of developing this book 
which aims towards the objective of widening the perspective of economics and 
management studies, from a description of certain spaces capable of granting a 
place for the geometrical concepts of certainty and reversibility and also the 
innovation which uncertainty or irreversibility may mean. If in the most well-
known treatise of economics and management idealised systems of economics and 
management are described which are stable and reversible, we have aimed to 
move closer to the world in which we live characterised by instability and 
evolution, which brings a certain complexity. From here the transition to 
uncertain pretopologies and topologies. We believe that even within chaotic 
systems an order may exist. This order is that which we are searching for, 
reaching far from the past into the future.    

                                                           
8 Bergson, H.: «Le possible et le réel», in: Oeuvres. Presses Universitaires de France. París, 

1970, page 1333. 
9 Popper, K. : L'univers irrésolu. Plaidoyer pour l’indéterminisme. Ed. Hermann. París, 

1984, page 2. 
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Brief Historical Overview of Topology 

Since several decades ago economic science has dived into many distinct fields of 
knowledge to find the necessary elements with the objective of a better 
understanding of the complexity inherent to the systems in which stable 
equilibriums overflow. Maybe the moment has arrived to return to a path already 
timidly undertaken on many occasions but then abandoned, we believe prematurely, 
without fully achieving the desired objectives. We are refering to topology. 

The word topology comes from the Greek terms τοποσ (place) and λοyοσ 
(study). It first appeared in 1847 when Johann Benedikt Listing used it in one of 
his works. 

In its origins topology included work relative to the properties which physical 
or mental objects support/maintain when they are submitted to continuous 
transformations such as deformations, doubling, lengthening, etc... but not 
breakage (for example,a triangle is topologically equivalent to a sphere). In short, 
it could be said that it deals with the study of soft and gradual changes, of the 
analysis of the non-broken. 

But its existence is previous to the word with which it is known today. Indeed, 
it is considered that the first to use it was Gottfried Wilhelm Leibniz (1646-
1716). Among his discoveries is found the mathematical principle of continuity 
which he called “análysis situs” (position analysis) in the year 1679. It is also 
known as “rubber band geometry”. When Leibniz refered to análysis situs he 
wanted to demonstrate a genuine geometrical analysis in the sense of expressing 
the “place”, the “position”, against the algebraic analysis which deals with 
magnitudes. In this way, while the cartesian coordinates were refered to as specific 
quantities, Leibniz aimed to deal with the geometry of sets independent to the 
quantities which the elements of these sets could define. Topology constitutes a 
kind of geometry in which longitudes, angles, faces and forms are infinitely 
changeable. All of the geometrical forms studied in our youth are the same for a 
topologist. Topology studies those properties of forms which do not change 
when reversible continuous transformations take place. In what concerns us, we 
emphasize his interest for the problems of groupings, limits, neighbourhood and 
morphology of economics and management objects. 

There is no doubt, however, that the person who established the solid bases of 
what would be later known as topology was Bernhard Riemann (1826-1866), 
disciple of Carl Friedrich Gauss (1777-1855). In his doctoral thesis Riemann 
established fundamental topological concepts among which that of “extended 
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magnitude several times” stands out, the origin of what would later become 
known as topological space. In this way the idea of functions space arose (all the 
possible forms of a function in a given dominion) and also that of space of 
positions of a geometrical figure. In relation to the study of surfaces, it 
associated whole numbers to spaces which had previously been defined. These are 
the Betti numbers, which have been the seed of algebraic topology. The 
development of Riemann's ideas was limited principally to the lack of an element 
which later arose with force. We are refering to the set theory. An important 
contribution appeared with the work of Georg Cantor (1845-1918) thanks to the 
systematization of the set theory and the notions of “accumulation point”, “closed 
set”, “open set” and “dimensions”, amongst others. Later, once into the 20th 
century, significant contributions were made by David Hilbert (1862-1943), 
Maurice Frechet (1878-1973) and Frigyes Riest (1880-1956), amongst others. 
Without doubt the key figure of the topology that we know today was Felix 
Hausdorff (1868-1942). His definition of topology, formulated in 1914, would 
serve as a base for that accepted at present times, formulated by Alexandroff in 
1928. He made it evident that when mathematicians demonstrate theorems of 
analysis they always use similar methods and that the important thing was not 
metric properties but the relationships of proximity between the points and 
subsets. He dispensed with the notion of distance, although he accepted those 
minimum properties which allowed the consideration of proximity between 
points and subsets.    

Some Classical Approaches of Topology  

Over time some curious problems which, in some way, illustrate a part of the 
content of topology have been transmitted. Among those most well-known we 
may mention “the Möbius band”, “the Seven Bridges of Königsberg”, “the Four 
Colour Problem” and “the Three Bodies in Space”.  

 

 
 
1. In 1858, the German mathematician A. F. Möbius demonstrated that if you 

take a strip of paper long enough, you twist one of its extremes 180 degrees and 
then stick the two extremes together to create a ring, you obtain an object with a 
single face which, apparently, is to perform the impossible. From every 
perspective and no matter how many times you turn the surface you always find 
one continuous face. 
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If we cut the strip in half longitudinally until we reach the starting point of the 

cut then we are not left with two closed bands but only with one. This is what is 
known as “cutting into ribbons”. 

Topologists are used to taking simple figures as a base to create more 
complicated surfaces, generalising the results in three-dimensions, with a view to 
include figures of four, five..., n dimensions. In this way a flat surface such as a 
sheet of paper is considered as if it were a perforated sphere which has been 
stretched and squashed until the aforementioned sheet of paper is created. 

It is difficult to recognise such figures when they have been stretched in a 
fanciful way. To be able to identify them it is normal to characterise each 
topological type by means of simple invariant properties. One of these, relative 
to a surface, is the number of edges. A second is the number of faces. A Möbius 
band is an example of a face. The third characteristic invariant is the 
aforementioned Betti number, defined by the maximum number of transversal 
cuts which may be made in a surface without dividing it, taking into account that a 
transversal cut begins and ends at the edge. The ribbon cuts also allow the finding 
of the Betti number of a surface and are performed in a way that starts and ends at 
one point on the surface, always avoiding the edge. The maximum number of 
ribbon cuts possible without dividing a surface with an edge leads to the Betti 
number. The Betti number of a Möbius band is one. Each ribbon cut intercepts 
only one transversal which shows that named the fundamental relationship of 
duality. S. Lefschetz generalised this relationship to n dimensions and in 1927 
formulated, the “duality theorem” which has been considered one of the 
milestones of topological development of the 20th century. As a final point, the 
numbers corresponding to the three topological invariants are always the same for 
an object, although its form may be changed with stretching but always without 
breakage or rejoining. 

If a band formed after performing three 180 degree twists in one of its extremes 
before fastening the two extremes is considered, it can be observed that this band 
also has only one edge and a single face, a transversal cut is the only possibility. 
The Betti number is therefore one. Essentially, we find ourselves before an 
ordinary Möbius band (a single twist of 180 degrees), although there is a 
difference in the way it is situated in relation with three-dimensional space. 
Indeed, while here the edge of the band shows a knot, in the ordinary Möbius band 
there is a simple curve without knots. 

 
2. The problem of the Bridges of Königsberg is found immersed in net theory 

and graph theory. It is one of the oldest of topology and it is normally presented 
by means of a graph formed by four vertices and seven non-orientated arcs. 

In the 17th century the Prussian city of Königsberg had been built around an 
island named Kneiphof, joined to each bank of the river Pregel by two bridges 
(and therefore, four bridges in total) and by another bridge to a neighbouring 
island which, in turn, was connected to the riverbanks by another two bridges.  

The problem was finding the way of crossing each of the seven bridges without 
crossing any of them more than once. The local people saw this problem as a riddle 
without an answer. It was in 1736 when the Swiss mathematician Leonhard Euler, 



XX Towards an Advanced Modelling of Complex Economic Phenomena 
 

interested in the problem, found an ingenious answer to the impossible by using a 
mathematical demonstration of the impossibility of such a route, which then 
created a number n of bridges. His explanation consisted of a revealing example of 
the deceptive simplicity of topological approaches. The problem of Königsberg is 
linked with the well-known exercise of creating a specific figure on a sheet of 
paper without lifting the pencil nor passing more than once over the same line. 

The reasoning of Euler is very simple. He began with the representation of the 
problem by means of a graph in which the vertices substitute the parts of solid 
ground and the arcs or edges substitute the bridges. He named those vertices 
which result in an even number of trajectories even vertices and those which 
result in an odd number odd vertices. The number of journeys necessary to 
traverse a connecting graph is equal to half the number of odd vertices. As it is not 
possible to construct a graph with an odd number of odd vertices (each arc has two 
vertices) the problem of the bridges of Königsberg does not have a solution. It 
would be necessary to add another arc, which is to say, another bridge. 

 
 
 
 
 
 
 
 
 
   
The idea of Euler consisted of creating a connected graph in which circuits 

do not exist. In a graph of this nature the number of vertices is equal to the 
number of arcs plus one. For this one begins with a graph in which those arcs 
which produce circuits are eliminated without deleting any vertex. The maximum 
number of arcs destroyed in a way in which all the vertices remain connected is 
the Betti number of the graph. 

 
We will look at this analytically. Let us assume a graph with initial V vertices 

and A arcs of which B is eliminated. Therefore, we have: 
 

V = 1 + (A – B) 
 

B = 1 + (A – V) 
 
It can be graphically proven that the Betti number of the graph of the bridges of 

Königsberg is four, as it is necessary to eliminate 4 arcs for circuits not to exist in 
the graph. Let us take a look at this: 

 
 
 
  

Impossible 
(Königsberg Bridges)

Possible 
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A = seven arcs (seven bridges) 
V = four vertices (four areas of separated land) 
B = 1 + 7 – 4 = 4. 
 
Although the idea which supports the naming of the “Betti number” had 

already been used prior to that by G. R. Kirchhoff in 1847 and by James Clerk 
Maxwell in 1873, it was Enri Poincaré who settled on the name in 1895 in 
honour of the mathematical physicist Enrico Betti (1823-1892) who, in 1871, had 
created the Riemann connection numbers.   

 
3. The well-known four- colour 

problem is also placed in the field of 
graphs. It is as simple as it is 
unsolvable and as unsolvable as it is 
difficult to demonstrate its 
unsolvability. In short it is stated 
that, given a geographical map each 
country should be coloured in a 
different colour from those adjacent 
to it, using the least number of 
colours. It is necessary to take into 
account that a single point of contact 
does not presuppose the existence of 

a border. So, it must be demonstrated that four colours are enough to colour any 
map of a single plan. 

For many countries only three colours were necessary, and for some well-
known cases such as the American State of Kentucky and its surrounding states 
four colours are necessary. 

In 1946 the Belgian mathematician S. M. de Backer tested that any map with a 
number of countries equal or lower to 35 could be coloured, in the stated 
circumstances, with no more than four colours. Later other researchers managed to 

Island 

Island 

Shore Shore 
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increase the number of countries significantly, although a general demonstration 
for any quantity of countries is still not known. 

It is evident that the four colour theorem was enunciated only for the cases of 
flat or spherical surfaces, as other distinct problems arise for other geometrical 
figures. 

 
4. In 1887 King Oscar of Sweden offered a prize of 2,500 Krona to whoever 

gave the answer to the question of “if the solar system is stable”. In celestial 
mechanics the interaction of two bodies does not pose a problem, but that of three 
presents great difficulties. Poincaré won the prize in 1890 with the memoir “on 
the Three-body Problem and the Equations of dynamics”.  

The movement of two bodies (the Sun and the Earth, for example) is periodical. 
The period is of one year. This shows that these bodies cannot crash into one 
another, nor can they infinitely move away from one another. They have not 
previously done this and therefore they can never do this. Periodicity constitutes a 
very useful element for controlling stability. 

In the third chapter of his memoir, Poincaré strived to explain the existence of 
periodical solutions for differential equations. Assuming that at a determined 
moment the system is found in a specific state and that at a later time it once again 
returns to the same state. All positions and velocities are the same as before. 
Therefore, the movement which has driven a state to itself once again should be 
repeated, once and again: it is a periodical movement. Given a point in a many 
dimensional space, as time passes the point will move giving rise to a curve. When 
will the curve form a closed loop? As the question does not affect either the form, 
the size or the position of the loop, the answer corresponds to topology. In this 
way the existence of periodical solutions depends on the topological properties of 
the relationship between the position of a point now and its position in a later 
period.   

A simple example can be revealing. If we would like to know if an artificial 
satellite has a periodical orbit, instead of following all of its trajectory all around 
the Earth with a telescope we focus on it in a way that “sweeps” a plane which 
goes from north to south, from one point of the horizon to the other and which is 
in line with the centre of our planet. We take note of the place which it has passed 
the first time, its speed and its direction. We must then wait only focusing on the 
plane. Periodicity demands that it must once again pass by the same point, at the 
same speed and in the same direction. Therefore, instead of observing all states, 
just a few are enough. This surface is known as the Poincaré section 
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From this idea, Poincaré went deep into another approach, known as Hill's 

reduced model. Three bodies are considered, one of which possesses a mass so 
small that it does not affect the other two, of large mass. In exchange these do 
affect the first (for example, an interstellar particle and two planets). The two large 
bodies move forming elliptical paths around their mutual centre of gravity, but the 
tiny body moves oscillating from one side to another with nothing to change its 
direction. Poincaré used his superficial section method to try to find periodical 
movements of the tiny body, but what he found was a very complicated and 
counterintuitive behaviour: the system began activity in one state, followed a 
curve which took another state when it returned to the Poincaré section, then 
another and another successively. The system, in summary, passed through the 
Poincaré section with an uncertain sequence of points. Poincaré had found a 
chaotic panorama. 

The main reason for that which we have just stated has been to illustrate the 
idea of topology from an anecdotal historical perspective, at the same time as 
allowing the introduction of some basic ideas which have survived over time. 

In the last fifty years there has been an increase of interest in the use of 
topology to deal with a large number of problems by a great number of 
mathematicians and also of physicists and engineers. Due to this, important 
applications in the study of flow nets and closed circuits (Kirchhoff), in magnetic 
fields (Maxwell) and also in studies of the disposition of colours and design of 
printed electronic circuits, amongst others have taken place. We believe that it is 
time that economists and management specialists are also interested by this 
important branch of mathematics, as maybe it would be possible to represent 
economics and management systems through topological spaces, finding the 
“laws”, if they exist, of the mutations which take place when the limits capable of 
producing a return to equilibrium are passed, but the new situations do not give 
rise to a traumatic rupture with the past. The work which we are currently 
presenting follows this path. 

We know of the use of topology to represent problems expressed through 
“non-lineal” differential equations, which is to say equations with derivatives 
without effects proportional to the causes. The simplification which linearity 

Periodicity 

Non- periodicity 
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brings has historically come imposed on many occasions by the difficulty, when 
not the impossibility, of its calculation and solution. Economics and 
management phenomena rarely present an adopted lineal form in reality which is 
why there is an urgent need for the recourse to complex non-lineal schemes. 

That which we have just stated should not lead us to think that topology is an 
insurmountably difficult part of mathematics. The opposite is in fact the case, 
above all in the basic ideas which they report. In effect, many topological concepts 
are habitually employed. From here we arrive at the notions of interior and 
exterior, connection and non-connection, known and fostered in schools, even 
from the youngest infants. 

In the texts which are dedicated to explaining topology there exists the habit of 
presenting some theorems which are naturally susceptible to draw the attention of 
readers and arouse their curiosity. Here we have five of these: 

a) The wind cannot simultaneously blow in all areas of the Earth. There 
must exist an area without wind at all times. This place may be, for 
example, the South Pole. 

b) If the wind is blowing in all areas of the northern hemisphere at a 
determined moment, then at this moment it must blow in all directions at 
the equator. For example, a place must exist where the wind blows north-
easterly. 

c) Under the same circumstances at least two diametrically opposite points 
must exist at the equator where the wind blows in radically opposite 
directions.  

d) At a determined moment there exists at least one point on the Earth and its 
antipode which have the same temperature and the same humidity. 

e) If the Earth were divided into three single great powers then at least one of 
them would never witness a sunset, given that in at least one of the three 
cases it would be a given fact that of two of their points one should be an 
antipode of the other.  

 
Each one of these theorems is a consequence of mathematical discoveries of a 

most general nature. In this way the first two are particular cases of the general 
“fixed point” theorem, which was formulated in 1904 by the Dutch 
mathematician L. E. J. Brouwer1. The theorems c) and d) are a direct result of the 
general “antipodal point” theorem formulated for n dimensions in 1933 by the 
Polish researchers K. Borsuk and S. M. Ulam. The last of these theorems was 
deduced from another more general for n dimensions, elaborated in 1930 by the 
Soviet mathematicians L. Lusternick and L. Schnirelmann. 

The content of chapter I of the great work published with the name of the 
author Nicolas Bourbaki2 results of great interest. Eléments de Mathématique, 
                                                           
1 Shinbrot, M.: «Teoremas del punto fijo», in Matemáticas en el mundo moderno (various 

authors). Ed. Blume. Madrid, 1974, pages. 165-171. 
2 Bourbaki, N.: Eléments de Mathématique. Livre III Topologie Générale. Hermann & Cie. 

Editeurs.  París, 1940. As it is known,  N. Bourbaki has been used as the pseudonym of 
an important group of mainly French mathematicians (between 10 and 20 depending on 
the moment in time). 
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whose third book is integrally dedicated to topological structures. Its clarity has 
given us a a lot in our attempt to develop some algorithms based on uncertain 
topology. 

Considerations on the Subject of the Idea of Topology 

The aim of everything that we have just shown is to “create” the necessary 
conditions in order to stimulate the study of topology. If we have achieved to open 
scientific curiosity then it is possible that the need appears for an explanation of 
why interest exists for topological spaces. We will do this through some brief 
ideas. 

We remind ourselves that in sets theory it is only possible to study the 
relationship between a point and a set. Therefore, this relationship remains limited 
to the possession of the set or not. 

However, upon considering R² in the set S (which is a subset of E) formed by 
an open ball, the three points p1, p2, p3 in the first figure on this page. 

P1 can be “seen” inside S, p2 on the border of S and p3 outside S. This initial 
interpretation has its foundation in the notion of the proximity of p1 to S and also 
to its complement. 

In this way the adherence point of set S is born, considered as that which is 
not outside. In other words, it is that which is as close to S as we would like. 

 

 
 
From now on, we will designate a topological space by using (E, T(E)). So, if S 

is a subset of E, it would be said that a point p ∈ E is adherent to S when any 
range U of p crosses S. This is equivalent to saying that no range of p exists 
which is totally included in E – S. Therefore, any point of the set S is an adherence 
point of S. The set of adherence points of S is its adherent or adherence 
application.  

We will now move on to the concept of accumulation. If we consider in R² the 
set S formed by the union of the circle and point p2, the points p1, p2, p3 of the 
following figure are all adherence points. 
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However, the points p1, p3 have a distinct sense to p2. In effect, “near” to p1, p3 

other points of S can be found, which does not occur with p2, which is isolated. 
From here the notions of accumulation point and isolation point. 

Given a topological space (E, T(E)) and also given a subset of E, S, we will say 
that p ∈ E is an accumulation point of S, if any range U of p contains a point of S 
distinct to p. The set of all of the accumulation points of S are called 
accumulation or set derived from S. The points which do not fulfil this condition 
are isolated points. 

We will now separate the adherence points according to proximity as much of 
the set S as the complement of this set. Those points which are “near” to both the 
set S and its complement are named border points. In other words, when all the 
range U of p crosses S and its complement E – S. The set of border points is 
called border.  

Finally, among the adherence points it fits to consider those found “within” the 
set S and, therefore which may “separate” from the complementary set E – S. In 
this way, therefore, a point p ∈ S is interior to S, if S is a range of p. The set of 
points inside S are named interior. It is therefore possible to formulate the 
following theorem: Given a topological space (E, T(E)) and a subset S of E , one 
would say that p ∈ S is interior to S if and only if it is not an adherence point of 
its complement E – S.  

It does not result difficult to accept that the interior has the dual properties of 
adherence. 

We have made reference to a concept that of range of a point, for which some 
remarks are convenient. We will do this through its most elemental properties: 

 
 1 The point p belongs to all range of p. 
 2 If U is a range of p, any set T ⊃ U is a range of p. 
 3 If U1 and U2 are ranges of p, the same occurs with the intersection U1∩U2. 

This is generalizable to a finite number of ranges of p. 
 4 A range U of p is also a range of all points x of a suitable range F of p.       

 
The axioms 1) and 4) have constituted decisive axioms for a generalisation of 

topological spaces. In this way it has been able to define a topological space T(E), 
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from a set E when a system U(p) of subsets of E corresponds to each element p of 
E, named ranges of U of p, which verify the following axioms: 

 
 1 p ∈ U, for all of the range U ∈ U(p). 
 2 If U ∈ U(p) and F ⊃ U, then F ∈ U(p). 
 3 If U1, U2 ∈ U(p), then U1 ∩ U2 ∈ U(p); E ∈ U(p) 
 4 For each U ∈ U(p), there exists an F ∈ U(p), so that U ∈ U(q) for all q ∈ 

F. 
 
In this way, a set E together with a topology T(E) is named topological space 

(E, T(E)). The elements of E take the name of points of topological space. 
The axioms 1) and 4) have their correspondence with the axioms of the 

Hausdorff range, introduced by F. Hausdorff in his fundamental work of 1914 
“Grundzüge der Mengenlehre”. In effect, a topological space (E, T(E)) is said to 
be of Hausdorff when it fulfils one of the following axioms, equivalent to each 
other. 

 
a) If p ≠ q, with p, q being two points of E, the ranges U ∈ U(p) and F ∈ U(q) 

exist, with U ∩ F = Ø ( Hausdorff separation axiom). 
b) The intersection of all the closed ranges of a point p only contains p. 
 
The first of these axioms is named of separation as the points p and q remain 

separated by the ranges U and F. 

Elemental Notions in Topological Spaces 

Everything that we have just stated has the purpose of bringing to the surface 
sufficient elements in order to establish some definitions which we will 
summarise. 

If S is a subset of the referential E: 
 

 1 A point p ∈ E is named interior of S when a range U ∈ U(p) exists which 
belongs entirely to S. In classic nomenclature, the set of all the interiors is 
known with the denomination of opening of S. 

 2 A point p ∈ E is named exterior of S when a range U ∈ U(p) exists which 
belongs entirely to the compliment of S. The set of points exterior to S are 
known as exterior of S. 

 3 A point p ∈ E is a border point of S, or with respect to S, when in each 
range of p there exists points which belong to S and to the compliment of S. 
The set of all these points p of S is named the border of S. 

 
Of these definitions it can be deduced that all points p ∈ E unmistakeably 

belong to one of the three classes previously described. At the same time it can be 
said that the exterior of S coincides with the interior of the compliment of S. 
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With these three definitions presented, we find ourselves able to move on to the 

important concept of adherence. A point is p ∈ E named adherence point of S if 
in each range of p there are points of S. The set of all the adherence points of S is 
designated closure or close of S. The close of S comes given by the union of the 
opening of S with the border of S.   

In the same way, we will say that a set S is named open when it fulfils one of 
the following conditions, equivalent to each other: 

 a) All points of S are interior. 
 b) The opening of S coincides with S. It is enough that the opening contains S. 
 c) The border of S is contained within S. 

A set S is named closed when it fulfils one of the following conditions, also 
equivalent to each other: 

 
 a)  The set S contains all its adherence points. 
 b)  The set S coincides with the close of S. It is enough to demand that the 

close of S is contained within S. 
 c)  The border of S is found contained in S.  

 
It is possible that a set S is open and closed at the same time. 
A simple figure can help us to visualise the equivalence of the three conditions, 

as much in relation with the open as with the closed. 
Let us look at this through the following formulae: 
 

E = S + complement S. 
 = open of S + close of the complement of S. 
 = close of S + open of the complement of S. 
 
 
 
 
 

 
 

 
 
 
 
 
We can conclude by making the following theorems: 
 

 1 A set S is open if, and only if, the complement of S is closed. A set S is 
closed if, and only if, the complement of S is open. 

 2 A set S is open if, and only if, it is a range of all its points. 

Opening 
Complement 

Opening 
 

(Nucleus) 

Close 

Border 

Close 
Complement 
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Everything which we have just stated brings us to consider a “topological 

space as a set in which we have selected a series of subsets, which we call open, 
and which fulfil the same properties as the open subsets of any metric space”3. 

Brief Reference to Metric Spaces 

Remember that a metric space is a pair (E, d) formed by the set E and an 
application  

d(E · E  R) which fulfils the following axioms: 
 

 a)  d(p, q) ≥ 0, d(p, q) = 0 if and only if p = q. 
  The distance between the two points is never negative and is only zero if 

and only if the two points are the same. 
 

 b)  d(p, q) = d(q, p), for any p, q ∈ E.   
  The distance is symmetric. 
 

 c)  d(p, q) + d(q, r) ≥ d(p, r), for any p, q, r ∈ E.  
  The distance fulfils triangular inequality. 

 
The elements of the set E are named points of space and d metric on E. 
For indicative purposes only we will remind ourselves of two of the spaces 

which appear with the greatest frequency in the works consulted or studied. These 
are euclidean space and Hilbert's H space. 

Rn Euclidean space is perhaps the most widespread metric space. Its points are 
given under the form e = (p1, p2, …..pn), in which p1, p2, …..pn are arbitrary real 
numbers. The distance in these spaces comes from the well-known formula: 

 

 
 

It is unquestionable that the first two axioms are fulfilled. Let us see if the same 
occurs with the third, which is to say: 

 

Let us make (qi – pi) = ai, (ri – qi) = bi. The previous expression can be deduced 
from: 

 
 

                                                           
3 Mascaró, F.; Monterde, J.; Nuño, J. J., and Sivera, R.: Introducció a la topología. Ed. 

Universitat de Valencia, 1997, page. 51. 
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This final inequality is that known as the Cauchy-Schwarz inequality. 
We will now, finally, refer to Hilbert's H space. This space is formed by all 

the successions of real numbers h = (p1, p2....), so that the sum of its 

squares ∑ p2
i
(i=1,2, ...)

is convergent. In this case the distance is the same as 

the euclidean: 

 

Here it is warranted to state that the convergence of the infinite series has 
moved inside the root.  

In this way one has: 

 

Upon creating N, following the established hypothesis, the first two addends 
remain enclosed, whereas the third is in this way as a consequence of the Cauchy-
Schwarz inequality: 

 

 
 
Therefore, in this way, the series placed within the root is convergent and the 

distance is found to be adequately defined, as the axioms 1) and 2) fulfil this need 
with simple observation and 3) is easily tested by the steps to the limit in the 
euclidean space formula.  

From this brief reminder we should indicate that metric spaces are not general 
enough to describe whatever “form” of space, as others exist in which it is not 
possible to make each pair of elements of the real numbers such as distance 
between each coincide. To this respect it is enough to observe the axiomatic of the 
metric spaces to confirm the intervention of real numbers in them. In a crude way 
we can say that all metric space is a topological space. In other words, a defined 
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metric space on a set in R induces a topological space. On the other hand the 
reciprocal proposal that every topological space proceeds from an adequate metric 
space is not true. 

In this brief summary we have tried, with a selection of some historical and 
elemental aspects as close as possible to intuition, to drive topological reasoning 
to that point in which a strict formal rigor is imposed, capable of describing one of 
the outlines with a greater level of abstraction than modern mathematics provides: 
topological spaces apt for the treatment of economics and management systems. 

To achieve this it has been considered as opportune to begin the basic content 
of this work with the description of pretopological axiomatics, first from a 
perspective which, abusing language, could be called orthodox, to later move on 
to its transformation attempting to generalise to deal with situations immerse in a 
context of uncertainty: both aspects will constitute the content of the first part of 
our work.   

     
 




