Skip to main content

Stable Fast Rewiring Depends on the Activation of Skeleton Voxels

  • Conference paper
  • 3755 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7062))

Abstract

Compared with the relatively stable structural networks, the functional networks, defined by the temporal correlation between remote neurophysiological events, are highly complex and variable. However, the transitions should never be random. So it was proposed that some stable fast rewiring mechanisms probably exist in the brain. In order to probe the underlying mechanisms, we analyze the fMRI signal in temporal dimension and obtain several heuristic conclusions. 1) There is a stable time delay, 7~14 seconds, between the stimulus onset and the activation of corresponding functional regions. 2) In analyzing the biophysical factors that support stable fast rewiring, it is, to our best knowledge, the first to observe that skeleton voxels may be essential for the fast rewiring process. 3) Our analysis on the structure of functional network supports the scale-free hypothesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deligianni, F., Robinson, E.C., Beckmann, C.F., Sharp, D., Edwards, A.D., Rueckert, D.: Inference of functional connectivity from structural brain connectivity. In: 10th IEEE International Symposium on Biomedical Imaging, pp. 460–463 (2010)

    Google Scholar 

  2. Chai, B., Walther, D.B., Beck, D.M., Li, F.-F.: Exploring Functional Connectivity of the Human Brain using Multivariate Information Analysis. In: Neural Information Processing Systems (2009)

    Google Scholar 

  3. Gomez Portillo, I.J., Gleiser, P.M.: An Adaptive Complex Network Model for Brain Functional Networks. PLoS ONE 4(9), e6863 (2009), doi:10.1371/journal.pone.0006863

    Google Scholar 

  4. Gleiser, P.M., Spoormaker, V.I.: Modeling hierarchical structure in functional brain networks. Philos. Transact. A Math. Phys. Eng. Sci. 368(1933), 5633–5644 (2010)

    Article  Google Scholar 

  5. Friston, K.J., Rees, G.: Single Subject epoch auditory fMRI activation data, http://www.fil.ion.ucl.ac.uk/spm/

  6. Friston, K.J., Holmes, A.P., Ashburner, J., Poline, J.B.: SPM8, http://www.fil.ion.ucl.ac.uk/spm/

  7. Friston, K.J., Ashburner, J., Frith, C.D., Poline, J.B., Heather, J.D., Frackowiak, R.S.J.: Spatial registration and normalization of images. Human Brain Mapping 2, 1–25 (1995)

    Google Scholar 

  8. Talairach, P., Tournoux, J.: A stereotactic coplanaratlas of the human brain. Thieme Verlag (1988)

    Google Scholar 

  9. Frank, Y.S.: Image Processing and Mathematical Morphology: Fundaments and Applications. CRC Press (2009)

    Google Scholar 

  10. Whitney, C., Jefferies, E., Kircher, T.: Heterogeneity of the left temporal lobe in semantic representation and control: priming multiple vs. single meanings of ambiguous words. Cereb. Cortex (2010), doi: 10.1093/cercor/bhq148 (advance access published August 23)

    Google Scholar 

  11. Friston, K.J.: Statistical parametrical mapping: the analysis of functional brain images. Academic Press (2007)

    Google Scholar 

  12. Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. The Journal of Neuroscience 26(1), 63–72 (2006)

    Article  Google Scholar 

  13. Kitano, K., Yamada, K.: Functional Networks Based on Pairwise Spike Synchrony Can Capture Topologies of Synaptic Connectivity in a Local Cortical Network Model. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008, Part I. LNCS, vol. 5506, pp. 978–985. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Tomasi, D., Volkow, N.D.: Functional Connectivity Density Mapping. Proc. Natl. Acad. Sci. USA 107, 9885–9890 (2010)

    Article  Google Scholar 

  15. Tomasi, D., Volkow, N.D.: Association between Functional Connectivity Hubs and Brain Networks Cereb. Cortex (in press, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, S., Yao, H. (2011). Stable Fast Rewiring Depends on the Activation of Skeleton Voxels. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24955-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24955-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24954-9

  • Online ISBN: 978-3-642-24955-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics