Skip to main content

Dynamic Bayesian Network Modeling of Cyanobacterial Biological Processes via Gene Clustering

  • Conference paper
Neural Information Processing (ICONIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7062))

Included in the following conference series:

Abstract

Cyanobacteria are photosynthetic organisms that are credited with both the creation and replenishment of the oxygen-rich atmosphere, and are also responsible for more than half of the primary production on earth. Despite their crucial evolutionary and environmental roles, the study of these organisms has lagged behind other model organisms. This paper presents preliminary results on our ongoing research to unravel the biological interactions occurring within cyanobacteria. We develop an analysis framework that leverages recently developed bioinformatics and machine learning tools, such as genome-wide sequence matching based annotation, gene ontology analysis, cluster analysis and dynamic Bayesian network. Together, these tools allow us to overcome the lack of knowledge of less well-studied organisms, and reveal interesting relationships among their biological processes. Experiments on the Cyanothece bacterium demonstrate the practicability and usefulness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Campos, L.M.: A scoring function for learning bayesian networks based on mutual information and conditional independence tests. Mach. Learn. Res. 7, 2149–2187 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Dojer, N.: Learning Bayesian Networks Does Not Have to Be NP-Hard. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 305–314. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Dondelinger, F., Lebre, S., Husmeier, D.: Heterogeneous continuous dynamic bayesian networks with flexible structure and inter-time segment information sharing. In: ICML, pp. 303–310 (2010)

    Google Scholar 

  4. Elvitigala, T., Polpitiya, A., Wang, W., Stockel, J., Khandelwal, A., Quatrano, R., Pakrasi, H., Ghosh, B.: High-throughput biological data analysis. IEEE Control Systems 30(6), 81–100 (2010)

    Article  Google Scholar 

  5. Gotz, S., Garcia-Gomez, J.M., Terol, J., Williams, T.D., Nagaraj, S.H., Nueda, M.J., Robles, M., Talon, M., Dopazo, J., Conesa, A.: High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research 36(10), 3420–3435 (2008)

    Article  Google Scholar 

  6. Grzegorczyk, M., Husmeier, D.: Non-stationary continuous dynamic Bayesian networks. In: NIPS 2009, (2009)

    Google Scholar 

  7. de Hoon, M., Imoto, S., Kobayashi, K., Ogasawara, N., Miyano, S.: Inferring gene regulatory networks from time-ordered gene expression data of bacillus subtilis using differential equations. In: Pac. Symp. Biocomput., pp. 17–28 (2003)

    Google Scholar 

  8. Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19(17), 2271–2282 (2003)

    Article  Google Scholar 

  9. Jiang, D., Tang, C., Zhang, A.: Cluster analysis for gene expression data: a survey. IEEE Transactions on Knowledge and Data Engineering 16(11), 1370–1386 (2004)

    Article  Google Scholar 

  10. Jung, J., Thon, M.: Automatic Annotation of Protein Functional Class from Sparse and Imbalanced Data Sets. In: Dalkilic, M.M., Kim, S., Yang, J. (eds.) VDMB 2006. LNCS (LNBI), vol. 4316, pp. 65–77. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Kazusa DNA Research Institute: The cyanobacteria database (2011), http://genome.kazusa.or.jp/cyanobase

  12. Maere, S., Heymans, K., Kuiper, M.: BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16), 3448–3449

    Google Scholar 

  13. Murphy, K., Mian, S.: Modelling gene expression data using dynamic bayesian networks. Tech. rep., Computer Science Division. University of California, Berkeley, CA (1999)

    Google Scholar 

  14. Oilgea Inc.: Comprehensive oilgae report (2011), http://www.oilgae.com

  15. Robinson, J., Hartemink, A.: Learning Non-Stationary Dynamic Bayesian Networks. The Journal of Machine Learning Research 11, 3647–3680 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., Friedman, N.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics 34, 166–176 (2003)

    Article  Google Scholar 

  17. Shamir, O., Tishby, N.: Model selection and stability in k-means clustering. In: COLT 2008, Springer, Heidelberg (2008)

    Google Scholar 

  18. Singh, A., Elvitigala, T., Cameron, J., Ghosh, B., Bhattacharyya-Pakrasi, M., Pakrasi, H.: Integrative analysis of large scale expression profiles reveals core transcriptional response and coordination between multiple cellular processes in a cyanobacterium. BMC Systems Biology 4(1), 105 (2010)

    Google Scholar 

  19. Stockel, J., Welsh, E.A., Liberton, M., Kunnvakkam, R., Aurora, R., Pakrasi, H.B.: Global transcriptomic analysis of cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes. Proceedings of the National Academy of Sciences 105(16), 6156–6161 (2008)

    Article  Google Scholar 

  20. The Gene Ontology Consortium: Current annotations (2011), http://www.geneontology.org

  21. The InterPro Consortium: Interpro: An integrated documentation resource for protein families, domains and functional sites. Briefings in Bioinformatics 3(3), 225–235 (2002)

    Google Scholar 

  22. Vinh, N.X., Chetty, M., Coppel, R., Wangikar, P.P.: Polynomial Time Algorithm for Learning Globally Optimal Dynamic Bayesian Network. In: Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part I, vol. 7062. Springer, Heidelberg (2011)

    Google Scholar 

  23. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: is a correction for chance necessary? In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 1073–1080. ACM, New York (2009)

    Google Scholar 

  24. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. Journal of Machine Learning Research 11, 2837–2854 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Wang, W., Ghosh, B., Pakrasi, H.: Identification and modeling of genes with diurnal oscillations from microarray time series data. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(1), 108–121 (2011)

    Article  Google Scholar 

  26. Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., Jarvis, E.D.: Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20(18), 3594–3603 (2004)

    Article  Google Scholar 

  27. Zou, M., Conzen, S.D.: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21(1), 71–79 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vinh, N.X., Chetty, M., Coppel, R., Wangikar, P.P. (2011). Dynamic Bayesian Network Modeling of Cyanobacterial Biological Processes via Gene Clustering. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24955-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24955-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24954-9

  • Online ISBN: 978-3-642-24955-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics