Skip to main content

Axonal Slow Integration Induced Persistent Firing Neuron Model

  • Conference paper
Neural Information Processing (ICONIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7062))

Included in the following conference series:

Abstract

We present a minimal neuron model that captures the essence of the persistent firing behavior of interneurons as discovered recently in the field of Neuroscience. The mathematical model reproduces the phenomenon that slow integration in distal axon of interneurons on a timescale of tens of seconds to minutes, leads to persistent firing of axonal action potentials lasted for similar duration. In this model, we consider the axon as a slow leaky integrator, which is capable of dynamically switching the neuronal firing states between normal firing and persistent firing, through axonal computation. This model is based on the Izhikevich neuron model and includes additional equations and parameters to represent the persistent firing dynamics, making it computationally efficient yet bio-plausible, and thus well suitable for large scale spiking network simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baddeley, A.: Working memory. Science 255(5044), 556 (1992)

    Article  Google Scholar 

  2. Boahen, K.: Neuromorphic microchips. Scientific American 292(5), 56–63 (2005)

    Article  Google Scholar 

  3. Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.M., Diesmann, M., Morrison, A., Goodman, P.H., Harris, F.C., et al.: Simulation of networks of spiking neurons: A review of tools and strategies. Journal of Computational Neuroscience 23(3), 349–398 (2007)

    Article  MathSciNet  Google Scholar 

  4. D’Esposito, M., Detre, J.A., Alsop, D.C., Shin, R.K., Atlas, S., Grossman, M.: The neural basis of the central executive system of working memory. Nature 378(6554), 279–281 (1995)

    Article  Google Scholar 

  5. Durstewitz, D., Seamans, J.K., Sejnowski, T.J.: Neurocomputational models of working memory. Nature Neuroscience 3, 1184–1191 (2000)

    Article  Google Scholar 

  6. Egorov, A.V., Hamam, B.N., Fransén, E., Hasselmo, M.E., Alonso, A.A.: Graded persistent activity in entorhinal cortex neurons. Nature 420(6912), 173–178 (2002)

    Article  Google Scholar 

  7. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal 1(6), 445–466 (1961)

    Article  Google Scholar 

  8. de Garis, H., Shuo, C., Goertzel, B., Ruiting, L.: A world survey of artificial brain projects part I: Large-scale brain simulations. Neurocomputing 74(1-3), 3–29 (2010)

    Google Scholar 

  9. Goldman-Rakic, P.S.: Cellular basis of working memory. Neuron 14(3), 477 (1995)

    Article  Google Scholar 

  10. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology 117(4), 500 (1952)

    Article  Google Scholar 

  11. Izhikevich, E.M.: Resonate-and-fire neurons. Neural Networks 14(6-7), 883–894 (2001)

    Article  Google Scholar 

  12. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Transactions on Neural Networks 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  13. Izhikevich, E.M., Edelman, G.M.: Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Sciences 105(9), 3593 (2008)

    Article  Google Scholar 

  14. Markram, H.: The blue brain project. Nature Reviews Neuroscience 7(2), 153–160 (2006)

    Article  MathSciNet  Google Scholar 

  15. Miller, E.K., Erickson, C.A., Desimone, R.: Neural mechanisms of visual working memory in prefrontal cortex of the macaque. The Journal of Neuroscience 16(16), 5154 (1996)

    Google Scholar 

  16. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review 63(2), 81 (1956)

    Article  Google Scholar 

  17. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal 35(1), 193–213 (1981)

    Article  Google Scholar 

  18. Peterson, L., Peterson, M.J.: Short-term retention of individual verbal items. Journal of Experimental Psychology 58(3), 193 (1959)

    Article  Google Scholar 

  19. Rose, R.M., Hindmarsh, J.L.: The assembly of ionic currents in a thalamic neuron i. the three-dimensional model. Proceedings of the Royal Society of London B Biological Sciences 237(1288), 267 (1989)

    Article  Google Scholar 

  20. van Schaik, A., Jin, C., McEwan, A., Hamilton, T.J.: A log-domain implementation of the izhikevich neuron model. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 4253–4256 (2010)

    Google Scholar 

  21. Sheffield, M.E., Best, T.K., Mensh, B.D., Kath, W.L., Spruston, N.: Slow integration leads to persistent action potential firing in distal axons of coupled interneurons. Nature Neuroscience 14(2), 200–207 (2010)

    Google Scholar 

  22. Shi, L.P., Yi, K.J., Ramanathan, K., Zhao, R., Ning, N., Ding, D., Chong, T.C.: Artificial cognitive memory—changing from density driven to functionality driven. Applied Physics A: Materials Science & Processing 102(4), 865–875 (2011)

    Google Scholar 

  23. Szatmáry, B., Izhikevich, E.M.: Spike-timing theory of working memory. PLoS Computational Biology 6(8) (2010)

    Google Scholar 

  24. Wijekoon, J.H., Dudek, P.: Compact silicon neuron circuit with spiking and bursting behaviour. Neural Networks 21(2-3), 524–534 (2008)

    Article  Google Scholar 

  25. Wilson, H.R.: Simplified dynamics of human and mammalian neocortical neurons. Journal of Theoretical Biology 200(4), 375–388 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ning, N., Yi, K., Huang, K., Shi, L. (2011). Axonal Slow Integration Induced Persistent Firing Neuron Model. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24955-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24955-6_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24954-9

  • Online ISBN: 978-3-642-24955-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics