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Abstract. Common spatial pattern (CSP) is very successful in con-
structing spatial filters for detecting event-related synchronization and
event-related desynchronization. In statistics, a CSP filter can optimally
separate the motor-imagery-related components. However, for a single
trail, the EEG features extracted after a CSP filter still include features
not related to motor imagery. In this study, we introduce a linear dy-
namical system (LDS) approach to motor-imagery-based brain-computer
interface (MI-BCI) to reduce the influence of these unrelated EEG fea-
tures. This study is conducted on a BCI competition data set, which
comprises EEG signals from several subjects performing various move-
ments. Experimental results show that our proposed algorithm with LDS
performs better than a traditional algorithm on average. The results re-
veal a promising direction in the application of LDS-based approach to
MI-BCI.

Keywords: motor imagery, brain-computer interface, linear dynamic
system, common spatial pattern.

1 Introduction

Brain-computer interfaces (BCIs) are communication systems which enable users
to send commands to computers using only their brain activity, which is gener-
ally measured by electroencephalography (EEG) [1,2]. BCI technology has been
a promising tool for disabled people as well as for healthy people [3,4,5]. Motor
imagery is a very popular paradigm in BCI. EEG and event-related synchroniza-
tion/desynchronization (ERS/ERD) [6] have been employed for research on brain
functional activity for many decades and have become the scientific basis of mo-
tor imagery. Studies have shown that distinct phenomena such as ERD/ERS are
detectable from EEGs for both real and imagined motor movements in healthy
subjects [7,8,9]. Common spatial pattern (CSP) [10] is very successful in con-
structing spatial filters for detecting ERS/ERD. However, the features extracted
after CSP still contain unrelated EEG features.
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Fig. 1. The flow chart of our proposed algorithm for processing two-class motor imagery
EEG recordings

Mental states have the characteristic of continuity. It is a gradual process, and
so the EEG features extracted from mental states such as vigilance change con-
tinuously [15]. Recently, Shi and Lu [14] have applied linear dynamical system
(LDS) approach to vigilance estimation [11,12,13] from EEGs, and their experi-
mental results show that LDS can remove vigilance-unrelated signals effectively.
LDS is a kind of state space model, which can effectively remove vigilance-
unrelated features using the time dependency of vigilance changes. Motor im-
agery is also a kind of mental state which has the feature of continuity. In theory,
by making use of the time dependency of changes of motor imagery, LDS can
filter the motor-imagery-related EEG features more accurately. In this study, we
introduce the LDS-based approach to motor-imagery-based brain-computer in-
terface (MI-BCI). By using the LDS-based approach, EEG features are smoothed
and the unrelated EEG influences in the EEG features are reduced. Our exper-
imental results show that our proposed algorithm with LDS performs with a
higher accuracy than the traditional algorithm on average.

The remainder of this paper is organized as follows. Section 2 describe the
methodology and process of our proposed algorithm. Section 3 presents the ex-
perimental results. Finally, Section 4 discusses some conclusions.

2 Methodology

2.1 Main Idea

The flow chart of the process for our proposed algorithm with LDS in MI-BCI is
shown in Fig. 1. The M recorded EEG signals x(t) = [x1(t), x2(t), ..., xM (t)]T are
assumed to be linear mixtures of the underlying components s(t) = [s1(t), s2(t)]T :

x = A

[
s1

s2

]
(1)

Suppose s1 are motor-imagery-related components and s2 are unrelated com-
ponents. In traditional algorithms, we use CSP to extract the motor-imagery re-
lated components s̃1 which is an estimate of s1. Then we extract features F (s̃1)
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Raw EEG signals. Band-pass filter. Applying CSP.

                 Feature extraction. Processed by LDS.                Classification.

Fig. 2. Architecture of motor imagery-based brain-computer interface with linear dy-
namical system approach

from components s̃1 where F (s̃1) is calculated by feature extraction methods.
Suppose F (s1) are the features extracted from s1 which are pure motor-imagery
related components with no noise, then in the traditional algorithms, we use
F (s̃1) to estimate F (s1) and finally use a classifier such as a support vector
machine (SVM) [16] to classify F (s̃1).

In traditional algorithms, a CSP filter is used to optimally separate the motor-
imagery related components of left and right motor imagery in statistics [10].
However, for each single trail, the component s̃1 filtered by the CSP algorithm
may contain unrelated component. So s̃1 may not estimate s1 very precisely. As
a result, the features F (s̃1) extracted from s̃1 may include features unrelated to
motor imagery.

Based on this hypothesis, we try to smooth F (s̃1) into ˜F (s1) using LDS to

reduce the unrelated features. Compared with F (s̃1), ˜F (s1) is expected to be a
better estimate of F (s1). The architecture of the MI-BCI with LDS is shown in
Fig. 2.

2.2 Common Spatial Patterns

The CSP algorithm is effective in constructing optimal spatial filters that dis-
criminate two classes of EEG measurements in MI-BCI [10,17,18,19]. The spatial
filter maximizes the variance of signals of one class and at the same time mini-
mizes the variance of signals of the other class. Because band power is equal to
the variance of band-pass filtered signals, CSP performs very well as a spatial
filter for detecting ERS/ERD in EEG measurements and has been well used in
in BCI systems [20,21,22].

In this study, we extract one feature every 0.2 second, so a sequence of fea-
tures Y (i) is obtained in a single trail (7 seconds). The feature Y (i) is obtained
by calculating the variance of signals in the time interval of 0.2 second. Let
Y = 1

n

∑n
i=1 Y (i), so we can choose Ȳ as the extracted feature of the trail.

Let ȲclassA and ȲclassB be the selected features for two classes which are chosen
from four classes (left hand, right hand, tongue, and foot movements). Since CSP
maximizes the variance ratio of components of the two classes, we can classify
ȲclassA and ȲclassB by SVM.
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2.3 Linear Dynamical System

There are some motor-imagery-unrelated influences in the EEG features, so y(i)
probably contains noise. We design LDS to reduce these influences as well as to
smooth the EEG features.

The motor-imagery-unrelated influences of EEG features result in a difference
between the original EEG features Y calculated from traditional methods and
the motor-imagery-related EEG features Ym which can represent the feature of
motor imagery more accurately. Because mental state is time dependent, the
features Ym extracted from EEG components are also time dependent. If Y is
considered as the observation sequence of the latent state sequence Ym, we can
represent a state space model to filter out the above influences and recover the
Ym from Y in the form of LDS:

Ym(t) = AYm(t − 1) + v(t) (2)
Y (t) = CYm(t) + w(t), (3)

where A is the state transition matrix, C is the observation matrix, v(t) ∼
N (0, Γ ) and w(t) ∼ N (0, Σ) are the Gaussian variables, and the initial latent
state is assumed to be distributed as Ym(1) ∼ N (μ(0), V (0)), Eqs. (2) and (3)
can also be expressed in an equivalent form in terms of Gaussian conditional
distributions as follows,

p(Ym(t) | Ym(t − 1)) = N (AYm(t − 1), Γ ) (4)
p(Y (i) | Ym(t)) = N (CYm(t)Σ). (5)

The parameters of the LDS model are denoted by θ = {A, C, Γ, Σ, μ0, V0}. Ac-
cording to the LDS model, given the observations, the latent state Ym(t) can be
estimated from the posterior marginal distribution corresponding to p(Ym(t) | Y )
and this posterior marginal distribution is Gaussian,

p(Ym(t) | Y ) = N (μ(t), V (t)).

The mean μ(i) is just the maximum a posteriori (MAP) estimation of Ym(t).
For online inference, Y are the observations from Y (1) to Y (t). The parameters
of the marginal distribution, μ̂(t) and V̂ (t), can be determined by the following
forward recursions:

Pt−1 = A ˆVt−1A
T + Γ

Kt = Pt−1C
T (CPt−1C

T + Σ)−1

μ̂t = Aμ̂t−1 + Kt(Y t − CAμ̂t−1)
V̂t = (I − KtC)Pt−1,

where the initial conditions are:

K1 = V0C
T (CV0C

T + Σ)−1

μ̂1 = μ0 + K1(Y 1 − Cμ0)
V̂1 = (I − K1C)V0.
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For offline inference, Y is the whole sequence of observations from Y 1 to Y N .
The parameters of the marginal distribution, μ̃(t) and Ṽ (t), can be determined
by the online inference results and the following backward recursions:

Jt = V̂tA
T (Pt)−1

μ̃t = μ̂t + Jt(Ṽt+1 − Aμ̂t)
Ṽt = V̂t + Jt(Ṽt+1 − Pt)JT

t ,

where the initial conditions are:

μ̃N = μ̂N

ṼN = V̂N .

Though offline inference is more accurate than online inference, we use online
inference in this study, because immediate feedback is required in MI-BCI. Every
EEG feature with interval of 0.2 second is smoothed by LDS. The LDS model
runs in constant time because the size of input is limited which is the length of a
sequence of features obtained in a single trail (7 seconds). So the time complexity
of the LDS model is O(1). The parameters of the LDS model can be estimated by
the EM algorithm. However, these estimated parameters are locally optimized.
Because the form of parameters is relatively simple, we can test by hand and
determine the parameters.

3 Experimental Results

This section evaluates the performance of the proposed algorithm on BCI Com-
petition 3 data set 3a [23]. This data set comprises EEG signals from three
subjects who performed left hand, right hand, tongue, and foot movements. The
four classes of movements that should be discriminated were paired in six groups
to yield the 2-class motor imagery data sets. For the first two subjects, there
are 90 trails for each class and for third subject, 60. These data sets comprise a
training set and a testing set for each subject. Half of each session is the training
set and the other half is the testing set. Each trail has a duration of 7 sec. The
subjects performed motor imagery from time t = 3 sec to t = 7 sec of each trail.

We compare the traditional algorithm with the proposed algorithm with LDS
to see whether there is an increase in accuracy. The architecture of the CSP algo-
rithm for two-class motor imagery in this study is shown in Fig. 3. We filter the
EEG signals in 8-20 Hz and then use CSP to construct the spatial filter. We de-
compose the signals into 6 bands of 2 Hz, which are 8-10 Hz, 10-12 Hz, 12-14 Hz,
14-16 Hz, 16-18 Hz, and 18-20 Hz, respectively. Signals of each band are filtered
by CSP, and features of 6 bands, Y8−10, Y10−12, Y12−14, Y14−16, Y16−18, Y18−20,
are extracted by calculating the variance of components which are obtained
after CSP. Then, (Y8−10, Y10−12, Y12−14, Y14−16, Y16−18, Y18−20) as used as the
feature of a single trail. And, SVM is used as a classifier with radial basis func-
tion (RBF) kernel, and 5-fold cross validation for training. We need to estimate
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Fig. 3. Architecture of CSP algorithm for two-class motor imagery EEG data

Table 1. Comparison of classification accuracy of the traditional algorithm and that
of our proposed algorithm

Data set Task 1/2 Task 1/3 Task 1/4 Task 2/3 Task 2/4 Task 3/4 Average Γ/C

k3b(original) 88.9% 85.5% 88.9% 80.0% 78.9% 64.4% 81.1%
k3b(with LDS) 91.1% 86.7% 92.2% 81.1% 83.3% 65.6% 83.3% 0.25

k6b(original) 63.3% 58.3% 86.7% 66.7% 90.0% 90.0% 75.8%
k6b(with LDS) 65.0% 65.0% 86.7% 70.0% 90.0% 90.0% 77.8% 0.03

l1b(original) 65.0% 66.7% 75.0% 68.3% 78.3% 63.3% 69.4%
l1b(with LDS) 75.0% 66.7% 75.0% 71.7% 78.3% 65.0% 72.0% 0.50

the parameters θ = {A, C, Γ, Σ, μ0, V0} of the LDS model. Considering the form
of parameters is relatively simple, they can be determined by hand. We only
need to enumerate Γ and C, while the other parameters A, Σ, μ0 and V0 have
constant values. We set A = 1, Σ = 1, V0 = 0.1 and let μ0 be the the first value
of the input sequence to the LDS model.

The experimental results of classification and values of parameter Γ/C are
shown in Table 1. The first six columns show the results for the two-class classi-
fication of recorded data, while the last column holds the average classification
accuracy over all tasks. Comparing the proposed algorithm with the traditional
algorithm, the performance for each subject steadily is improved about 2%. How-
ever, the overall classification accuracies of l1b and k6b are still relatively low.
The reason could be the poor performance of the subject on the practical motor
imagery task. In summary, from the experimental results it is clear that LDS is
effective for reducing motor-imagery-unrelated EEG features in MI-BCI.

4 Conclusions

In motor imagery, CSP filters can optimally separate the motor-imagery related
components of two classes, but for a single trail, the components filtered by
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CSP still contain unrelated component. In this paper, we introduced LDS to
MI-BCI, which is used to filter the motor-imagery-related EEG features more
accurately for a single trail and improve the classification accuracy of MI-BCI.
The traditional algorithm and the proposed algorithm with LDS were evaluated
on the four-class motor imagery data of BCI competition 3 data set 3a. The
experimental results show that after adding the LDS in the traditional algorithm,
the average classification accuracy rises about 2%. The experimental results
suggest LDS can effectively filter out the motor-imagery-unrelated EEG features
and reveal a promising direction in the application of LDS to MI-BCI.
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