Skip to main content

Visual Information of Endpoint Position Is Not Required for Prism Adaptation of Shooting Task

  • Conference paper
Neural Information Processing (ICONIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7064))

Included in the following conference series:

  • 2692 Accesses

Abstract

Humans can easily adapt to a visually distorted environment: We can make correct movements after a few dozens of actions with visual guidance in the new environment. However, it is unclear what visual information our brain uses for this visuo-motor adaptation. To answer this question, we conducted a behavioral experiment of prism adaption of a ball shooting task, with manipulating visual information of the ball. We found that prism adaptation occurred when the position of ball impact (or endpoint) was not visually presented. A similar result was replicated in a modified experimental setup where the vision of the body was completely eliminated. These results imply that the error information at the time of hit/impact (i.e., the displacement between the target and the hit position) is not required for prism adaptation. This suggests that the visual information of on-the-fly ball trajectory can be utilized for prism adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stratton, G.M.: Some preliminary experiments on vision without inversion of the retinal image. Psychological Review 3, 611–617 (1896)

    Article  Google Scholar 

  2. Kitazawa, S., Kohno, T., Uka, T.: Effects of delayed visual information on the rate and amount of prism adaptation in the human. J. Neuroscience 15, 7644–7652 (1995)

    Google Scholar 

  3. Martin, T.A., Keating, J.G., Goodkin, H.P., Bastian, A.J., Thach, W.T.: Throwing while looking through prisms I. Focal olivocerebellar lesions impair adaptation. Brain 119, 1183–1198 (1996)

    Article  Google Scholar 

  4. Newport, R., Jackson, S.R.: Posterior parietal cortex and the dissociable components of prism adaptation. Neuropsychologia 44, 2757–2765 (2006)

    Article  Google Scholar 

  5. Pelisson, D., Prablanc, C., Goodale, M.A., Jeannerod, M.: Visual control of reaching movements without vision of the limb. II. Evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double-step stimulus. Exp. Brain Res. 62, 303–311 (1986)

    Article  Google Scholar 

  6. Indovina, I., Maffei, V., Bosco, G., Zago, M., Macaluso, E., Lacquaniti, F.: Representation of visual gravitational motion in the human vestibular cortex. Science 308, 416–419 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ishikawa, T., Sakaguchi, Y. (2011). Visual Information of Endpoint Position Is Not Required for Prism Adaptation of Shooting Task. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24965-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24965-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24964-8

  • Online ISBN: 978-3-642-24965-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics