Skip to main content

Simple Models for Synaptic Information Integration

  • Conference paper
Book cover Neural Information Processing (ICONIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7064))

Included in the following conference series:

  • 2715 Accesses

Abstract

Neural information processing is extremely complicated. A core challenge in theoretical neuroscience is to develop properly simplified models, which, on one hand, capture the fundamental features of the complex systems, and on the other hand, allow us to pursue analytic treatments. In the present study, we aim to develop simple models for synaptic information integration. We use simple current-based models to approximate the dynamics of conductance-based multi-compartment ones. The nonlinear shunting inhibition is expressed as a product between the contributions of excitatory and inhibitory currents, and its strength depends on the spatial configuration of excitatory and inhibitory inputs, agreeing with the experimental data. We expect that the current study will serve as a building brick for analyzing the dynamics of large-size networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hao, J., Wang, X., Dan, Y., Poo, M., Zhang, X.: An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons. Proceedings of the National Academy of Sciences 106, 21906–21911 (2009)

    Article  Google Scholar 

  2. Herz, A.V.M., Gollisch, T., Machens, C.K., Jaeger, D.: Modeling Single-Neuron Dynamics and Computations: A Balance of Detail and Abstraction. Science 314, 80–85 (2006)

    Article  MATH  Google Scholar 

  3. Koch, C., Poggio, T., Torre, V.: Nonlinear Interactions in a Dendritic Tree: Localization, Timing, and Role in Information Processing. Proceedings of the National Academy of Sciences 80, 2799–2802 (1983)

    Article  Google Scholar 

  4. Mainen, Z.F., Sejnowski, T.J.: Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, 363–366 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, D., Cui, Y., Li, Y., Wu, S. (2011). Simple Models for Synaptic Information Integration. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24965-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24965-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24964-8

  • Online ISBN: 978-3-642-24965-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics