Skip to main content

High Order Hopfield Network with Self-feedback to Solve Crossbar Switch Problem

  • Conference paper
  • 2683 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7064))

Abstract

High order network has a higher store capacity and a faster convergence speed compared with the first order network. To improve the convergence speed of the energy function, in this paper a new kind of high order discrete neural network with self-feedback is proposed to solve crossbar switch problem. The construction method of the high order energy function for this problem is presented and the neural computing method is given. We also discuss the strategies for the network to escape from local minima. Compared with the first order Hopfield network, experimental results show the high order network with self-feedback has a quick convergence speed, its performance is better than the first order Hopfield network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization problems. Biol. Cybern. 52, 141–152 (1985)

    MATH  Google Scholar 

  2. Galán-Marín, G., et al.: A Study into the Improvement of Binary Hopfield Networks for Map Coloring. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 98–106. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Wang, J.: A Memetic Algorithm with Genetic Particle Swarm Optimization and Neural Network for Maximum Cut Problems. In: Li, K., Fei, M., Irwin, G.W., Ma, S. (eds.) LSMS 2007. LNCS, vol. 4688, pp. 297–306. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Wang, J., Tang, Z.: An improved optimal competitive Hopfield network for bipartite subgraph problems. Neurocomputing 61, 413–419 (2004)

    Article  Google Scholar 

  5. Ding, Y., Dong, L., Wang, L., Wu, G.: A High Order Neural Network to Solve Crossbar Switch Problem. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010, part II. LNCS, vol. 6444, pp. 692–699. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Xia, G.: A binary Hopfield neural network with hysteresis for large crossbar packet-switches. Neurocomputing 67, 417–425 (2005)

    Article  Google Scholar 

  7. Troudet, T.P., Walters, S.M.: Neural Network Architecture for Crossbar Switch Control. IEEE Trans. Circuits Syst. 38, 42–56 (1991)

    Article  Google Scholar 

  8. Cheung, K., Lee, T.: On the Convergence of Neural Network for higher Order Programming. In: 1993 International Joint Conference on Neural Networks, pp. 1507–1511. IEEE Press, New York (1993)

    Google Scholar 

  9. Foo, Y.P.S., Szu, H.: Solving Large-Scale Optimization Problems by Divide-and-Conquer Neural Networks. In: 1989 International Joint Conference on Neural Networks, pp. 507–511. IEEE Press, New York (1989)

    Google Scholar 

  10. Lo, J.T.-H.: A New Approach to Global Optimization and its Applications to Neural Networks. Neural Networks 2, 367–373 (1992)

    Google Scholar 

  11. Wang, L.P., Li, S., Tian, F.Y., Fu, X.J.: A Noisy Chaotic Neural Network for Solving Combinatorial Optimization Problems: Stochastic Chaotic Simulated Annealing. IEEE Trans. on Sys. Man, Cybern. Part B 34, 2119–2125 (2004)

    Article  Google Scholar 

  12. Amartur, S.C., Piraino, D., Takefuji, Y.: Optimization Neural Networks for the Segmentation of Magnetic Resonance Images. IEEE Trans. on Medical Imaging 11, 215–220 (1992)

    Article  Google Scholar 

  13. Salcedo-Sanz, S., Yao, X.: A hybrid Hopfield network-genetic algorithm approach for the terminal assignment problem. IEEE Trans. on Systems, Man and Cybernetics 34, 2343–2353 (2004)

    Article  Google Scholar 

  14. Li, Y.: An Improvement to Ant Colony Optimization Heuristic. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds.) ISNN 2008, Part I. LNCS, vol. 5263, pp. 816–825. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the USA 79(8), 2554–2558 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ding, Y., Dong, L., Zhao, B., Lu, Z. (2011). High Order Hopfield Network with Self-feedback to Solve Crossbar Switch Problem. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24965-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24965-5_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24964-8

  • Online ISBN: 978-3-642-24965-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics