Skip to main content

Integrating Local Features into Discriminative Graphlets for Scene Classification

  • Conference paper
Neural Information Processing (ICONIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7064))

Included in the following conference series:

Abstract

Scene classification plays an important role in multimedia information retrieval. Since local features are robust to image transformation, they have been used extensively for scene classification. However, it is difficult to encode the spatial relations of local features in the classification process. To solve this problem, Geometric Local Features Integration(GLFI) is proposed. By segmenting a scene image into a set of regions, a so-called Region Adjacency Graph(RAG) is constructed to model their spatial relations. To measure the similarity of two RAGs, we select a few discriminative templates and then use them to extract the corresponding discriminative graphlets(connected subgraphs of an RAG). These discriminative graphlets are further integrated by a boosting strategy for scene classification. Experiments on five datasets validate the effectiveness of our GLFI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yuan, X., Zhu, H., Yang, S.: IEEE Workshop on Applications of Computer Vision and the IEEE Workshop on Motion and Video Computing, pp. 54–59 (2005)

    Google Scholar 

  2. Todorovic, S., Ahuja, N.: Region-based hierarchical image matching. IJCV (2007)

    Google Scholar 

  3. Demirci, et al.: Object recognition as many-to-many feature matching. IJCV 69(2) (2006)

    Google Scholar 

  4. Felzenszwalb, et al.: Pictorial structure for object recognition. IJCV 61(1) (2005)

    Google Scholar 

  5. Hedau, V., et al.: Matching images under unstable segmentations. In: CVPR (2008)

    Google Scholar 

  6. Keselman, Y., et al.: Generic Model Abstraction from Examples: TPAMI, 1141–1156 (2005)

    Google Scholar 

  7. Harchaoui, Z., Bach, F.: Image Classification with Segmentation Graph Kernels. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  8. Sherashidze, N., et al.: Efficient Graphlet Kernels for Large Graph Comparison. In: International Conference on Artificial Intelligence and Statistics, pp. 488–495 (2009)

    Google Scholar 

  9. Lazebnik, S., Schmid, C., Ponce, J.: Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In: ICCV, pp. 2169–2178 (2006)

    Google Scholar 

  10. Hadjidemetriou, E., et al.: Multiresolution Histograms and Their Use for Recognition. TPAMI, 831–847 (2004)

    Google Scholar 

  11. Cao, L., Fei-fei, L.: Spatially Coherent Latent Topic Model for Concurrent Segmentation and Classification of Objects and Scenes. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  12. Porway, J., Wang, K., Yao, B., Zhu, S.C.: Scale-invariant shape features for recognition of object categories, 90–96 (2004)

    Google Scholar 

  13. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley Interscience (2000)

    Google Scholar 

  14. Griffin, G., Holub, A., Perona, P.: (2007), http://authors.library.caltech.edu/769

  15. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: (2009), http://www.pascal-network.org/challenges/VOC/voc2009/workshop/index.html

  16. Yao, B., Yang, X., Zhu, S.-C.: Introduction to a Large Scale General Purpose Ground Truth Dataset: Methodology, Annotation Tool, and Benchmarks. In: Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679, pp. 169–183. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Xiong, X., Chan, K.L.: Towards An Unsupervised Optimal Fuzzy Clustering Algorithm for Image Database Organization. In: ICPR (2000)

    Google Scholar 

  18. Kuramochi, M., Karypis, G.: An Efficient Algorithm for Discovering Frequent Subgraphs. TKDE, 1038–1051 (2004)

    Google Scholar 

  19. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On Combining Classifier. TPAMI, 226–239 (1998)

    Google Scholar 

  20. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: CVPR (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, L., Bian, W., Song, M., Tao, D., Liu, X. (2011). Integrating Local Features into Discriminative Graphlets for Scene Classification. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24965-5_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24965-5_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24964-8

  • Online ISBN: 978-3-642-24965-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics