
A Compositional Distributional Semantics,
Two Concrete Constructions,

and some Experimental Evaluations

Mehrnoosh Sadrzadeh? and Edward Grefenstette

Department of Computer Science, University of Oxford, UK.

mehrnoosh.sadrzadeh@cs.ox.ac.uk edward.grefenstette@cs.ox.ac.uk

Abstract. We provide an overview of the hybrid compositional distribu-
tional model of meaning, developed in [6], which is based on the categor-
ical methods also applied to the analysis of information flow in quantum
protocols. The mathematical setting stipulates that the meaning of a
sentence is a linear function of the tensor products of the meanings of its
words. We provide concrete constructions for this definition and present
techniques to build vector spaces for meaning vectors of words, as well as
that of sentences. The applicability of these methods is demonstrated via
a toy vector space as well as real data from the British National Corpus
and two disambiguation experiments.
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1 Introduction

Words are the building blocks of sentences, yet the meaning of a sentence goes
well beyond the meanings of its words. Indeed, while we do have dictionaries for
words, we don’t seem to need them to infer meanings of sentences. But where
human beings seem comfortable doing this, machines fail to deliver. Automated
search engines that perform well when queried by single words, fail to shine when
it comes to search for meanings of phrases and sentences. Discovering the process
of meaning assignment in natural language is among the most challenging as
well as foundational questions of linguistics and computer science. The findings
thereof will increase our understanding of cognition and intelligence and will also
assist in applications to automating language-related tasks such as document
search.

To date, the compositional type-logical [17,13] and the distributional vector
space models [21,8] have provided two complementary partial solutions to the
question. The logical approach is based on classic ideas from mathematical logic,
mainly Frege’s principle that meaning of a sentence can be derived from the
relations of the words in it. The distributional model is more recent, it can be
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related to Wittgenstein’s philosophy of ‘meaning as use’, whereby meanings of
words can be determined from their context. The logical models have been the
champions of the theory side, but in practice their distributional rivals have
provided the best predictions.

In a cross-disciplinary approach, [6] used techniques from logic, category
theory, and quantum information to develop a compositional distributional se-
mantics that brought the above two models together. They developed a hybrid
categorical model which paired contextual meaning with grammatical form and
defined meaning of a string of words to be a function of the tensor product
of the meanings of its words. As a result, meanings of sentences became vec-
tors which lived in the same vector space and it became possible to measure
their synonymity the same way lexical synonymity was measured in the distri-
butional models. This sentence space was taken to be an abstract space and it
was only shown how to instantiate it for the truth-functional meaning. Later [9]
introduced a concrete construction using structured vector spaces and exempli-
fied the application of logical methods, albeit only a toy vector space. In this
paper we report on this and on a second construction which uses plain vector
spaces. We also review results on implementing and evaluating the setting on
real large scale data from the British National Corpus and two disambiguation
experiments [10].

2 Sketching the problem and a hybrid solution

To compute the meaning of a sentence consisting of n words, meanings of these
words must interact with one another. In the logical models of meaning, this
further interaction is represented in a function computed from the grammatical
structure of the sentence, but meanings of words are empty entities. The gram-
matical structure is usually depicted as a parse-tree, for instance the parse-tree
of the transitive sentence ‘dogs chase cats’ is as follows:

chase(dogs, cats)

dogs λx.chase(x, |cats)

cats λyx.chase(x, y)
The function corresponding to this tree is based on a relational reading of the
meaning of the verb ‘chase’, which makes the subject and the object interact with
each other via the relation of chasing. This methodology is used to translate
sentences of natural language into logical formulae, then use computer-aided
automation tools to reason about them [2]. The major drawback is that the
result can only deal with truth or falsity as the meaning of a sentence and does
poorly on lexical semantics, hence do not perform well on language tasks such
as search.

The vector space model, on the other hand, dismisses the further interaction
and is solely based on lexical semantics. These are obtained in an operational
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way, best described by a frequently cited quotation due to Firth [8] that “You
shall know a word by the company it keeps.”. For instance, beer and sherry are
both drinks, alcoholic, and often make you drunk. These facts are reflected in
the text: words ‘beer’ and ‘sherry’ occur close to ‘drink’, ‘alcoholic’ and ‘drunk’.
Hence meanings of words can be encoded as vectors in a highly dimensional
space of context words. The raw weight in each base is related to the num-
ber of times the word has appeared close (in an n-word window) to that base.
This setting offers geometric means to reason about meaning similarity, e.g. via
the cosine of the angle between the vectors. Computational models along these
lines have been built using large vector spaces (tens of thousands of basis vec-
tors) and large bodies of text (up to a billion words) [7]. These models have
responded well to language processing tasks such as word sense discrimination,
thesaurus construction, and document retrieval [11,21]. Their major drawback
is their non-compositional nature: they ignore the grammatical structure and
logical words, hence cannot compute (in the same efficient way that they do for
words) meanings of phrases and sentences.

The key idea behind the approach of [6] is to import the compositional el-
ement of the logical approaches into the vector space models by making the
grammar of the sentence act on, hence relate, its word vectors. The trouble is
that it does not make so much sense to ‘make a parse tree act on vectors’. Some
higher order mathematics, in this case category theory, is needed to encode the
grammar of a sentence into a morphism compatible with vector spaces1. These
morphisms turn out to be the grammatical reductions of a type-logic called a
Lambek pregroup [13]. Pregroups and vector spaces both have a compact cate-
gorical structural. The grammatical morphism of a pregroup can be transformed
into a linear map that acts on vectors. Meanings of sentences become vectors
whose angles reflect similarity. Hence, at least theoretically, one should be able
to build sentence vectors and compare their synonymity, in exactly the same
way as measuring synonymity for words.

The pragmatic interpretation of this abstract idea is as follows. In the vector

space models, one has a meaning vector for each word,
−−→
dogs,

−−−→
chase,

−−→
cats. The

logical recipe tells us to apply the meaning of verb to the meanings of subject
and object. But how can a vector apply to other vectors? If we strip the vectors
off the extra information provided in their basis and look at them as mere sets
of weights, then we can apply them to each other by taking their point-wise
sum or product. But these operations are commutative, whereas meaning is not.
Hence this will equalize meaning of any combination of words, even with the
non-grammatical combinations such as ‘dogs cats chase’. The proposed solution
above implies that one needs to have different levels of meaning for words with
different functionalities. This is similar to the logical models whereby verbs are
relations and nouns are atomic sets. So verb vectors should be built differently
from noun vectors, for instance as matrices that relate and act on the atomic
noun vectors. The general information, as to which words should be matrices

1 A similar passage had to be made in other type-logics to turn the parse-trees into
lambda terms, compatible with sets and relations.
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and which atomic vectors, is in fact encoded in the type-logical representation of
the grammar. That is why the grammatical structure of the sentence is a good
candidate for the process that relates its word vectors.

In a nutshell, pregroup types are either atomic or compound. Atomic types
can be simple (e.g. n for noun phrases, s for statements) or left/right superscripted—
referred to as adjoint types (e.g. nr and nl). An example of a compound type is
that of a verb nrsnl. The superscripted types express that the verb is a relation
with two arguments of type n, which have to occur to the r ight and to the left
of it, and that it outputs an argument of the type s. A transitive sentence is
typed as shown below.

dogs

n

chase

nr s nl

cats.

n

Here, the verb interacts with the subject and object via the underlying wire
cups, then produces a sentence via the outgoing line. These interactions happen
in real time. The type-logical analysis assigns type n to ‘dogs’ and ‘cats’, for a
noun phrase, and the type nrsnl to ‘chase’ for a verb, the superscripted types nr

and nl express the fact that the verb is a function with two arguments of type
n, which have to occur to the r ight and left of it. The reduction computation
is nnrsnl ≤ 1s1 = s, each type n cancels out with its right adjoint nr from the
right, i.e. nnr ≤ 1 and its left adjoint nl from the left, i.e. nln ≤ 1, and 1 is the
unit of concatenation 1n = n1 = n. The algebra advocates a linear method of
parsing: a sentence is analyzed as it is heard, i.e. word by word, rather than by
first buffering the entire string then re-adjusting it as necessary on a tree. It’s
been argued that the brain works in this one-dimensional linear (rather than
two-dimensional tree) manner [13].

According to [6] and based on a general completeness theorem between com-
pact categories, wire diagrams, and vector spaces, meaning of sentences can be
canonically reduced to linear algebraic formulae, for example the following is the
meaning vector of our transitive sentence:

−−−−−−−−−−−→
dogs chase cats = (f)

(−−→
dogs⊗

−−−→
chase⊗−−→cats

)
Here f is the linear map that encodes the grammatical structure. The categorical
morphism corresponding to it is denoted by the tensor product of 3 components:
εV ⊗ 1S ⊗ εW , where V and W are subject and object spaces, S is the sentence
space, the ε’s are the cups, and 1S is the straight line in the diagram. The
cups stand for taking inner products, which when done with the basis vectors
imitate substitution. The straight line stands for the identity map that does
nothing. By the rules of the category, the above equation reduces to the following
linear algebraic formula with lower dimensions, hence the dimensional explosion
problem for tensor products is avoided:
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∑
itj

Cchase
itj 〈

−−→
dogs | −→vi 〉−→st 〈−→wj |

−−→
cats〉 ∈ S

In the above equation, −→vi ,−→wj are basis vectors of V and W . The meaning of the
verb becomes a superposition, represented as a linear map. The inner product

〈
−−→
dogs |−→vi 〉 substitutes the weights of

−−→
dogs into the first argument place of the

verb (similarly for object and second argument place) and results in producing a
vector for the meaning of the sentence. These vectors live in sentence spaces S,
for which −→st is a base vector. The degree of synonymity of sentences is obtained
by taking the cosine measure of their vectors. S is an abstract space, it needs
to be instantiated to provide concrete meanings and synonymity measures. For
instance, a truth-theoretic model is obtained by taking the sentence space S to
be the 2-dimensional space with basis vector true |1〉 and false |0〉. This is done
by using the weighting factor Cchase

itj to define a model-theoretic meaning for the
verb as follows:

Cchase
itj
−→st =

{
|1〉 chase(vi, wj) = true ,

|0〉 o.w.

The definition of our meaning map ensures that this value propagates to the
meaning of the whole sentence. So chase(dogs, cats) becomes true whenever ‘dogs
chase cats’ is true and false otherwise.

3 Two Concrete Constructions for Sentence Spaces

The above construction is based on the assumptions that
−−→
dogs is a base of V

and that
−−→
cats is a base of W . In other words, we assume that V is the vector

space spanned by the set of all men and W is the vector space spanned by the
set of all women. This is not the usual construction in the distributional models.
In what follows we present two concrete constructions for these, which will then
yield a construction for the sentence space. In both of these approaches V and
W will be the same vector space, which we will denote by N .

3.1 Structured Vector Spaces and a Toy Corpus

We take N to be a structured vector space, as in [11]. The bases of N are anno-
tated by ‘properties’ obtained by combining dependency relations with nouns,
verbs and adjectives. For example, basis vectors might be associated with prop-
erties such as “arg-fluffy”, denoting the argument of the adjective fluffy, “subj-
chase” denoting the subject of the verb chase, “obj-buy” denoting the object of
the verb buy, and so on. We construct the vector for a noun by counting how
many times in the corpus a word has been the argument of ‘fluffy’, the subject
of ‘chase’, the object of ‘buy’, and so on.

For transitive sentences, we take the sentence space S to be N ⊗ N , so its
bases are of the form −→st = (−→ni ,−→nj). The intuition is that, for a transitive verb,
the meaning of a sentence is determined by the meaning of the verb together
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with its subject and object. The verb vectors Cverb
itj (−→ni ,−→nj) are built by counting

how many times a word that is ni (e.g. has the property of being fluffy) has
been subject of the verb and a word that is nj (e.g. has the property that it’s
bought) has been its object, where the counts are moderated by the extent
to which the subject and object exemplify each property (e.g. how fluffy the
subject is). To give a rough paraphrase of the intuition behind this approach,
the meaning of “dog chases cat” is given by: the extent to which a dog is fluffy and
a cat is something that is bought (for the N ⊗N property pair “arg-fluffy” and
“obj-buy”), and the extent to which fluffy things chase things that are bought
(accounting for the meaning of the verb for this particular property pair); plus
the extent to which a dog is something that runs and a cat is something that is
cute (for the N ⊗ N pair “subj-run” and “arg-cute”), and the extent to which
things that run chase things that are cute (accounting for the meaning of the
verb for this particular property pair); and so on for all noun property pairs.

For sentences with intransitive verbs, the sentence space suffices to be just
N . To compare the meaning of a transitive sentence with an intransitive one,
we embed the meaning of the latter from N into the former N ⊗N , by taking
−→εn (the ‘object’ of an intransitive verb) to be

∑
i
−→ni , i.e. the superposition of all

basis vectors of N . A similar method is used while dealing with sentences with
ditransitive verbs, where the sentence space will be N⊗N⊗N , since these verbs
have three arguments. Transitive and intransitive sentences are then embedded
in this bigger space, using the same embedding described above.

Adjectives are dealt with in a similar way. We give them the syntactic type
nnl and build their vectors in N ⊗N . The syntactic reduction nnln → n asso-
ciated with applying an adjective to a noun gives us the map 1N ⊗ εN by which
we semantically compose an adjective with a noun, as follows:

−−−−−−−−−−→
adjective noun = (1N ⊗ εN )(

−→
adj⊗−−−→noun) =

∑
ij

Cadj
ij
−→ni〈−→nj | −−−→noun〉

We can view the Cadj
ij counts as determining what sorts of properties the argu-

ments of a particular adjective typically have (e.g. arg-red, arg-colourful for the
adjective “red”).

As an example, consider a hypothetical vector space with bases ‘arg-fluffy’,
‘arg-ferocious’, ‘obj-buys’, ‘arg-shrewd’, ‘arg-valuable’, with vectors for ‘bankers’,
‘cats’, ‘dogs’, ‘stock’, and ‘kittens’.

bankers cats dogs stock kittens

1 arg-fluffy 0 7 3 0 2
2 arg-ferocious 4 1 6 0 0
3 obj-buys 0 4 2 7 0
4 arg-shrewd 6 3 1 0 1
5 arg-valuable 0 1 2 8 0

Since in the method proposed above, Cverb
itj = 0 if −→st 6= (−→ni ,−→nj), we can simplify

the weight matrices for transitive verbs to two dimensional Cverb
ij matrices as
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shown below, where Cverb
ij corresponds to the number of times the verb has

a subject with attribute ni and an object with attribute nj . For example, the
matrix below encodes the fact that something ferocious (i = 2) chases something
fluffy (j = 1) seven times in the hypothetical corpus from which we might have
obtained these distributions.

Cchase =


1 0 0 0 0
7 1 2 3 1
0 0 0 0 0
2 0 1 0 1
1 0 0 0 0


Once we have built matrices for verbs, we are able to follow the categorical
procedure and automatically build vectors for sentences, then perform sentence
comparisons. The comparison is done in the same way as for lexical semantics,
i.e. by taking the inner product of the vectors of two sentences and normalizing it
by the product of their lengths. For example the following shows a high similarity

cos(
−−−−−−−−−−−→
dogs chase cats,

−−−−−−−−−−−−−−→
dogs pursue kittens) =

〈
−−−−−−−−−−−→
dogs chase cats |

−−−−−−−−−−−−−−→
dogs pursue kittens〉

|
−−−−−−−−−−−→
dogs chase cats | × |

−−−−−−−−−−−−−−→
dogs pursue kittens |

=

〈(∑
itj C

chase
itj 〈

−−→
dogs | −→ni〉−→st 〈−→nj |

−−→
cats〉

)∣∣∣ (∑itj C
pursue
itj 〈

−−→
dogs | −→ni〉−→st 〈−→nj |

−−−−→
kittens〉

)〉
|
−−−−−−−−−−−→
dogs chase cats | × |

−−−−−−−−−−−−−−→
dogs pursue kittens |

=

∑
itj C

chase
itj Cpursue

itj 〈
−−→
dogs | −→ni〉〈

−−→
dogs | −→ni〉〈−→nj |

−−→
cats〉〈−→nj |

−−−−→
kittens〉

|
−−−−−−−−−−−→
dogs chase cats | × |

−−−−−−−−−−−−−−→
dogs pursue kittens |

= 0.979

A similar computation will provide us with the following, demonstrating a low
similarity

cos(〈
−−−−−−−−−−−→
dogs chase cats |

−−−−−−−−−−−−→
bankers sell stock〉) = 0.042

The construction for adjective matrices are similar: we stipulate the Cadj
ij

matrices by hand and eliminate all cases where i 6= j since Cij = 0, hence these
become one dimensional matrices. Here is an example

Cfluffy = [9 3 4 2 2]

Vectors for ‘adjective noun’ clauses are computed similarly and are used to com-
pute the following similarity measures:

cosine(
−−−−−−−→
fluffy dog,

−−−−−−−−−−−→
shrewd banker) = 0.389

cosine(
−−−−−−→
fluffy cat,

−−−−−−−−−−→
valuable stock) = 0.184

These calculations carry over to sentences which contain the ‘adjective noun’
clauses. For instance, we obtain an even lower similarity measure between the
following sentences:

cosine(
−−−−−−−−−−−−−−−−−−−−→
fluffy dogs chase fluffy cats,

−−−−−−−−−−−−−−−−−−−−−−−−−−→
shrewd bankers sell valuable stock) = 0.016

Other constructs such as prepositional phrases and adverbs are treated similarly,
see [9].



8 M. Sadrzadeh and E. Grefenstette

3.2 Plain Vector Spaces and the BNC

The above concrete example is fine grained, but involves complex constructions
which are time and space costly when implemented. To be able to evaluate the
setting against real large scale data, we simplified it by taking N to be a plain
vector spaces whose bases are words, without annotations. The weighting factor
Cverb

ij is determined in the same as above, but this time by just counting co-
occurence rather than being arguments of syntactic roles. More precisely, this
weight is determined by the number of times the subjects of the verb have
co-occured with the base −→n i. In the previous construction we went beyond co-
occurence and required that the subject (similarly for the object) should be in
a certain relation with the verb, for instance if −→n i was ‘arg-fluffly’, the subject
had to be an argument of fluffy, where as here we instead have −→n i = ‘fluffy’, and
the subject has to co-occure with ‘fluffy’ rather than being directly modified by
it.

The procedure for computing these weights for the case of transitive sentences
is as follows: first browse the corpus to find all occurrences of the verb in question,
suppose it has occurred as a transitive verb in k sentences. For each sentence
determine the subject and the object of the verb. Build vectors for each of these
using the usual distributional method. Multiply their weights on all permutations
of their coordinates and then take the sum of each such multiplication across
each of the k sentences. Linear algebraically, this is just the sum of the Kronecker
products of the vectors of subjects and objects:

−−→
verb =

∑
k

(−→
sub⊗

−→
obj
)
k

Recall that given a vector space A with basis {−→ni}i, the Kronecker product of
two vectors −→v =

∑
i c

a
i
−→ni and −→w =

∑
i c

b
i
−→ni is defined as follows:

−→v ⊗−→w =
∑
ij

cai c
b
j (−→ni ⊗−→nj)

As an example, we worked with the British National Corpus (BNC) which
has about 6 million sentences. We built noun vectors and computed matrices
for intransitive verbs, transitive verbs, and adjectives. For instance, consider
N to be the space with four basis vectors ‘far’, ‘room’, ‘scientific’, and ‘elect’;
the (TF/IDF) values for vectors of the four nouns ‘table’, ‘map’, ‘result’, and
‘location’ are shown below.
A section of the matrix of the transitive verb ‘show’ is represented below.

As a sample computation, suppose the verb ‘show’ only appears in two sentences
in the corpuse: ‘the map showed the location’ and ‘the table showed the result’.

The weight c12 for the base i.e. (
−→
far,
−→
far) is computed by multiplying weights of

‘table’ and ‘result’ on
−→
far, i.e. 6.6×7, multiplying weights of ‘map’ and ‘location’

on
−→
far, i.e. 5.6×5.9 then adding these 46.2+33.04 and obtaining the total weight

79.24.
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i −→ni table map result location

1 far 6.6 5.6 7 5.9
2 room 27 7.4 0.99 7.3
3 scientific 0 5.4 13 6.1
4 elect 0 0 4.2 0

Table 1. Sample noun vectors from the BNC.

far room scientific elect

far 79.24 47.41 119.96 27.72
room 232.66 80.75 396.14 113.2

scientific 32.94 31.86 32.94 0
elect 0 0 0 0

Table 2. Sample verb matix from the BNC.

The computations for building vectors for sentences and other phrases are
the same as in the case for structured vector spaces. The matrix of a transitive
verb has 2 dimensions since it takes as input two arguments. The same method
is applied to build matrices for ditransitive verbs, which will have 3 dimensions,
and intransitive verbs, as well as adjectives and adverbs, which will be of 1
dimension each.

4 Evaluation and Experiments

We evaluated our second concrete method on a disambiguation task and per-
formed two experiments [10]. The general idea behind this disambiguation task
is that some verbs have different meanings and the context in which they appear
is used to disambiguate them. For instance the verb ‘show’ can mean ‘express’
in the context ‘the table showed the result’ or it can mean ’picture’, in the con-
text ‘the map showed the location’. Hence if we build meaning vectors for these
sentences compositionally, the degrees of synonymity of the sentences can be
used to disambiguate the meaning of the verb in that sentence. Suppose a verb
has two meanings and it has occurred in two sentences. Then if in both of these
sentences it has its meaning number 1, the two sentences will have a high degree
of synonymity, whereas if in one sentence the verb has its meaning number 1
and in the other its meaning number 2, the sentences will have a lower degree of
synonymity. For instance, ‘the table showed the result’ and ‘the table expressed
the result’, have a hight degree of synonymity and similarly for ‘the map showed
the location’ and ‘the map pictured the location’. This degree decreases for the
two sentences ‘the table showed the result’ and ‘the table pictured the result’.
We used our second concrete construction to implement this task.

The data set for our first experiment was developed by [16] and had 120 sen-
tence pairs. These were all intransitive sentences. We compared the results of our
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method with composition operations implemented by [16], these included addi-
tion, multiplication, and a combination of two using weights. The best results
were obtained by the multiplication operator. Our method provided slightly
better results. However, the context provided by intransitive sentences is just
one word, hence the results do not showcase the compositional abilities of our
method. In particular, in such a small context, our method and the multiplica-
tion method became very similar, hence the similarity of results did not surprise
us. There is nevertheless two major differences: our method respects the gram-
matical structure of the sentences (whereas the multiplication operation does
not) and in our method the vector of the verb is computed differently from the
vectors of the nouns: as a relation and via a second order construction.

For the second experiment, we developed a data set of transitive sentences.
We first picked 20 transitive verbs from the most occurring verbs of the BNC,
each verb has at least two different non-overlapping meanings. These were re-
trieved using the JCN (Jiang Conrath) information content synonymity measure
of WordNet. The above example for ‘show’ and its two meanings ‘express’ and
‘picture’ is one such example. For each such verb, e.g. ‘show’, we retrieved 10
sentences which contained them (as verbs) from the BNC. An example of such
a sentence is ‘the table showed the result’. We then substituted in each sentence
each of the two meanings of the verb, for instance ‘the table expressed the result’
and ‘the table pictured the result’. This provided us with 400 pairs of sentences
and we used the plain method described above to build vectors for each sentence
and compute the cosine of each pair. A sample of these pairs is provided below.

Sentence 1 Sentence 2

1 table show result table express result

2 table show result table picture result

3 map show location map picture location

4 map show location map express location

5 child show interest child picture interest

6 child show interest child express interest

Table 3. Sample sentence pairs from the second experiment dataset.

In order to judge the performance of our method, we followed guidelines
from [16]. We distributed our data set among 25 volunteers who were asked to
rank each pair based on how similar they thought they were. The ranking was
between 1 and 7, where 1 was almost dissimilar and 7 almost identical. Each
pair was also given a HIGH or LOW classification by us. The correlation of the
model’s similarity judgements with the human judgements was calculated using
Spearman’s ρ, a metric which is deemed to be more scrupulous and ultimately
that by which models should be ranked. It is assumed that inter-annotator agree-
ment provides the theoretical maximum ρ for any model for this experiment, and



A compositional distributional model of meaning 11

that taking the cosine measure of the verb vectors while ignoring the noun was
taken as the baseline.

The results for the models evaluated against the both datasets are presented
below. The additive and multiplicative operations are applications of vector ad-
dition and multiplication; Kintsch is a combination of the two, obtained by mul-
tiplying the word vectors by certain weighting constants and then adding them,
for details please see [16]. The Baseline is from a non-compositional approach,
obtained by only comparing vectors of verbs of the sentences and ignoring their
subjects and objects. The UpperBound is the summary of the human ratings,
also known as inter-annotator agreement.

Model High Low ρ

Baseline 0.27 0.26 0.08

Add 0.59 0.59 0.04
Kintsch 0.47 0.45 0.09
Multiply 0.42 0.28 0.17
Categorical 0.84 0.79 0.17

UpperBound 4.94 3.25 0.40

Model High Low ρ

Baseline 0.47 0.44 0.16

Add 0.90 0.90 0.05
Multiply 0.67 0.59 0.17
Categorical 0.73 0.72 0.21

UpperBound 4.80 2.49 0.62

Table 4. Results of the 1st and 2nd compositional disambiguation experiments.

According to the literature (e.g. see [16]), the main measure of success is
demonstrated by the ρ column. By this measure in the second experiment our
method outperforms the other two with a much better margin than that in the
first experiment. The High (similarly Low) columns are the average score that
High (Low) similarity sentences (as decided by us) get by the program. These
are not very indicative, as the difference between high mean and the low mean of
the categorical model is much smaller than that of the both the baseline model
and multiplicative model, despite better alignment with annotator judgements.

The data set of the first experiment has a very simple syntactic structure
where the context around the verb is just its subject. As a result, in practice
the categorical method becomes very similar to the multiplicative one and the
similar outcomes should not surprise us. The second experiment, on the other
hand, has more syntactic structure, thereby our categorical shows an increase
in alignment with human judgements. Finally, the increase of ρ from the first
experiment to the second reflects the compositionality of our model: its perfor-
mance increases with the increase in syntactic complexity. Based on this, we
would like to believe that more complex datasets and experiments which for
example include adjectives and adverbs shall lead to even better results.
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5 Conclusion and Future Work

We have provided a brief overview of the categorical compositional distributional
model of meaning as developed in [6]. This combines the logical and vector space
models using the setting of compact closed categories and their diagrammatic
toolkit and based on ideas presented in [5] on the use of tensor product as a
meaning composition operator. We go over two concrete constructions of the
setting, show examples of one construction on a toy vector space and implement
the other construction on the real data from the BNC. The latter is evaluated on
a disambiguation task on two experiments: for intransitive verbs from [16] and
for transitive verbs developed by us. The categorical model slightly improves the
results of the first experiment and betters them in the second one.

To draw a closer connection with the subject area of the workshop, we would
like to recall that sentences of natural language are compound systems, whose
meanings exceed the meanings of their parts. Compound systems are a phenom-
ena studied by many sciences, findings thereof should as well provide valuable
insights for natural language processing. In fact, some of the above observations
and previous results were led by the use of compact categories in compound
quantum systems [1]. The caps that connect subject and verb from afar are
used to model nonlocal correlations in entangled Bell states; meanings of verbs
are represented as superposed states that let the information flow between their
subjects and objects and further act on it. Even on the level of single quantum
systems, there are similarities to the distributional meanings of words: both are
modeled using vector spaces. Motivated by this [19,22] have used the methods
of quantum logic to provide logical and geometric structures for information re-
trieval and have also obtained better results in practice. We hope and aim to
study the modular extension of the quantum logic methods to tensor spaces of
our approach. There are other approaches to natural language processing that
use compound quantum systems but which do not focus on distributional mod-
els, for example see [4].

Other areas of future work include creating and running more complex exper-
iments that involve adjectives and adverbs, working with larger corpora such as
the WaCKy, and interpreting stop words such as relative pronouns who, which,
conjunctives and, or, and quantifiers every, some.
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