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Abstract

In this paper we prove that the surface of the cuboctahedron can be trian-

gulated into 8 non-obtuse triangles and 12 acute triangles. Furthermore, we

show that both bounds are the best possible.

1 Introduction

A triangulation of a two-dimensional space means a collection of (full) triangles

covering the space, such that the intersection of any two triangles is either empty

or consists of a vertex or of an edge. A triangle is called geodesic if all its edges are

segments, i.e., shortest paths between the corresponding vertices. We are interested

only in geodesic triangulations, all the members of which are, by definition, geodesic

triangles. The number of triangles in a triangulation is called its size.

In rather general two-dimensional spaces, like Alexandrov surfaces, two geodesics

starting at the same point determine a well defined angle. Our interest will be
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focused on triangulations which are acute (resp. non-obtuse), which means that the

angles of all geodesic triangles are smaller (resp. not greater) than π

2
.

The discussion of acute triangulations has one of its origins in a problem of Stover

reported in 1960 by Gardner in his Mathematical Games section of the Scientific

American (see [4], [5], [6]). There the question was raised whether a triangle with

one obtuse angle can be cut into smaller triangles, all of them acute. In the same

year, independently, Burago and Zalgaller [1] investigated in considerable depth

acute triangulations of polygonal complexes, being led to them by the problem

of their isometric embedding into R
3. However, their method could not give an

estimate on the number of triangles used in the existed acute triangulations. In

1980, Cassidy and Lord [2] considered acute triangulations of the square. Recently,

acute triangulations of quadrilaterals [12], trapezoids [18], convex quadrilaterals [3],

pentagons [16] and general polygons [11, 17] have also been considered.

On the other hand, compact convex surfaces have also been triangulated. Acute

and non-obtuse triangulations of all Platonic surfaces, which are surfaces of the five

well-known Platonic solids, have been investigated in [7], [9], and [10]. Recently,

Saraf [15] considered the acute triangulations of the polyhedral surfaces again, but

there is still no estimate on the size of the existed acute triangulations. Maehara

[13] considered the proper acute triangulation of a polyhedral surface and obtained

an upper bound of the size of the triangulation, which is determined by the length

of the longest edge, the minimum value of the geodesic distance from a vertex to an

edge that is not incident to the vertex, and the measure of the smallest face angle

in the given polyhedral surface. Furthermore, some other well-known surfaces have

also been acutely triangulated, such as flat Möbius strips [19] and flat tori [8].

Combining all the known results for the polyhedral surfaces mentioned above, we

are motivated to investigate the non-obtuse and acute triangulations of the surfaces

of the Archimedean solids. In this paper we consider the surface of the Archimedean
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solid cuboctahedron, which is a convex polyhedron with eight triangular faces and

six square faces. It has 12 identical vertices, with two triangles and two squares

meeting at each, and 24 identical edges, each separating a triangle from a square.

For the sake of convenience, let C denote the surface of the cuboctahedron with

side length 1. Let T denote an acute triangulation of C and T0 a non-obtuse

triangulation of C. Let |T | and |T0| denote the size of T and T0 respectively. We

prove that the best possible bounds for |T | and |T0| are 12 and 8 respectively.

2 Non-obtuse triangulations

Theorem 2.1. The surface of the cuboctahedron admits a non-obtuse triangulation

with 8 triangles and no non-obtuse triangulation with fewer triangles.

Proof. Fig. 1 describes the unfolded surface C. We fix two vertices a and b, which

are the vertices of a diagonal of a square face on C. Let a′, b′ be the antipodal

vertices of a, b respectively. There are six geodesics from a to a′ and b to b′. We

Figure 1: A non-obtuse triangulation of C.

choose those two passing through two triangular faces and one square face. De-

note the two intersection points of the geodesics aa′ and bb′ chosen above by c and

c′. Clearly, c and c′ are an antipodal pair of vertices on C. Draw the segments
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from a (resp. a′) to b and b′. Thus C is triangulated into 8 non-obtuse triangles:

abc, ab′c, abc′, ab′c′, a′bc, a′b′c, a′bc′, a′b′c′.

Indeed, noticing that all of those eight triangles are congruent, we only need to

show that the triangle abc is non-obutse. By the construction we know that aa′ is

orthogonal to bb′. So ∠acb = π

2
. Further, it is clear that ∠abc = ∠bac = 5π

12
.

We prove now that for any non-obtuse triangulation T0 of C, we always have

|T0| ≥ 8. If not, then we have |T0| = 4 or |T0| = 6. If |T0| = 4, then T0 has

(4 × 3)/2 = 6 edges and, by Euler’s formula, 6 − 4 + 2 = 4 vertices. So T0 is

isomorphic to K4; If |T0| = 6, then T0 is isomorphic to the 1-skeleton of the double

pyramid over the triangle. In both cases there are vertices with degree 3. However,

at each vertex of C the total angle is 5π

3
, so each vertex in T0 has degree at least

4. Clearly, each other vertex of T0 also has degree at least 4. Thus we obtain a

contradiction.

The proof is complete.

3 Acute triangulations

Theorem 3.1. The surface of the cuboctahedron admits an acute triangulation with

12 triangles.

Proof. Let a′, b′, c′ and d′ be four distinct vertices of the cuboctahedron such that

|a′b′| = |b′c′| = |c′d′| = |d′a′| =
√
2, where |pq| denotes the intrinsic distance on the

surface C between two points p and q. Clearly, the four segments a′b′, b′c′, c′d′ and

d′a′ determine a cycle which decomposes C into two regions C1 and C2. Take a vertex

a (resp. b, c, d) adjacent to both a′ (resp. b′, c′, d′) and b′ (resp. c′, d′, a′) such that

a, c ∈ C1, b, d ∈ C2. Take a point a∗ (resp. b∗, c∗, d∗) on a′b′ (resp. b′c′, c′d′, d′a′) such

that ∠a′aa∗ (resp. ∠b′bb∗, ∠c′cc∗, ∠d′dd∗) =π

6
.

We get a triangulation of C with 12 triangles:
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a∗ab∗, a∗b∗b, a∗bd, a∗dd∗, a∗d∗a, b∗bc∗, b∗c∗c, b∗ca, c∗cd∗, c∗d∗d, c∗db, d∗ca.

Figure 2: An acute triangulation of C.

There are two shortest paths from a∗ to b∗ (resp. c∗ to d∗); here we choose the

path in C2. There are two shortest paths from b∗ to c∗ (resp. d∗ to a∗); here we

choose the path in C1, see Fig. 2.

Indeed, the values of the angles around a∗, b∗, c∗, d∗ (resp. a, b, c, d) are entirely

the same. So we only need to consider the angles around a∗ and a respectively.

Firstly, we consider the angles around a∗.

In the triangle a∗b′b, ∠a∗b′b = π

4
+ π

3
= 7π

12
> π

2
, which implies that ∠b∗a∗b <

∠b′a∗b < π

2
.

In Fig. 2 the planar circle C with diameter bd (the dot line-segment) passes

through the midpoint of a′b′, say, x′. So, the segment a′b′ is tangent to C at x′.

Since a∗ ∈ a′b′ and a∗ 6= x′, we have ∠ba∗d < π

2
.

In the quadrilateral a∗da′d∗, ∠da′d∗ = π

3
+ π

2
+ π

3
+ π

4
= 17π

12
, which implies

that ∠a∗d∗a′ + ∠d∗a∗d + ∠a∗da′ = 7π

12
. However, ∠a∗da′ > ∠ada′ = π

12
. Therefore,

∠d∗a∗d < ∠d∗a∗d+ ∠a∗da′ < 7π

12
− π

12
= π

2
.

Denote by α the vertex adjacent to both a and a′. Take a point α∗ ∈ d′a′ such

that ∠α∗αa′ = π

6
. Clearly, the triangle aa∗a′ is congruent to the triangle αα∗a′,
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so we have |α∗a′| = |a∗a′|, which implies that ∠a′a∗α∗ = π

12
. Then ∠α∗a∗a =

(π − π

6
− π

4
)− π

12
= π

2
. Noticing that the distance from d∗ to a′ is further than that

from α∗ to a′, we have ∠d∗a∗a < ∠α∗a∗a = π

2
.

In the triangle aa∗b′, ∠aa∗b′ = π − π

3
− π

4
= 5π

12
. In the triangle a∗b′b∗, ∠a∗b′b∗ =

π

4
+ π

3
+ π

4
= 5π

6
. Noticing that |b′b∗| < 1

2
|b′c′| = 1

2
|a′b′| < |a∗b′|, we have ∠b′a∗b∗ <

∠b′b∗a∗ and therefore ∠b′a∗b∗ < π

12
. So we have ∠aa∗b∗ < 5π

12
+ π

12
= π

2
.

Consider now the angles around a. It is clear that ∠a∗ad∗ < ∠a∗aα = π

2
and

∠a∗ab∗ = ∠a∗ab′ + ∠b′ab∗ < π

3
+ π

6
= π

2
. Let γ denote the vertex adjacent to both

c and c′. Then ∠b∗ac = ∠γac + ∠b∗aγ < ∠γac + ∠baγ = π

4
+ π

4
= π

2
. Finally,

∠d∗ac = ∠d∗aα + ∠αac < π

6
+ π

4
< π

2
.

4 No acute triangulation with fewer triangles

Let C be the 1-skeleton of the cuboctahedron. The graph-theoretic distance dC (v, w)

between the vertices v, w of C is called the C -distance between v and w. Let g(u, v)

denote a geodesic between two points u and v on the surface C. We start with the

following lemma.

Lemma 4.1. Let u, w1, w2 be three vertices of C. Then the angle formed by g(u, w1)

and g(u, w2) on C is equal to π

12
i, where i ∈ Z and 1 ≤ i ≤ 20.

Proof. For any vertex u of C, consider all the segments from u to any other ver-

tex v (see Fig. 3). It is easy to see that dC (u, v) ≤ 3. If dC (u, v) = 1, then

v ∈ {a1, a2, a3, a4}. Clearly g(u, v) is an edge of C. If dC (u, v) = 2, then v ∈
{b1, b2, b3, b4, b5, b6}. Further, if v = b2 or v = b5, then g(u, v) is a diagonal of a

square face on the surface; if v ∈ {b1, b3, b4, b6}, then there are two geodesics be-

tween u and v. If dC (u, v) = 3, then v = c and there are six geodesics between u

and v. Please note that the solid line between u and v in Fig. 3 is not a geodesic.

Thus there are 20 geodesics starting from u to any other vertex v on C, and all of
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Figure 3: Geodesics starting from a vertex u.

them divide the total angle around u into 20 equal parts. Trivially, each part has

angle π

12
. Thus the angle formed by g(u, w1) and g(u, w2) on C is equal to π

12
i, where

i ∈ Z and 1 ≤ i ≤ 20.

Lemma 4.2. There is no acute triangulation of C with 8 triangles.

Proof. Suppose there exists an acute triangulation T of C containing 8 triangles.

By a method similar to that used in the proof of Theorem 2.1, we know that T is

isomorphic to the 1-skeleton of the regular octahedron, where all the vertices have

degree 4. Clearly each vertex of T is a vertex of C. By Lemma 4.1, it is easily seen

that any acute angle in T is π

12
i, where i = 1, 2, 3, 4, 5. Recall that the total angle

at any vertex of C is 5π

3
. Therefore the four angles around each vertex of T are all

isogonal and equal to 5π

12
.

Now let v1, v2 be two adjacent vertices in T . Then in both of the triangles having

side g(v1, v2), all the three angles are equal to 5π

12
. In the following we show that in

one of them, where the third vertex is denoted by v3, there is always a contradiction.

There are three cases to consider.

Case 1. dC (v1, v2) = 1.

If ∠v3v1v2 = ∠v3v2v1 =
5π

12
, then clearly we have ∠v1v3v2 =

π

6
6= 5π

12
, a contradic-
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Figure 4: dC (v1, v2) = 1.

Figure 5: dC (v1, v2) = 2.

tion, as shown in Fig. 4.

Case 2. dC (v1, v2) = 2.

If g(v1, v2) is a diagonal of a square face of C, then ∠v3v1v2 = ∠v3v2v1 = 5π

12

forces v3 not to be a vertex of C (see Fig. 5(a)), a contradiction. Otherwise, by the

proof of Lemma 4.1 we may assume that v1 is a corner of a square face and g(v1, v2)

intersects the interior of the square face, as show in Fig. 5(b). Let v3 be another

corner of the square face such that ∠v3v1v2 =
5π

12
. By the proof of Case1, we know

that ∠v1v2v3 =
π

6
, a contradiction again.

Case 3. dC (v1, v2) = 3.

If g(v1, v2) passes through two triangular faces and one square face, then we

consider the triangle v1v2v3 lying above g(v1, v2), as shown in Fig. 6(a). Clearly,

∠v1v2v3 = ∠v2v1v3 = 5π

12
, but ∠v1v3v2 = 5π

6
, a contradiction. If g(v1, v2) passes

through one triangular face and two square faces, then we consider the triangle

v1v2v3 lying below g(v1, v2), as shown in Fig. 6(b). It is easy to see that ∠v1v2v3 =
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Figure 6: dC (v1, v2) = 3.

∠v2v1v3 =
5π

12
makes v3 not be a vertex of C, which contradicts to the fact that each

vertex of T must be a vertex of C.
The proof is complete.

Lemma 4.3. There is no acute triangulation of C with 10 triangles.

Proof. Suppose that there exists an acute triangulation T of C containing 10 tri-

angles. Then T is isomorphic to the 1-skeleton of the double pyramid over the

pentagon. So T contains a 5-cycle C5 and all its vertices have degree 4. Clearly,

the vertices of C5 must be the vertices of C. For the sake of convenience, let V (C5)

denote the set of all vertices of C5 and E(C5) denote the set of all edges of C5.

Furthermore, we have the following fact.

Fact. The angles formed by any two adjacent edges of C5 are between 2π

3
and

π.

If u, v are two adjacent vertices of C, we call u, v an adjacent pair of C. In order

to prove Lemma 4.3, we prove the following properties about the cycle C5 mentioned

above at first.

Proposition 4.4. V (C5) contains at least two adjacent pairs of C.

Proof. We first show that V (C5) contains at least one adjacent pair of C. Suppose

that u ∈ V (C5), as shown in Fig. 3. If {a1, a2, a3, a4} ∩ V (C5) 6= ∅, then clearly

V (C5) contains an adjacent pair. If not, then the other four vertices of C5 come
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from b1, b2, b3, b4, b5, b6 and c. It is easy to see that among those four vertices there

must be at least one adjacent pair of C.
Now let v1, v2 ∈ V (C5) be an adjacent pair of C, as shown in Fig. 7. If

{u1, u2, u3, u4, u5} ∩ V (C5) 6= ∅, then clearly V (C5) contains another adjacent pair

of C and the proposition is proved. Otherwise, the other three vertices of C5 come

from the remained five vertices u1, u2, u3, u4 and u5 of C. It’s not hard to see that

among any three vertices from u1, u2, u3, u4 and u5 there must be one adjacent pair

of C.

Proposition 4.5. Let vi, vj ∈ V (C5).

(a) If dC (vi, vj) = 1, then g(vi, vj) ∈ E(C5);

(b) If dC (vi, vj) = 3, then g(vi, vj) /∈ E(C5);

(c) If dC (vi, vj) = 2 and g(vi, vj) is a diagonal of a square face of C, then

g(vi, vj) /∈ E(C5).

Proof. (a) We fix two vertices v1, v2 such that v1, v2 ∈ V (C5) and dC (v1, v2) = 1.

Suppose the contrary that g(v1, v2) = v1v2 /∈ E(C5). Then there is a vertex of C,
say u, such that it is adjacent to both v1 and v2 in C5. Let the five neighbors of

v1, v2 in C be ui, i = 1, 2, 3, 4, 5, as shown in Fig. 7. By the Fact it is easy to

see that u 6= ui (i = 1, 2, 3, 4, 5). Now denote the five remained vertices of C by ui

(i = 1, 2, 3, 4, 5). For the sake of convenience, let ηi denote the value of the smaller

angle formed by v1, ui and v2 on C. Since η1 ≤ π

4
+ π

12
= π

3
, η3 ≤ π

12
+ π

3
+ π

12
= π

2
,

η5 ≤ π

4
+ π

12
= π

3
, by the Fact we have u /∈ {u1, u3, u5}. Noticing that η2 ≤ π

3
+ π

12
+ π

3
=

π

6
+ π

2
+ π

12
= 3π

4
, we may assume that u = u2. Then by the Fact we have 2π

3
< η2 < π,

and therefore η2 = 3π

4
(by Lemma 4.1). Now let v′1 be the other adjacent vertex of

v1 in C5. In order to ensure 2π

3
< ∠u2v1v

′

1 < π, that is, ∠u2v1v
′

1 ∈ {3π

4
, 5π

6
, 11π

12
}, it is

easy to check that g(v1, v
′

1) always intersects g(v2, u2), a contradiction. Similarly, if

u = u4 we also obtain a contradiction.
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Figure 7: An adjacent pair of C.

(b) Without loss of generality, we assume that vi = u, vj = c, as shown in

Fig. 3. Now suppose the contrary that g(vi, vj) = g(u, c) ∈ E(C5). For the sake of

convenience, denote by u′ the other adjacent vertex of u in C5. Since
2π

3
< ∠u′uc < π,

by Lemma 4.1, we have ∠u′uc ∈ {3π

4
, 5π

6
, 11π

12
}. There are two cases to consider.

Case 1. g(u, c) passes through two triangular faces and one square face.

We consider the rightmost geodesic g(u, c) in Fig. 3. If ∠u′uc = 3π

4
or ∠u′uc =

11π

12
, then u′ = b3 or u′ = b4. Clearly, dC (b3, c) = dC (b4, c) = 1. By (a), we have

g(b3, c) ∈ E(C5) or g(b3, c) ∈ E(C5). Thus we obtain a 3-cycle ucb3u or ucb4u, a

contradiction. If ∠u′uc = 5π

6
, then u′ = c. We obtain a 2-cycle ucu, a contradiction

again.

Case 2. g(u, c) passes through one triangular face and two square faces.

We consider the second leftmost geodesic g(u, c) (the vertical one) in Fig. 3. If

∠u′uc = 5π

6
, then u′ = c and we obtain a 2-cycle ucu, a contradiction. If ∠u′uc ∈

{3π

4
, 11π

12
}, then u′ = b5 or u′ = b6. If u′ = b6, by (a), we obtain a contradiction; If

u′ = b5, let u
′′ be the other adjacent vertex of u′ in C5. Thus ∠uu

′u′′ ∈ {3π

4
, 5π

6
, 11π

12
}.

If ∠uu′u′′ = 3π

4
, then u′′ = b2 and the geodesic g(b5, b2) in E(C5) must pass through

the faces α1, α2, α3, which intersects g(u, c) in its interior. This is impossible in C5.

If ∠uu′u′′ = 5π

6
, then u′′ = c and we obtain a 3-cycle ub5cu, a contradiction again.
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If ∠uu′u′′ = 11π

12
, then u′′ = b2. Let u′′′ be the other adjacent vertex of u′′ in C5.

We know that ∠u′u′′u′′′ ∈ {3π

4
, 5π

6
, 11π

12
} which implies that u′′′ ∈ {a3, b5, u}. Clearly,

u′′′ 6= b5 and u′′′ 6= u. If u′′′ = a3, then g(b2, a3) in E(C5) intersects g(u, c) in its

interior, which is a contradiction.

(c) Without loss of generality, let vi = u1, vj = u2 and g(u1, u2) is a diagonal of

a square face of C, as shown in Fig. 7. Now suppose the contrary that g(u1, u2) ∈
E(C5). Let u′

1 be the other adjacent vertex of u1 in C5. By the Fact and Lemma

4.1, we have ∠u′

1u1u2 ∈ {3π

4
, 5π

6
, 11π

12
}. If ∠u′

1u1u2 ∈ {3π

4
, 11π

12
}, then u′

1 = u3. Clearly,

dC (u1, u3) = 3, which contradicts to (b). If ∠u′

1u1u2 = 5π

6
, then u′

1 = u5. Let

u′′ be the other adjacent vertex of u′

1 in C5. Noticing that dC (u1, u5) = 2 and

g(u1, u5) is a diagonal of a square face of C, by the above discussion we know that if

∠u1u5u
′′

1 ∈ {3π

4
, 11π

12
}, then there is a contradiction; if ∠u1u5u

′′

1 = 5π

6
, then u′′

1 = u3.

Repeating the above process again and we obtain a 4-cycle u1u5u3u2u1, which is a

contradiction.

Proposition 4.6. C5 has only one possible configuration as shown in Fig. 8.

Figure 8: The 5-cycle C5.

Proof. Denote the vertices of C5 by vi (i = 1, 2, 3, 4, 5), and vi, vi+1 are adjacent in

C5 (i + 1 takes modulo 5). By Proposition 4.4 and 4.5, there are two edges of C5,
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say e1 and e2, which are edges of C. There are two cases to consider.

Case 1. e1 and e2 are adjacent in C.
Suppose that e1 = v1v2 and e2 = v2v3. Without loss of generality, we may

assume that v1 = a1, v2 = u, as shown in Fig. 3. Please keep in mind that any angle

formed by two adjacent edges of C5 is between
2π

3
and π. Thus we have v3 = a3. By

Proposition 4.5, we know that dC (v3, v4) = 1, or dC (v3, v4) = 2 and g(v3, v4) passes

through one triangular face and one square face, which implies that v4 = b4 or c.

If v4 = b4 and dC (v4, v5) = 1, then v5 = c and we obtain a 5-cycle a1ua3b4ca1,

as the configuration described in Fig. 8. If v4 = b4 and dC (v4, v5) = 2, then

v5 = b1. Since dC (v5, v1) = 1, by Proposition 4.5(a), g(v5, v1) = v5v1 ∈ E(C5). Thus

we obtain a 5-cycle a1ua3b4b1a1. If v4 = c and dC (v4, v5) = 1, then v5 = b1, we

obtain a 5-cycle a1ua3cb1a1. If v4 = c and dC (v4, v5) = 2, then v5 = a1, which is a

contradiction.

Case 2. e1 and e2 are not adjacent in C.
Suppose that e1 = v1v2 and e2 = v3v4. Without loss of generality, we may

assume that v1 = a1, v2 = u, as shown in Fig. 3. By Proposition 4.5, we know that

dC (v2, v3) = 1, or dC (v2, v3) = 2 and g(v2, v3) passes through one triangular face and

one square face. That is, v3 = a3 or b4. If v3 = a3, then the discussion is same to

that in Case 1. If v3 = b4, then clearly v4 = c. This situation has been discussed in

Case 1.

Now we are back to the proof of Lemma 4.3. Clearly, a 5-cycle C5 described

above decomposes C into two regions, and one of them is shown in Fig. 8. Without

loss of generality, let v6 be the vertex of the acute triangulation T lying in this

region. Since ∠v6v2v1 <
π

2
, v6 can not lie in the triangular face av2v3 and the square

face av3v4c except for the edge ac. Further, since ∠v6v1v2 < π

2
, ∠v6v3v4 < π

2
and

∠v6v4v3 < π

2
, v6 must lie in the triangular face abc. Clearly, v6 /∈ {a, b, c} and

the edge g(v1, v6) of T must intersect the square face v1bav2. In Fig. 8, let C
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be the planar circle with diameter v1v5 (here v1v5 is the dash segment instead of

the geodesic). It is easy to see that v6 lies in the interior of the upper semi-disc

bounded by C and the dash segment v1v5. As a result, we have ∠v1v6v5 >
π

2
, which

contradicts to the fact that T is an acute triangulation. Therefore, there is no acute

triangulation of C with ten triangles.

Combining Theorem 2.1, 3.1, Lemma 4.2, 4.3, we obtain the following main

theorem immediately.

Theorem 4.7. The surface of the cuboctahedron admits an acute triangulation with

12 triangles, and there is no acute triangulation with fewer triangles.
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