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Abstract. When dealing with nonlinear blind deconvolution, complex
mathematical estimations must be done giving as a result very slow al-
gorithms. This is the case, for example, in speech processing or in mi-
croarray data analysis. In this paper we propose a simple method to
reduce computational time for the inversion of Wiener systems by using
a linear approximation in a minimum-mutual information algorithm. Ex-
perimental results demonstrate that linear spline interpolation is fast and
accurate, obtaining very good results (similar to those obtained without
approximation) while computational time is dramatically decreased.

1 Introduction

Nonlinear blind deconvolution deals with a particular class of nonlinear systems.
This is composed by a linear subsystem (filter) and a memoryless nonlinear dis-
tortion (function) (Figure 1, left). This class of nonlinear systems, also known as
Wiener systems, is not only another nice and mathematically attracting model,
but also a model found in various areas, such as biology: study of the visual
system [1], relation between the muscle length and tension [2]; computer vision
[3]; industry: description of a distillation plant [4]; sociology and psychology, see
also [5] and the references therein. This model is popular because it has a conve-
nient block representation, a transparent relationship to linear systems, and it is
easier to implement compared to heavy-duty nonlinear models (such as neural
networks and Volterra models).

One of the areas where Wiener systems are applied is audio and speech pro-
cessing. For example, it can be used in order to estimate and compensate mi-
crophone distortion in speaker recognition/identification scenarios [6]. Or it can
be used to determinate the innovation process of a speech signal, supposing that
the signal can be modeled as an independent and identically distributed (i.i.d.)
sequence filtered with an AR (autoregressive) filter. In this case, we can merge
the AR part and the channel filter into a single filter. Then, the inversion system
will recover the inverse of the cascade, and the output of the inversion system
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will be the i.i.d. sequence at the input of the AR filter, i.e. the so-called innova-
tion process [7]. As this kind of algorithms can be applied in any situation where
we have a signal collected by a sensor, which in turns affects the signal through
a filtering effect and a possible distortion, it can also be applied to the case
of fluorescence signals of microarray experiments, where Wiener deconvolution
filtering algorithm can improve either spot segmentation or gene profiling [8,9].

Due to the nonlinear part must be compensated, the gradient equations that
come out in the optimization procedure are much more complex than in the pure
linear case. When a nonlinear distortion is considered, the gradient of Mutual
Information (MI) has an expectation form where the score function appears
jointly with other functions that depend on the filter coefficients [10]. These kinds
of calculations are very time consuming, as many different terms are involved
into the same equation. In this work we present a simple method to overcome
this problem. The score function and the expectation term are calculated only at
N equally spaced points covering the samples range. After that, we interpolate
the result over the whole range of the domain.

The paper is organized as follows. The nonlinear deconvolution model and
its equations are described in Section 2; in Section 3, the Minimum-Mutual
Information (Min-MI) algorithm is presented; in Section 4, we propose simple
techniques to reduce the computation complexity dramatically; in Section 5, a
set of experimental results are presented; and, in Section 6, the main conclusions
of our work are outlined.

Nonlinear convolution system Inversion structure

Fig. 1. The unknown nonlinear convolution system (left) and the used inversion
structure

2 Model, Assumptions and Notation

Following the same notation used in [10], we assume that the input of the system
S = {s(t)} is an unknown non-Gaussian i.i.d. process. The linear filter

h = [h(−L), ..., h(−1), h(0), h(1), ..., h(L)],

is assumed to be unknown and invertible, i.e., h−1 exists such that h−1 ∗ h =
h ∗ h−1 = δ0 (the Dirac impulse at t = 0), and h may have causal as well as
anticausal parts that can be, eventually, of infinite length (L = ∞). Here we
use “∗” to denote the discrete convolution. On the other hand, the nonlinear
distortion (memoryless) is defined by a nonlinear function f : R → R which is
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also assumed unknown and invertible. In this work, it is assumed that all involved
stochastic processes x(t), y(t), etc., are wide sense stationary and ergodic, i.e.
expectations can be computed by averaging over time, for example, for the case
of the mean we have that µ = E [x(t)] ≈ 1

N

∑N
n=1 x(tn).

In order to estimate s(t) by only observing the system output e(t), we will
use an inverse structure composed of the same kind of subsystems: a memoryless
function g and a linear filter w (Figure 1, right). The nonlinear part g is concerned
by the compensation of the distortion f without access to its input, while the
linear part w is a linear deconvolution filter. Such a system (Wiener system but
in reverse order) is known as a Hammerstein system [5].

Additionally, we define the cross-correlation function between x(t) and y(t)
as γx,y(t) = E[x(τ − t)y(τ)] and the score function of signal y(t) as ψy =
(log py)′(u) = p′y(u)/py(u) where py(u) is the probability density function of
y(t). It is noted that, in our case, the score function is independent of t since
y(t) is stationary.

3 The Min-MI Nonlinear Blind Deconvolution Algorithm

It is known that the inverse system, composed by the function g and the linear
filter w, can be estimated by minimizing the mutual information (MI) of the
output Y = {y(t)}.

In [10], the Min-MI NLBD (Minimum-Mutual Information Non-linear Blind
Deconvolution) algorithm was derived. The Min-MI NLBD algorithm requires
to compute a special perturbation signal ε(x(t)) which is needed to compensate
the non-linear distortion. The perturbation signal is defined as follows:

ε(x(t)) = E [ψy(y)(w ∗ δ(x − x(t))) + δ′(x − x(t))] , (1)

where, the functions δ(x) and δ′(x) are chosen as the ramp function and its
derivative respectively, i.e. δ(x) = xH(x) and δ′(x) = H(x) with H(x) being the
Heaviside unit step function (H(x) = 1 if x ≥ 0 and H(x) = 0 if x < 0).

Additionally, the deconvolution algorithm requires to compute the cross-
correlation between the current output and its score function, i.e.

γy,ψy(t) = E[y(τ − t)ψy(y(τ))], (2)

which can be interpreted as a high-order correlation function of y(t).
In equations (1) and (2) the score function ψy(y) is used which is not available

a priori and should be estimated in some manner. Here, we use a nonparametric
approach based on Parzen windows [11,12,13]. This kernel density estimator
is easy to implement and has a very flexible form. Formally, we estimate the
probability density function py(y) by:

p̂y(y) =
1

BT

T∑

τ=1

K

(
y − y(τ)

B

)
, (3)
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and ψy by:

ψ̂y(y) =

∑T
τ=1 K ′

(
y−y(τ)

B

)

∑T
τ=1 K

(
y−y(τ)

B

) , (4)

where T is the number of available samples (the signal length in our case),
K(u) is a kernel (window) function that must to obey certain properties and
B is related to the width of the window. In our experiments we used Gaussian
kernels, however many other kernel shapes can be good candidates. A “quick
and dirty” method for the choice of the bandwidth consists in using the rule
of thumb B = 1.06σyT−1/5, which is based on the minimum asymptotic mean
integrated error criterion [13].

From equation (4) it is easy to see that the computation of the score function
at a specific point y0, i.e. ψ̂y(y0) , requires to evaluate the Kernel T times and
sum over T terms then giving a complexity of order O(T ). Since the equations
(1)-(2) require the score function to be computed at every available signal point
y(t) (t = 1, 2, ..., T ), the total complexity in the score function estimation is
O(T 2) and is the same complexity that we will find computing the perturbation
signal ε(x(t)) (1) and estimating the cross-correlation γy,ψy(t) (2).

4 Complexity Reduction by Interpolation of Measures

By assuming signals y(t) and x(t) to be ergodic processes, we are able to compute
expectations by averaging over time samples. Therefore, we see that equations
(1) and (2) can be estimated, respectively, by:

ε(x(t)) ≈ 1
T

T∑

τ=1

[
ψ̂y(y(τ))(w ∗ δ(x − x(t)))(τ) + δ′(x − x(t))(τ)

]
, (5)

γy,ψy(t) ≈ 1
T

T∑

τ=1

y(τ − t)ψ̂y(y(τ)). (6)

In order to reduce the quadratic complexity to linear complexity we propose to
compute equations (4) and (5) only at N points in a regular grid covering the
ranges of the variables which give us complexity O(NT ). Finally, in order to
have an approximation of these measures at every time sample t = 1, 2, ..., T , we
use the simplest form of a spline interpolation: the linear interpolation, i.e., data
points are graphically connected by straight lines resulting in a polygon. This in-
terpolation technique has linear complexity (O(NT )) which means that the total
complexity for computing these measures can be reduced from quadratic order
to linear order in terms of the number of samples T . We should also note that the
estimation of equation (6) is a convolution, which also has formally quadratic
complexity O(T 2) but can be implemented in a fast way by using the classi-
cal Fast Fourier Transform (FFT) implementation reaching to a subquadratic
complexity of order O(T log2(T )).
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5 Experiments and Results

In order to compare the exact algorithm with the approximated version we con-
sider an i.i.d. random sequence s(t) as input, filtered by a non-minimum phase
FIR filter h = [−0.082, 0,−0.1793, 0, 0.6579, 0,−0.1793, 0,−0.082] and then dis-
torted with f(u) = 0.1u + tanh(5u).

The algorithms were tested with sample sizes T = 200, 400, 800, 1000. For
the approximated algorithm, different numbers of N equally spaced points were
considered (for each T ) and used to approximate equations (4) and (5). In all the
cases the length of the filter w was set to 21 with the same length for the causal
and anti-causal parts. Finally, in order to evaluate the average performance, we
computed the mean values of SNR and the Computation Time over a set of 10
repetitions for each experiment. The SNR can be directly measured with the
output signal to noise ratio σ2

s/σ2
n = E[y2(t)]/E[(s(t) − y(t))2], where σ2

n is the
error power and σ2

s is the estimated signal power.
In Figure 2, the mean SNR versus the number of points N is shown for

T = 200, 400, 800, 1000. Dashed line corresponds to the exact algorithm and
solid line corresponds to the approximate algorithm run over N points, ranging
from 50% to 1% of T .
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Fig. 2. Signal to Noise Ratio (SNR) versus percentage of points considered over T for
the cases T = 200, T = 400, T = 800 and T = 1000
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SNR values for the exact case and for the approximate cases are almost the
same for N at 50%, 20% and 10% of the T points considered in each case. For
T = 200 and T = 400, if the number of points N is decreased to a 2% or less,
the performance also decrease and results are not good enough. On the other
side, for larger datasets with T = 800 and T = 1000, the performance is not
deteriorated even if the number of points is decreased to 2% or 1%.

Concerning the Computation Time, we show in Figure 3 its evolutions for
different values of T and N . Also, in Table 1 the cases of N from 50% to 1% are
detailed in percentage of diminishing time need: 100− (Ta/Te)×100 where Ta is
the computational time of the approximate method and Te is the computational
time of the exact method. We can see how the Computation Time decreases
using our approximate method, from 30% to 90% of the time needed for the
exact method, approximately. If we take into account previous results in SNR,
and we consider as interesting cases those corresponding to N in 50%, 20% and
10% of the points in T , where we maintain SNR values, we observe a reduction
in computational time is within 33%- 80% (except for the case T = 200), but
this reduction is higher for larger datasets (T = 800 and T = 1000) and N at
2% and 1% of the T points, where we achieve reductions over 90%.
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T = 200, 400, 800, 1000



A Simple Approximation for Fast Nonlinear Deconvolution 61

Table 1. Percentage of diminishing time for all cases of T for the interesting cases of
N . All the percentage values are taken in reference to the exact case.

Exact Case N = 50% N = 20% N = 10% N = 2% N = 1%
T = 200 100% 28.59% 49.27% 56.43% 62.23% 63.07%
T = 400 100% 33.77% 63.36% 72.45% 80.09% 81.09%
T = 800 100% 36.85% 70.82% 81.59% 90.5% 91.61%
T = 1000 100% 36.5% 72.05% 83.26% 92.45% 93.61%

6 Conclusions

In this paper we have proposed a simple approximation for fast nonlinear de-
convolution algorithm based on linear interpolation of the two more complex
equations of the original algorithm: the perturbation signal ε(x(t)) (1) and the
score function ψy (4). This method allows us to reduce the original complexity of
critical parts from order O(T 2) to a linear complexity of order O(T ). Experimen-
tal results clearly show that performance is not affected by this approximation
even if the number of points (N) used for calculations is much smaller than the
original one (T ). For small datasets, the approximation is degraded if we use
less than 10% of the original points, while for large datasets we can diminish up
to only 1% of the original points, giving more than 90% of reduction in com-
putational time without any degradation in the results. Real time algorithms
for speech processing or microarray data analysis can be implemented using this
method.
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12. Härdle, W.: Smoothing techniques: with implementation in S. Springer, Heidelberg
(1991)

13. Silverman, B.W.: Density estimation for statistics and data analysis. Chapman and
Hall, London (1986)


	A Simple Approximation for Fast Nonlinear Deconvolution
	Introduction
	Model, Assumptions and Notation
	The Min-MI Nonlinear Blind Deconvolution Algorithm
	Complexity Reduction by Interpolation of Measures
	Experiments and Results
	Conclusions


