
“Behavioural Preservation in Fault Tolerant Patterns”

By

Diego Machado Dias

M.Sc. Dissertation

Federal University of Pernambuco

posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE, FEBRUARY/2012

www.cin.ufpe.br/~posgraduacao

Federal University of Pernambuco

Center for Informatics
Graduate in Computer Science

Diego Machado Dias

“Behavioural Preservation in Fault Tolerant Patterns”

A M.Sc. Dissertation presented to the Center for Informatics

of Federal University of Pernambuco in partial fulfillment

of the requirements for the degree of Master of Science in

Computer Science.

Advisor: Juliano Manabu Iyoda

Co-Advisor: Adalberto Cajueiro de Farias

RECIFE, FEBRUARY/2012

 Catalogação na fonte
 Bibliotecária Jane Souto Maior, CRB4-571

Dias, Diego Machado

 Behavioural preservation in fault tolerant patterns /
Diego Machado Dias. - Recife: O Autor, 2012.
 xi, 106 p. : il., fig., tab.

 Orientador: Juliano Manabu Iyoda.
 Dissertação (mestrado) - Universidade Federal de
Pernambuco. CIn, Ciência da Computação, 2012.
 Inclui bibliografia.

 1. Engenharia de software. 2. Métodos formais. 3.
Computação tolerante a falhas. I. Iyoda, Juliano Manabu
(orientador). II. Título.

 005.1 CDD (23. ed.) MEI2012 – 060

Dissertação de Mestrado apresentada por Diego Machado Dias à Pós-Graduação em

Ciência da Computação do Centro de Informática da Universidade Federal de

Pernambuco, sob o título “Behavioural Preservation in Fault Tolerant Patterns”,

orientada pelo Prof. Juliano Manabu Iyoda e aprovada pela Banca Examinadora

formada pelos professores:

 __

 Prof. Alexandre Cabral Mota

 Centro de Informática / UFPE

 __

 Prof. Rohit Gheyi

 Departamento de Sistemas e Computação / UFCG

 __

 Prof. Juliano Manabu Iyoda

 Centro de Informática / UFPE

Visto e permitida a impressão.

Recife, 2 de março de 2012.

Prof. Nelson Souto Rosa

Coordenador da Pós-Graduação em Ciência da Computação do

Centro de Informática da Universidade Federal de Pernambuco.

Acknowledgements

The project described in this thesis would not have been possible without the support of
several people that directly and indirectly influenced it.

Firstly, I would like to thank my advisor, Juliano Iyoda. I owe Juliano for his
enthusiasm, availability, guidance and numerous discussions about this work that help me
to understand the really meaning of doing research in computer science. I’m very thank
to him not only for his supervision, but for the assistance dedicated to me along these two
years of the master’s course. I have no doubt that more than a advisor, he has become a
truly friend.

I’m also grateful to Alexandre Mota, Augusto Sampaio, Giovanny Lucero and Adal-
berto Cajueiro for their suggestions to improve this work. The feedbacks received from
them in the Formula’s seminars were decisive for delimiting the scope of this work. I also
devote special thanks to the anonymous reviewers of the paper [10] submitted to SBMF,
their feedbacks give valuable contributions to this work.

I thank to all friends that made my stay in Recife a rich life experience, especially
Adauto Trigueiro, Carlo Reillen, Orivaldo Vieira, Robson Silva, Weslley Torres, and
colleagues of classes of dancing. Besides they, I thank my teachers at UFBA. They gave
me evidences of how good is an academic career and motivated me to engaging a MSc
course.

I could not finish the acknowledgements without thanking to Thays Amaral for her
care, patient and attention during these two years; and to my parents for understanding
the distance.

My MSc has been financially supported by the FACEPE (Fundação de Amparo à
Ciência e Tecnologia do Estado de Pernambuco).

iii

Resumo

No desenvolvimento de sistemas críticos é prática comum fazer uso de redundância
para se alcançar níveis mais elevados de confiabilidade. Existem padrões de projeto
bem estabelecidos que introduzem redundância e que são amplamente documentados
na literatura e adotados na indústria. Entretanto, há relativamente poucos trabalhos que
tentam verificar formalmente estes padrões com respeito à preservação de comportamento.

Este trabalho propõe uma abordagem para especificar de tais padrões, chamados
aqui de padrões de tolerância à falhas, usando HOL. Utiliza-se o provador de teoremas
HOL4 para provar a composicionalidade e corretude de padrões de tolerância à falhas.
A abordagem proposta é ilustrada através da modelagem de três padrões de tolerância à
falhas clássicos: redundâcia homogênea, redundância heterogênea e redundância modular
tripla. O modelo formal desenvolvido neste trabalho considera que um sistema (sem
redundância) computa uma determinada função, com determinado atraso e é susceptível
a falhar aleatoriamente.

Para provar que um padrão de tolerância a falhas preserva o comportamento dos seus
subsistemas, foram definidos novos conceitos de refinamento. Engenheiros de sistemas
normalmente aceitam que padrões de tolerância a falhas não mudam a funcionalidade
de um sistema. Entretanto, esta prática não é compatível com as noções clássicas de
refinamento. Desta forma definiu-se noções de refinamento axiomaticamente para provar
que os padrões de tolerância a falhas formalizados preservam comportamento.

Também provou-se que os padrões de tolerância a falhas analisados são composi-
cionais, no sentido que eles podem ser aplicados consecutivamente um número arbitrário
de vezes. O resultado desta aplicação é ainda um sistema, cujo o atraso, modelo de falhas
e funcionalidade podem ser sistematicamente descobertos (através de prova) com quase
nenhum esforço.

Para ilustrar a utilização dos padrões é aplicado o padrão de redundância modular
tripla à um sistema simplificado de controle de elevação de um avião. Mostrou-se que
tendo-se verificado previamente um padrão, a aplicação deste a um sistema específico
e a prova de preservação de comportamento do sistema resultante torna-se trivial. Este
trabalho foi desenvolvido em colaboração com a fabricante brasileira de aviões Embraer.

Palavras-chave: Padrões de tolerância à falhas, HOL4, preservação de comportamento,
refinamento.

iv

Abstract

In the development of critical systems it is common practise to make use of redundancy
in order to achieve higher levels of reliability. There are well established design patterns
that introduce redundancy and that are widely documented in the literature and adopted
by the industry. However there have been few attempts to formally verify them with
respect to behavioural preservation.

In this work, we purpose an approach to specify such design patterns, called here
fault tolerant patterns, using HOL. We use the theorem prover HOL4 to prove the com-
positionality and correctness of the fault tolerant patterns. We illustrate our approach
by modelling three classical fault tolerant patterns: homogeneous redundancy, heteroge-
neous redundancy and triple modular redundancy. Our model takes into account that the
original system (without redundancy) computes a certain function with some delay and is
amenable to random failures.

In order to prove that a fault tolerant pattern preserves the behaviour of its subsystems,
we defined new notions of refinement. Systems engineers commonly accept the fact that
fault tolerant patterns do not change the functionality of a system. However, this practise
is not compatible with the classical refinement notions. Thus we defined axiomatic
notions of refinement to prove that the formalised fault tolerant patterns preserve the
behaviour of its subsystems.

We also proved that our fault tolerant patterns are compositional in the sense that
we can apply fault tolerant patterns consecutively and for an arbitrary number of times.
The result of that is still a system whose delay, failure model and functionality can be
systematically discovered (by proof) with almost no effort.

In order to illustrate the usage of the patterns we applied the triple modular redundancy
pattern to a simplified avionic Elevator Control System. We showed that once a fault
tolerant pattern is verified, the application of it to a specific system and the proof of the
behavioural preservation of the resulting system becomes trivial. This work has been
done in collaboration with the Brazilian aircraft manufacturer Embraer.

Keywords: Fault tolerant patterns, HOL4, behavioural preservation, refinement.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Overview of the Proposed Solution . 3
1.2 Statement of the Contributions . 4
1.3 Dissertation Structure . 4

2 Background 6
2.1 Introduction to HOL Logic . 6
2.2 Modelling Hardware in HOL . 8
2.3 Hardware Verification in HOL . 10

Manual Proof . 11
Mechanised Proof . 13

2.4 Fault Tolerant Patterns . 15
2.4.1 Homogeneous Redundancy 15
2.4.2 Heterogeneous Redundancy 16
2.4.3 Triple Modular Redundancy 17

2.5 Concluding Remarks . 17

3 The HOL4 Model 19
3.1 Modelling Hardware Failures . 19
3.2 Specification . 22
3.3 Implementation . 23

DEL Component . 23
ERROR Component . 24
COMB Component . 24
BUS Component . 25
TBUS Component . 25
MUX Component . 25
TMUX Component . 26
SYSTEM Implementation and Correctness 26

3.4 Homogeneous Redundancy . 27

vi

3.5 Heterogeneous Redundancy . 31
3.6 Triple Modular Redundancy . 33
3.7 Concluding Remarks . 38

4 New Notions of Refinement 40
4.1 Ideal Expressions . 41
4.2 Refinement . 43
4.3 Real Expressions . 47
4.4 Extended Refinement . 48

4.4.1 Behavioural Preservation of the HR, HetR and TMR 50
Homogeneous Redundancy 50
Heterogeneous Redundancy 51
Triple Modular Redundancy 52

4.5 Concluding Remarks . 56

5 Case Study 58
5.1 Elevator Control System . 58
5.2 Translation . 61
5.3 Applying Triple Modular Redundancy to ECS 65
5.4 Concluding Remarks . 68

6 Related Work 70
6.1 Formal Model of Block Diagrams . 70
6.2 Verification of Fault Tolerant Systems 71

6.2.1 Formal verification of fault-tolerant architectures: Prolegomena
to the design of PVS . 71

6.2.2 Formal design and verification of a reliable computing platform
for real-time control (phase 3 results) 72

6.2.3 Verification of the redundancy management system for space
launch vehicle: A case study 74

6.2.4 Formal Verification of an Avionics Sensor Voter Using
SCADE . 76

6.2.5 Formal Design and Validation of Fly-by-Wire Control Systems . 77
6.3 Concluding Remarks . 78

7 Conclusions 80
7.1 Future Work . 81

vii

Bibliography 83

Appendices 88

A Specification and Case Study:
Proof Scripts 89

B Refinement Calculus:
Proof Scripts 103

viii

List of Figures

1.1 Overview of our proposed solution. 3

2.1 Inceptors (Side-stick) . 8
2.2 Inceptors (Side-stick) . 9
2.3 Unitary delay component . 10
2.4 Connecting hardware components . 10
2.5 NAND logic gate . 11
2.6 AND Implementation using NAND logic gates 11
2.7 Homogeneous/Heterogeneous Redundancy 16
2.8 Triple Modular Redundancy . 17

3.1 Polymorphic delay component . 24
3.2 Error component . 24
3.3 Combinatorial component . 25
3.4 The diagram of BLOCK. 27
3.5 Homogeneous and Heterogeneous Redundancy - HOL4 Model. 28
3.6 Theorem 3.13 intuitively. 31
3.7 Theorem 3.17 intuitively. 33
3.8 Triple Modular Redundancy - HOL4 Model. 35
3.9 Theorem 3.21 intuitively. 38

4.1 Expressions – BNF Grammar . 41
4.2 Expressions – BNF Grammar . 47

5.1 The Elevator Control System - Overview 59
5.2 Inceptors (Side-stick) . 60
5.3 Control Algorithm of the ECS . 61
5.4 Gain block . 62
5.5 Switch Threshold . 62
5.6 Elevator Saturation . 63
5.7 Low Pass Filter . 63
5.8 Compensator . 63
5.9 Elevator Command Shaper . 64
5.10 NOT,AND,SUM,MULT . 65
5.11 The elevator control function. 66

ix

5.12 Compositionality of patterns. 69

6.1 Five-level of RCP Hierarchy . 73
6.2 Four channel RMS based fault-tolerant system 74
6.3 Fault states of the sensor voter . 77

x

List of Tables

2.1 Terms of the HOL logic. 7

xi

1
Introduction

Software engineering has gained maturity over the years by incorporating techniques
that automate the software development process and that assist the validation of an
implementation with respect to its requirements. However the classical problems of
software development are still present. Bugs are discovered in the last stages of the
development, projects run over time and over budget. In the case of critical systems
like flight control systems, nuclear power plant systems, radiotherapy machines, insulin
pumps, this level of quality (specially regarding correctness) is not acceptable. The
consequences of releasing a critical software or a critical hardware with bugs can put
in risk our safety and can cause major financial loss. In these cases, it is important to
guarantee the absence of bugs for all execution paths of a software or for all combinations
of inputs of a hardware by using more rigorous techniques like Formal Methods.

Formal Methods comprise a set of techniques and tools based on mathematical
modelling and formal logic that are used to specify and verify requirements and designs
for computer systems [24]. Since the past decades, the adoption of Formal Methods
among software developers has increased. The usage of Formal Methods in a project can
vary from employing mathematical notations mixed with natural language to the sole
use of formal languages. Revealing ambiguities, incompleteness and inconsistencies in a
system are just some advantages that the use of Formal Methods brings. When used early
in the system development process, they can reveal design flaws that otherwise might be
discovered only during the testing and the debugging phases, when they are more costly.
When used later, they can help to prove the correctness of a system implementation
and the equivalence of different implementations [43]. In this work, we investigate how
Formal Methods can be applied to the safety of critical systems. In particular, our aim
is to propose a method that allows us to decide if the introduction and management of
redundancy does not change the functionality of the original system.

1

Critical systems are developed in such a way that safety is addressed explicitly and
under severe regulations. For instance, catastrophic failure of digital flight control systems
must be extremely improbable to occur: the failure rate must be lower than 10−9 per
hour [23]. In order to achieve such a restriction, critical systems are replicated in different
ways in order to guarantee that a failure on one component is covered by another replica
of it [11]. Therefore fault tolerance is mostly based on redundancy.

Redundancy is implemented in different ways. We can replicate a system with an
identical copy of it (and add a monitor to check which one is working); or we can make
copies of a system that have different design and implementation, but that computes the
same function; or we can ask for a voter to output an average value of the output of the
replicas; and so on. These design solutions, which we call here fault tolerant patterns,
are widely used in industry.

Fault tolerant patterns are de facto standards in industry. Unfortunately, there has
been few attempts to formally verify this catalogue of design patterns with respect
to the behavioural preservation of the original system. If not handled correctly, the
redundancy can itself become the primary source of system failure. Pioneering work
on the verification of fault tolerant patterns was done in the nineties [6, 34, 38]. These
works proved the correctness of fault tolerant patterns by hand [6], by using theorems
provers [34], and with model checkers [38]. More recently, Dajani-Brown et al. [8]
used SCADE’s [1] model checker to verify the correctness of a triple redundant system.
Jesus [9] modelled Simulink [26] block diagrams1 in CSP [19] and found, using the
FDR2 refinement checker [12], a condition that could cause a failure in an Elevator
Control System of Embraer.

In this dissertation, we modelled in the HOL4 theorem prover [15] three fault tolerant
patterns used in industry and proved that the application of these patterns preserves the
behaviour of the original system. We regard that the hardware failures can be caused by
deterioration, fatigue, wear, etc. Different from the previous works, our model regards
functionality, delay and failures as separate entities. It allows us to analyse the behaviour
of a system without making assumptions about its failure rate or delay. Moreover, during
the proof of correctness, we discover that the patterns that output the average of the
original system do not preserve the behaviour according to the traditional notions of
refinement [3]. That led us to define new notions of refinement. We illustrate our approach
with a case study inspired by Embraer’s Elevator Control System.

1A block diagram is a diagram of a system composed of blocks (boxes) that represent functions, and
lines that connect the blocks. This representation is commonly used in the engineering world in hardware
design, electronic design, software design, and process flow diagrams.

2

1.1. OVERVIEW OF THE PROPOSED SOLUTION

This work is concerned with the behavioural preservation of the fault tolerant patterns.
It is not concerned with the benefits of redundancy with respect to failure rate improve-
ments. There are other studies [2, 25] that show the quantitative reliability benefits of
using redundancy and discuss aspects as cost increase and modifiability analysis.

1.1 Overview of the Proposed Solution

The process to build a library of verified fault tolerant patterns is depicted in Figure 1.1.
The strategy is divided in two phases. The first phase consists in developing a formal
model of fault tolerant patterns in HOL4 (Chapter 3). A fault tolerant pattern is modelled
as a predicate in the HOL4 logic that captures the pattern architecture. Usually, the fault
tolerant patterns are modelled as block diagrams [22].

Pattern Modelling
 in HOL Calculate F

Step 1

Axioms +
Inference Rules Build F'

Step 2
Remove

failure model
Reveal F''

F and F'' must be
the same

Figure 1.1 Overview of our proposed solution.

Given such a formal description of a fault tolerant pattern, it is possible to prove that
this pattern is an implementation of a system that computes a certain function F (Step 1).
We found out that the function F computes “almost the same” function of its replicated
subsystems.

The second phase of the project formalised what “almost the same computation”
means. We introduced new notions of refinement to capture the behavioural preservation
of the fault tolerant patterns (Chapter 4). Step 2 of the strategy proves that the behaviour
of each replicated subsystem of a fault tolerant pattern is refined by some function F′.
Because of technical details of our refinement calculus, this function is generated with
special annotations (the subsystem failure model) that, once ignored, results in a function
F′′. This function happens to be exactly F, thus proving (under our particular refinement
notions) that the replicas are refined by the fault tolerant system.

Figure 1.1 shows the process of building formal fault tolerant patterns. This process
is a once-and-forall activity to build a library of verified fault tolerant patterns. Whenever
we have to use that library, no verification effort is needed.

3

1.2. STATEMENT OF THE CONTRIBUTIONS

1.2 Statement of the Contributions

As a result of the work presented in this dissertation, the following contributions can be
highlighted:

• We propose a model in Higher Order Logic of fault tolerant patterns. Our model
was applied to three classical fault tolerant patterns: Homogeneous Redundancy,
Heterogeneous Redundancy and Triple Modular Redundancy. However, our model
is not specific to these patterns. The basic components offered by our specification
can be combined to model other patterns in future work.

• Different from previous works, our model specify systems that can suffer from
random failure and takes into account the possibility of the signals to come with
failure [10].

• We prove that the fault tolerant patterns behaviour is a refinement of its subsystem
replicas. In order to prove this behavioural preservation we define new notions of
refinement that capture the intuition and common practise of systems engineers.

• Our correctness theorems are compositional, allowing us to prove the correctness
of a composition of fault tolerant patterns with minimum proof effort.

• We illustrate our approach with a case study in which we apply a Triple Modular
Redundancy pattern to a simplified model of an avionics elevator control system.
We show that it is easy to prove that the addition of the redundancy did not introduce
more bugs to the original (non-replicated) system. This work has been done in
collaboration with the Brazilian aircraft manufacturer Embraer.

1.3 Dissertation Structure

This dissertation is organised in seven chapters and two appendices.

• Chapter 2 presents a brief description of the HOL Logic and the HOL4 system
— the logical system and its mechanisation — and describes how hardware is
modelled and verified in HOL4. This chapter also presents an overview of the fault
tolerant patterns modelled in this work.

• Chapter 3 introduces the specification of a generic system and the components that
make up the implementation of the system. This chapter also develops the HOL4

4

1.3. DISSERTATION STRUCTURE

specification of three fault tolerant patterns, namely, Homogeneous Redundancy,
Heterogeneous Redundancy and Triple Modular Redundancy. Finally, we prove
that all fault tolerant patterns implement a system that computes a certain function,
has a delay and can suffer from random failures.

• Chapter 4 proposes a new notions of refinement to formalise behavioural preserva-
tion after introducing replicas. The axioms presented in this chapter can be applied
to refine a system without fault tolerance by one that is fault tolerant.

• Chapter 5 illustrates our approach in a case study that introduces Triple Modular
Redundancy to the control function of a simplified Elevator Control System (ECS)
inspired by Embraer’s ECS.

• Chapter 6 discusses related work on formalisation of fault tolerant systems and on
formal specification of function block diagrams. We compare and discuss the main
differences of these approaches from ours.

• Chapter 7 concludes and addresses future work.

• Appendix A contains the entire specification in HOL4, including the proof scripts
and the case study.

• Appendix B contains the proofs of the Section 4.2 of Chapter 4 (New Notions of
Refinement).

5

2
Background

This chapter introduces background material relevant for this dissertation. Section 2.1
gives an introduction to Higher Order Logic (HOL), Section 2.2 discusses how this
formalism is used to model hardware, and Section 2.3 illustrates how prove the correctness
of a hardware implementation. The same modelling style used to model hardware is later
used to model fault tolerant patterns. Section 2.4 describes the fault tolerant patterns
formalised in this work: homogeneous redundancy, heterogeneous redundancy and triple
modular redundancy. Finally, Section 2.5 concludes.

2.1 Introduction to HOL Logic

HOL stands for Higher Order Logic and, in this work, it also refers to the particular
formulation developed by Mike Gordon at the University of Cambridge in the 1980s [13].
HOL is a predicate calculus with terms from the typed lambda calculus [29]. The notation
used to represent the logical operations in HOL is similar to conventional predicate
calculus notation.

There are only four kinds of terms in HOL: constants, variables, applications and
λ -abstractions. A lambda abstraction λx.P(x) denotes an anonymous function that maps
its argument x to the value P(x). For example, (λx. x+1) denotes the function that takes a
number and returns its successor. Variables can range over functions (λ -abstractions) and
predicates. Functions can take functions as arguments, return functions as results and can
be partially applied to an argument. For example, when the function (add n m = n+m)

takes as argument n = 3, it returns a function that takes a number m as argument and
adds 3 to it. These features characterise HOL as a ‘higher order logic’. As in λ -calculus,
application have the form (M N) and denotes the result of applying the function M to the
value N. For example ((λx. x+1) 5) evaluates to 6. By convention, application is left-

6

2.1. INTRODUCTION TO HOL LOGIC

associative: f x1 x2 ... xn = (((f x1) x2)... xn). For convenience, there are many syntactic
sugars in HOL. For instance, the HOL primitive definition for the logical constant true is
T= ((λx.x) = (λx.x)), while the “for all” is defined as ∀= (λP.P = λx.T).

Table 2.1 summarises a subset of the (sugared) notation of HOL with a short descrip-
tion for each term. These terms represent the constants true and false, logical operations
(negation, disjunction, conjunction and implication), equalities, variable quantification
and a conditional operation. From now on we will use the syntax presented in Table 2.1
instead of HOLs primitive definitions.

Term ASCII Representation Informal semantics
T T true
F F false
¬t ˜t not t
t1 ∨ t2 t1\/t2 t1 or t2
t1 ∧ t2 t1/\t2 t1 and t2
t1 ⇒ t2 t1==> t2 t1 implies t2
t1 = t2 t1= t2 t1 equals t2
∀x. t !x. t for all x : t
∃x. t ?x. t for some x : t
if t then t1 else t2 if t then t1 else t2 conditional

Table 2.1 Terms of the HOL logic.

Every term is associated with a unique type, which denotes a set. There are four kinds
of types in the HOL logic described by the following BNF grammar.

T ::= α | c | (T1, ...,Tn) op | T1→T2

In the grammar before, α ranges over type variables (usually represented by Greek
letters), c ranges over atomic types (e.g. bool, num, integer, real, etc.), op ranges over
type operators (e.g. prod, the Cartesian product) and T1→T2 ranges over function types
whose domain is of the type T1 and range is of the type T2 (e.g. num→bool represents
the type of all functions from natural numbers to booleans). Some type operators also
have the infix form. For example, the infix form of the Cartesian product (T1,T2) prod

is T1 # T2. By convention, infix operators as # and→ are right-associative as illustrated
by the equation next.

T1→T2→ ...→Tn−1→Tn = T1→(T2→ ...→(Tn−1→Tn))

As type variables are available in HOL, it is possible to take advantage of it to

7

2.2. MODELLING HARDWARE IN HOL

define polymorphic operations. For example, the definition ID = (λx. x) : α→α is a
polymorphic definition built using type variables, where α denotes ‘any type’. ID is
the function that takes a value as input and returns it unchanged as output. Definitions
can also be given without explicitly declaring the types. In this case, types are inferred
from the context. An example of a definition where types are not defined explicitly is the
function EQUAL = (λx y. x = y) that compares if its arguments are equals.

The deductive system of the HOL logic is specified by eight rules of inference
and five axioms [28]. Every theorem in HOL can be obtained by repeatedly applying
these primitive inference rules and the five axioms. The HOL4 system, one of the
implementations of the HOL logic, has a large library of theories (e.g. natural numbers,
lists, groups, etc.) built from the primitive definitions of the HOL logic. The HOL4 system
is the implementation adopted in this work due to its widely available documentation
for hardware verification [14, 18, 21]. Some of these works inspired us to formalise the
concept of system, which is the unit of replication in this work. The notion of a system is
discussed in Chapter 3.

The next section discusses how the HOL4 system can be used to model and prove
properties about hardware.

2.2 Modelling Hardware in HOL

Hardware components are modelled in HOL by predicates that establish the relation
between external signals (wires). A generic hardware component is regarded as a black-
box that comprises n inputs and m outputs, as depicted in Figure 2.1.

inp
1

inp
2

inp
n

out
1

out
2

out
m

... ...

Figure 2.1 Generic hardware component

Signals are modelled as functions from time (natural numbers) to some type. For exam-
ple, in HOL the natural numbers are represented by the type num and a signal that carries

8

2.2. MODELLING HARDWARE IN HOL

booleans can be modelled as sig : num→bool. The behaviour of a generic hardware com-
ponent is described by a predicate with the form P(inp1, inp2, ..., inpn,out1,out2, ...,outm).
This predicate is true if and only if the relation specified between inputs and outputs is
true. Usually, this relation is defined for each instant of time. For example, Figure 2.2
illustrates how a logical port OR is modelled in HOL.

inp 1

inp 2

out

OR (inp1, inp2, out) = ∀t. out t = (inp1 t) ∨ (inp2 t)

Figure 2.2 OR logic gate

The signals inp1, inp2 and out are functions from time to boolean (num→bool). The
predicate OR(inp1, inp2,out) specifies that the output signal is the pointwise application
of the disjunction operation on the input signals inp1 and inp2. The first equality symbol
establishes that OR(inp1, inp2,out) is a shorthand for ∀t. out t = (inp1 t) ∨ (inp2 t). The
second equality symbol defines the value of out t. Note that this component does not
introduce delay to carry out the computation.

Another way of modelling this component is by encapsulating all input signals into
a unique input signal of a compound type. The predicate OR′ illustrates this approach.
It receives a compound signal inp : num→(bool # bool) and defines the output signal as
the pointwise application of the disjunction operation on the components of the input
signal.

OR′ (inp : num→(bool # bool), out) = ∀t. out t = FST(inp t) ∨ SND(inp t)

The operations FST and SND return the first and second element of an ordered pair,
respectively. These operations are predefined in HOL4. The signal inp is a function from
time (num) to a pair of booleans. This modelling captures the notion of a bus, which
carries several bits in parallel. As the HOL4 system allows us to declare terms omitting
their types, we can write the same predicate in a more readable form by removing the
type declaration. In this dissertation, whenever possible we omit types to make the
specification more readable. The OR′ definition with implicit types is presented next.

OR′ (inp, out) = ∀t. out t = FST(inp t) ∨ SND(inp t)

9

2.3. HARDWARE VERIFICATION IN HOL

The next example is a delay component that introduces a unitary delay in a signal.
Figure 2.3 specifies that the output at time t +1 is equal to the input at time t. Note that
this is a partial specification: the output at time 0 is undefined.

inp outDEL

DEL (inp,out) = ∀t. out (t +1) = (inp t)

Figure 2.3 Unitary delay component

To specify the connection among components in HOL, we just connect them using
logical conjunction. The name of internal wires that connect components must match.
The predicate constructed this way imposes that these wires must satisfy the specification
of all connected components. To hide the internal wires from the specification, these
wires are existentially quantified. For example, the connection between the components
OR′ and DEL is specified as depicted in Figure 2.4. Remember that the specification OR′

models inp1 and inp2 using a unique input, which is inp = (inp1, inp2). The wire out1 is
a local wire hidden from the external environment.

inp 1

inp 2

outDEL
out1

OR′_DEL(inp, out) = ∃out1. OR′(inp, out1) ∧ DEL(out1, out)

Figure 2.4 Connecting components OR′ and DEL

2.3 Hardware Verification in HOL

This section shows how to prove that a given circuit implements a specification. In order
to illustrate the process of proof, we develop a simple example where a specification of an
AND logic gate is implemented by a circuit that uses only NAND logic gates. We discuss
the manual proof and how the proof is discharged in the HOL4 system.

10

2.3. HARDWARE VERIFICATION IN HOL

First we define the formal specification of the system, i.e. a predicate that specifies
the required behaviour of the circuit. In our example, the specification states that the
output at time t is given by application of the conjunction on the input signals inp1 and
inp2.

AND (inp1, inp2, out) = ∀t. out t = (inp1 t)∧ (inp2 t)

After specifying the desired behaviour of the system, an implementation must be
formally defined. For simplicity, we provide an implementation of AND that uses only
NAND logic gates. The NAND specification is described in Figure 2.5.

inp 1

inp 2

out

NAND (inp1, inp2, out) = ∀ t.out t = ¬((inp1 t)∧ (inp2 t))

Figure 2.5 NAND logic gate

The simplest implementation of an AND logic gate that uses only NAND logic ports
is defined by the predicate IMPL. This implementation connects two NAND logic gates
as depicted in Figure 2.6.

inp
1

inp
2

out

IMPL (inp1, inp2, out) = ∃out1.NAND(inp1, inp2, out1)∧NAND(out1, out1, out)

Figure 2.6 AND Implementation using NAND logic gates

Manual Proof

In order to prove that IMPL correctly implements the specification AND, we have to
prove that if inp1, inp2 and out satisfy the constraints imposed by IMPL, then they must
also satisfy the constraints imposed by AND. The notion of correctness is formalised by

11

2.3. HARDWARE VERIFICATION IN HOL

a logical implication as illustrated by the following sentence.

∀inp1, inp2, out. IMPL(inp1, inp2, out)⇒ AND(inp1, inp2, out)

Proof: The proof starts by assuming that:

IMPL(inp1, inp2, out)

By expanding the definition of IMPL we have:

∃out1. NAND(inp1, inp2, out1)∧NAND(out1, out1, out)

By expanding the definition of NAND we have:

∃out1. (∀t. out1 t = ¬((inp1 t)∧ (inp2 t)))∧ (∀t. out t = ¬((out1 t)∧ (out1 t)))

Moving all the equations under the scope of a single ∀ quantifier1 gives:

∃out1. ∀t. (out1 t = ¬((inp1 t)∧ (inp2 t)))∧ (out t = ¬((out1 t)∧ (out1 t)))

Simplifying2 the term (out t = ¬((out1 t)∧ (out1 t))) to (out t = ¬(out1 t)) gives:

∃out1. ∀t. (out1 t = ¬((inp1 t)∧ (inp2 t)))∧ (out t = ¬(out1 t))

Rewriting the term (out t = ¬(out1 t)) using the right-hand side of equation (out1 t = ...)

gives:

∃out1. ∀t. (out1 t = ¬((inp1 t)∧ (inp2 t)))∧ (out t = ¬(¬((inp1 t)∧ (inp2 t))))

Simplifying (out t = ...) using double negation3, the sentence becomes

∃out1. ∀t. (out1 t = ¬((inp1 t)∧ (inp2 t)))∧ (out t = (inp1 t)∧ (inp2 t))

1Distributivity of ∀: (∀x. P∧Q) = (∀x. P)∧ (∀x. Q)
2Idempotence of conjunction: P∧P = P
3Double negation: ¬¬P = P

12

2.3. HARDWARE VERIFICATION IN HOL

Weakening the sentence using the commutativity of quantifiers4 infers:

∀t. ∃out1. (out1 t = ¬((inp1 t)∧ (inp2 t)))∧ (out t = (inp1 t)∧ (inp2 t))

Eliminating the existential quantifier by the one-point rule5 gives:

∀t. out t = (inp1 t)∧ (inp2 t)

Using the definition of AND, the term becomes

AND(out1, out2, out)

Based on the assumption in the first step, we conclude that

IMPL(inp1, inp2, out)⇒ AND(out1, out2, out)

Generalising6 the free variables gives:

∀inp1, inp2,out. IMPL(inp1, inp2, out)⇒ AND(out1, out2, out)

Q.E.D.

Mechanised Proof

The manual proof described before could be mechanised in the HOL4 system using proof
commands provided by the theorem prover. To start this proof in HOL4, we first need to
define the goal, i.e. the predicate that we intend to prove. In this example, the goal is:

∀inp1, inp2,out. IMPL(inp1, inp2, out)⇒ AND(out1, out2, out).

The second thing to do is to use proof tactics in order to manipulate the goal. Tactics are
functions that perform transformations in the goal by applying set of inference rules and
logical identities. Some tactics are proof algorithms that allow us to reduce the effort
involved in proving simple conjectures. Other tactics just make few changes in the goal.
The tactics provided by HOL4 are described in its Reference Manual [30]. The first tactic
we apply to the goal is STRIP_TAC: it removes the outermost quantifier. As there are

4Commute quantifiers: (∃x. (∀y. P(x,y)))⇒ (∀y. (∃x. P(x,y)))
5One-point rule: (∃x.(x = t)∧P) = P[t/x], provided that x is not free in t
6Generalisation rule: (` P(x))⇒ (` ∀x.P(x))

13

2.3. HARDWARE VERIFICATION IN HOL

three variables universally quantified (which is equivalent to three universal quantifiers
nested), this tactic needs be applied thrice. After this application, the goal becomes:

IMPL(inp1, inp2, out)⇒ AND(out1, out2, out).

By following the same reasoning of the proof done by hand, we could use a rewrit-
ing tactic to expand the definitions of IMPL and NAND. A rewriting tactic that we
could use to do this is “PURE_REWRITE_TAC [...]”. It receives a list of theorems
and rewrites the goal by applying these theorems. In HOL4, the definitions constitute
theorems and each theorem requires a name. Assuming that we have saved the defini-
tions of IMPL and NAND as IMPL_def and NAND_def, respectively, then the tactic
PURE_REWRITE_TAC[IMPL_def] followed by PURE_REWRITE_TAC[NAND_def]
produces:

∃out1. (∀t. out1 t = ¬((inp1 t)∧ (inp2 t)))∧
(∀t. out t = ¬((out1 t)∧ (out1 t)))⇒

AND(out1, out2, out).

The following step is to apply STRIP_TAC again. As the predicate already suggests a
witness for the existential quantifier, this tactic removes the existential quantifier based
on the one-point rule7 and transforms the goal to

(∀t. out1 t = ¬((inp1 t)∧ (inp2 t)))∧
(∀t. out t = ¬((out1 t)∧ (out1 t)))⇒

AND(out1, out2, out).

Next, we need to expand the definition of AND using PURE_REWRITE_TAC [AND_def]
(assuming that AND_def is the name of the AND definition). Finally, we use the
simplification tactic “ASM_SIMP_TAC bool_ss []”. The parameter “bool_ss” is the
name of a simplification set, i.e. a set of logical identities used by this tactic to perform
transformations on the goal, and the second parameter (the empty list []) means that no
additional theorems is provided for this simplification. At the end of proof, the HOL4
system presents the message “Initial goal proved”.

For a complete and detailed description of HOL4 see Gordon and Melham [15] and
the manuals of the HOL4 system [28, 29, 30, 31]. Along this dissertation we omit
details of proofs. However, the complete specification with proof scripts is presented in
Appendices A and B.

7One-point rule: (∃x.(x = t)∧P) = P[t/x], provided that x is not free in t

14

2.4. FAULT TOLERANT PATTERNS

2.4 Fault Tolerant Patterns

Developing a fault tolerant system is an exercise in exploiting and managing redundancy:
the property of having more of a resource than is minimally necessary to perform the
job [25]. Fault tolerance aims to increase the reliability of a system (i.e. continuity of
correct service), which is achieved by maintaining some form of correctness despite the
presence of faults.

Fault tolerance addresses different classes of failures like systematic failures and
random failures depending on the type of redundancy applied. A systematic failure is a
flaw on the design of the system (i.e. a bug, in the software engineering terminology). A
random failure is a failure caused by wear, deterioration, fatigue, etc. Mechanical and
electronic hardware exhibit both kinds of faults, while software only exhibits systematic
faults [11].

Redundancy comes in different flavours. We can duplicate a system, triplicate it,
decide which replica is the “winner" (or is correct) by voting, install the replicas on top
of a reliable architecture, duplicate a system by another that is slightly different from the
original one (it may implement a different algorithm or use a different technology), and
so on. There are plenty of such solutions that we refer to here as fault tolerant patterns.
These patterns are abstract representations of how to manage redundancy in order to
maintain the system operational when failures occur.

The original system which is the target of the replication is called channel. A channel
is an end-to-end system that goes all the way from acquisition of relevant data (the input)
to the generation of the output based on that data [11]. So, “channel” in this dissertation
means any “system” and has no relation to the traditional usage of the word “channel”
in the concurrent systems domain. Every subcomponent of a system can be regarded as
a channel or the entire system can also be regarded as a channel. The choice of which
components of a system should be replicated depends on the safety and the reliability
analysis. A system is said safe if it is free of catastrophic consequences on the user(s)
and the environment. The fault tolerant patterns discussed in this work act on channels,
which are seen as black-boxes.

The following sections describe three classic fault tolerant patterns.

2.4.1 Homogeneous Redundancy

The homogeneous redundancy pattern (HR) is possibly the simplest existing fault tolerant
pattern. The original channel is simply duplicated in order to improve reliability. The

15

2.4. FAULT TOLERANT PATTERNS

System1 outinp

System1 out1inp1

System2 out2inp2

Monitor out

Figure 2.7 Homogeneous/Heterogeneous Redundancy

replicated channels operate in parallel, take input data from different sources, and produce
outputs at the same time. One of the replicated channels is set as the primary channel

(the main system) and the other, the secondary channel (the backup). The channels are
managed using a monitor that implements an automatic switch-to-backup policy in case
an error occurs in the primary channel. This policy specifies that, when the primary
channel fails, the backup channel is used. The outputs of the channels are analysed by
the monitor in order to detect failures in the channels.

The term homogeneous means that the replicas are exactly the same (same implemen-
tation, same technology, etc.). Note that as the replicas are exact copies of each other, this
type of redundancy is still valid because it catches random failures. This pattern, however,
does not address systematic failures, as the bugs are replicated. Figure 2.7 depicts a
channel and the result of applying the HR to the system. In case of the HR, System2 is a
copy of System1.

This pattern has several advantages when compared to other patterns. It is simple and
easy to design and provide a good isolation from faults in contexts where random faults
occur at a significant higher rate than systematic faults. The cost of applying this pattern
comes from the additional secondary channel and the monitor.

2.4.2 Heterogeneous Redundancy

The heterogeneous redundancy pattern (HetR) improves reliability by offering channels
with dissimilar design or implementation, i.e. different design or implementation for
systems that do the same thing. Dissimilar channels are particularly useful to reduce
the chances of replicating two systems with the same systematic failures (bugs). The
HetR pattern operates like the homogeneous redundancy pattern: it uses a monitor that
implements a switch-to-backup policy. The same Figure 2.7 used to depict HR can be
used to depict the heterogeneous redundancy pattern as their architectures are the same.
Nevertheless, differently from HR, here System2 is a dissimilar version of System1.

Actually, this pattern is a generalisation of HR as it does not impose the replicas be
exactly the same. Besides addressing systematic faults, this pattern also addresses random

16

2.5. CONCLUDING REMARKS

System1 outinp

System1 out1inp1

System2 out2inp2 Voter
out

System3 out3inp3

Figure 2.8 Triple Modular Redundancy

faults. This is a more expensive kind of redundancy because, not only has the replication
cost increased, the development cost increases as well due to the effort required to develop
dissimilar technologies [11].

2.4.3 Triple Modular Redundancy

The triple modular redundancy (TMR) is a variation of the homogeneous redundancy that
consists of three identical channels that operate in parallel, and a voter that compares and
averages the outputs of the channels. As in HR, only random faults can be addressed by
this pattern, but it differs from HR by allowing the system to provide a valid output in the
presence of up to two simultaneous random failures.

The voter (see Figure 2.8) plays a main role in this pattern by applying a voting policy
that takes into account the majority of the valid outputs from the replicas [2]. Although
the replicas are identical copies of each other, their outputs can diverge slightly due to
divergences in the input signal of each replica, which comes from different sensors. The
voter analyses the valid outputs and averages them to produce a more reliable result. The
invalid outputs are not taken into account in the computation of the average.

2.5 Concluding Remarks

This chapter introduced the HOL logic and one of its mechanisation, the HOL4 system.
We showed how to model circuits in HOL and how to prove the correctness of circuits.
The same principles used to model hardware inspired us to develop a formal model for
the fault tolerant patterns HR, HetR, and TMR.

We follow the convention of representing time as natural numbers (num). This
formalisation is adopted in the various references to hardware specification in HOL [14,
18, 21]. The usage of natural numbers means that the hardware has discrete behaviour
and that the same operation could be performed by software. However, we could have

17

2.5. CONCLUDING REMARKS

also represented the time as real (real).
Although we have described just three fault tolerant patterns, there are many more

replication patterns documented in the literature (for a catalogue, see Armoush’s the-
sis [2]). Besides this, each pattern is usually customised before being applied. We do not
intend to cover all patterns in this work but just a few that serve as a proof of concept of
our model in HOL.

In the next chapter, we present a model of a generic system in HOL that computes a
certain function, with a specific delay and that can present random failures. The model
intends to represent any hardware that can be replicated and submitted to a replication
pattern. We also present the HOL model for the HR, the HetR and the TMR patterns.

18

3
The HOL4 Model

This chapter presents the HOL4 specification of three fault tolerant patterns, namely
Homogeneous Redundancy (HR), Heterogeneous Redundancy (HetR) and Triple Modular
Redundancy (TMR). These patterns were chosen as a proof of concept of our approach,
since they are classical patterns. This chapter is organised in seven sections. Section
3.1 describes how to model both the nominal and the faulty behaviour of a hardware.
Section 3.2 presents the formal model of a system. Section 3.3 introduces components
that make up the implementation of the patterns and presents an implementation of a
system. Sections 3.4, 3.5 and 3.6 formalise the fault tolerant patterns HR, HetR and
TMR respectively, and Section 3.7 briefly discusses the effort involved in the proof, and
concludes.

3.1 Modelling Hardware Failures

Traditional hardware specifications commonly specify only its nominal behaviour, i.e.
the behaviour in absence of failures (for instance, see the hardware specifications in
Chapter 2). However, in this dissertation we are interested in modelling the possibility
of failures in the hardware caused by deterioration, fatigue, wear, etc. These failures are
not foreseeable. In fact, they are random failures. To model this feature, we added new
concepts to the hardware model that are discussed next.

The first notion that needs to be well defined is the notion of failure. We define
failures as random perturbations on a signal that destroy the information being carried.
We assume that a failure at time t does not necessarily implies a failure at subsequent
times. Failures in a hardware component can occur due to two causes: (i) input signals
come with failures from the environment; or (ii) the hardware itself suffers a random
failure (or both). We assume that a failure at time t cannot be fixed (or recovered) to

19

3.1. MODELLING HARDWARE FAILURES

transform a bad signal into a good signal. However, the signal can “recover” at future
times, but once a damage happens at time t, no information can be extracted from this
particular data. This assumption is suitable for the patterns homogeneous redundancy,
heterogeneous redundancy and triple modular redundancy, but excludes the possibility of
modelling patterns that use recovery algorithms in a signal to rebuild the original signal
without failure. The consequence of this assumption to our work is that our data and
our failure information are modelled as a unique signal. When a failure occurs, the data
itself is not present. It simplifies the representation of signals and still is generic enough
to model several fault tolerant patterns. In order to deal with patterns that recovery the
original signal, we need to drop this assumption and separate data and failure information.

The HOL4 system conveniently provides the option type operator that ‘lifts’ a type α

to a new type α option containing all values of α wrapped by the constructor SOME plus
a special value called NONE. For example, natural numbers with failure information can
be modelled as num option. Thus values of the type num option are NONE, SOME(0),
SOME(1), etc. To extract the value wrapped by the constructor SOME, the operator
THE is used, e.g. THE(SOME(13)) = 13. HOL4 also provides the boolean functions
IS_SOME() and IS_NONE() that test whether its argument is a proper value or not. For
instance, IS_NONE(NONE) = T and IS_SOME(SOME(3)) = T. Whenever IS_SOME()

is true, IS_NONE() is false, and vice-versa.
We use the option type operator to model the data carried by signals. Values wrapped

by the constructor SOME have no failure, and the value NONE represents a value with
failure. For instance, two boolean signals could be modelled as a composite signal
inp : num→(bool option # bool option) option. This model allows the first signal to
break, the second signal to break (or both). In this case, the value NONE represents
the simultaneous break of the component signals at a specific time, and the values
SOME(NONE,SOME(F)) and SOME(SOME(T),NONE) represent the break of the first
and the second signals, respectively. Note that when the signal is NONE, the data itself is
not present: the only information we know is that a failure has occurred.

Another important decision is how to model a random failure in a hardware component.
We evaluated some approaches to model random failures. One of such approaches is to
model hardware as devices that can fail at any moment in time. Assuming that the input
signal has no failures, we could model an extended OR′ component as described next.

UNSAFE_OR′ (inp, out) = ∀t. (out t = SOME((THE FST(THE (inp t))) ∨
(THE SND(THE (inp t)))) ∨

(out t = NONE)

20

3.1. MODELLING HARDWARE FAILURES

This specification states that the output at time t can be equal to NONE (the case a
fault is injected) or equal to the pointwise application of the disjunction operator on the
input signals (the case of the nominal behaviour). Note that, in order to operate on the
components of the input signal we need to remove the constructor SOME twice: first
the outermost SOME is taken, followed by the internal constructor which wraps the bool

value. This specification style leaves the hardware behaviour too loose and allows any
hardware specification to be implemented by a circuit that always produces corrupted
values NONE.

Another approach to model random failures extends the hardware interface to accept
an additional parameter: the failure model. The failure model is a boolean function that
establishes, for every point in time, whether the hardware must present a random failure
or not. Such a function deals with a random failure of the hardware itself, not the random
failures of the input. For the input, the option type embeds this information on the input
signal itself. As random failures are not foreseeable, we universally quantify the failure
model in all theorems along this chapter. By using this approach and assuming that input
signals come with no failure, the UNSAFE_OR′ could be specified as

UNSAFE_OR′ (e : num→ bool) (inp, out) =

∀t. out t = if e(t) then NONE

else SOME((THE FST(inp t)) ∨ (THE SND(inp t)))

This specification states that the output at time t is defined according to the failure model e.
If the failure model decides that a failure must be introduced at time t, then the system
outputs NONE. Otherwise the nominal behaviour is produced. In this dissertation we
adopted this style of modelling as it allows us to predict the failure model of a composite
system in terms of the failure model of its subsystems. It is important note all theorems
presented later about the specification quantify universally the failure model. Then, no
assumption about the failure model is made to prove the theorems.

In addition to failures introduced by the failure model, input signals can come with
failure as well. When the input signal comes with a failure nothing can be done to recover
the broken signal and the failure is carried over the system. In order to illustrate inputs
with failure, we complement the UNSAFE_OR′ definition by removing the assumption

21

3.2. SPECIFICATION

that inputs come with no failures.

UNSAFE_OR′′ e (inp, out) =

∀t. out t = if (e(t)∨ IS_NONE(inp t)) then NONE

else if IS_NONE(FST(THE (inp t))) ∨
IS_NONE(SND(THE (inp t))) then NONE

else SOME((THE FST(inp t))∨ (THE SND(inp t)))

This specification states that the output at time t is NONE if any of these conditions occur:
(i) the failure model define that hardware must break at time t; or (ii) the composite input
signal is broken, i.e. IS_NONE(inp t) is true; or (ii) either the first or the second signals is
broken: IS_NONE(FST(THE (inp t))) or IS_NONE(FST(THE (inp t))) is true. If none
of these conditions occur, the output is the disjunction of the subcomponents of the input
signal.

In the next section we discuss the specification of a generic system which is capable
of computing a certain function, is subject to random failures (due both to the failures in
the input signal and the failure model), and has an initialisation delay.

3.2 Specification

We specify a channel as a black-box called SYSTEM with inputs and outputs. Every
SYSTEM computes a function f with a certain initialisation delay d. Occasionally, the
SYSTEM may ‘break’ as a consequence of random failures. We model a random error of
a SYSTEM as a function e from time to boolean. Whenever e(t) is true, it means that the
SYSTEM presents a random failure at time t. We call e a failure model.

Definition 3.1.

SYSTEM d e f (inp,out) =

∀t. out (t +d) = if (IS_NONE(inp t)∨ e(t)) then

NONE

else SOME(f t (THE(inp t)))

Signals are modelled as functions from time (natural numbers) to α option. Note
that (i) the time is assumed be discrete and (ii) the data is of type α option. As time is
discrete, our hardware describes an operation that could be performed through a software

22

3.3. IMPLEMENTATION

component. The type α option models the fact that the input can be of any type. A signal
whose value is NONE at time t means that the signal in time t comes with an error; and a
signal whose value is SOME(v) means that the signal has no errors and carries the value
v at time t.

There are two conditions that make the output signal of a SYSTEM to be NONE.
Either the input comes with an error (IS_NONE(inp t)), in which case it is impossible
to compute anything from NONE, or the SYSTEM itself breaks (e(t)). If none of these
conditions happen, then SYSTEM outputs the result of the computation of f applied to
THE(inp t). The computation f takes as input the time t and input value THE(inp t).
The parameter t is required because some functions need to know the exact time of its
application. For example, a function that computes a pseudo-random value based on a
seed and the time of the application. More examples of functions that use the time are
given below.

3.3 Implementation

This section introduces the components that are used to implement the SYSTEM specifi-
cation and formalise the fault tolerant patterns. The components listed in this section are
suitable for the patterns: homogeneous redundancy, heterogeneous redundancy, and triple
modular redundancy. (Certainly it will be necessary to define new components in order
to formalise patterns not covered in this work.) At the end of this section we provide an
implementation of SYSTEM that uses only the components defined here and prove the
correctness of this implementation.

DEL Component

A DEL (Figure 3.1) is a polymorphic delay component that introduces a delay d to an
input signal. It is polymorphic because the input signal (inp) can have any type. The
delay refers to the initialisation time of the system.

Definition 3.2.

DEL d (inp : num→ α option,out) = ∀t. out (t +d) = (inp t)

The output out at time t +d is equal to the value of inp at time t. Notice that nothing
it said about out at the first d time units, which means that DEL is a partial specification.

23

3.3. IMPLEMENTATION

DEL d
outinp

Figure 3.1 Polymorphic delay component

This is the only component in our specification that introduces a delay. The notion of
delay in a computation is formalised by the sequential composition of the DEL component
with other components. We discuss the sequential composition of components later.

ERROR Component

An ERROR component (Figure 3.2) introduces a random error in a signal at time t based
on the failure model e.

Definition 3.3.

ERROR e (inp,out) = ∀t. out t = if e(t) then NONE else (inp t)

ERROR e
outinp

Figure 3.2 Error component

The ERROR component outputs NONE whenever e(t) decides that an error should be
introduced at time t.

COMB Component

The combinatorial component COMB (Figure 3.3) applies a function f to the input at
each instant in time.

Definition 3.4.

COMB f (inp,out) = ∀t. out t = if IS_NONE(inp t) then

NONE

else SOME(f t (THE(inp t)))

If the input signal at time t comes with an error (i.e. the input is NONE), then the
broken signal is propagated, otherwise f is applied to the input.

24

3.3. IMPLEMENTATION

COMB f
outinp

Figure 3.3 Combinatorial component

BUS Component

The BUS encapsulates two signals inp1 and inp2 into one signal.

Definition 3.5.

BUS (inp1, inp2,out) =

∀t. out t = if IS_NONE(inp1 t) ∧ IS_NONE(inp2 t)

then NONE

else SOME(inp1 t, inp2 t)

If, at time t, both signals inp1 and inp2 are NONE, then BUS outputs NONE. Oth-
erwise it outputs SOME(inp1 t, inp2 t). The output is a pair of options whose type is
(α option× β option) option. Note that the BUS can output NONE, SOME(NONE,

SOME(v)), SOME(SOME(v), NONE), or SOME(SOME(v1),SOME(v2)). But it never
outputs SOME(NONE,NONE) in order to avoid a component that takes it as input to
regard it as a valid data.

TBUS Component

TBUS is an extension of BUS for three input signals.

Definition 3.6.

TBUS (inp1, inp2, inp3,out) =

∀t. out t = if IS_NONE(inp1 t)∧ IS_NONE(inp2 t) ∧
IS_NONE(inp3 t) then NONE

else SOME(inp1 t, inp2 t, inp3 t)

MUX Component

The MUX component separates a combined signal of type (α option×β option) option

into two signals. When inp t is NONE, it outputs (NONE, NONE). Otherwise, the input
at time t has the form SOME(x,y) and the outputs are out1 t = x and out2 t = y.

25

3.3. IMPLEMENTATION

Definition 3.7.

MUX(inp,(out1,out2)) =

∀t. (out1 t,out2 t) =

(if IS_NONE(inp t) then NONE

else FST(THE(inp t)),

if IS_NONE(inp t) then NONE

else SND(THE(inp t)))

The MUX component undoes what the BUS component does. The BUS takes as input
two signals and outputs one signal (made of a pair of values), while the MUX takes one
signal made of a pair of values and outputs two signals.

TMUX Component

TMUX is an extension of MUX for three output signals.

Definition 3.8.

TMUX(inp,(out1,out2,out3)) =
∀t. (out1 t,out2 t,out3 t) =

(if IS_NONE(inp t) ∨ IS_NONE(FST(THE(inp t))) then NONE

else (FST(THE(inp t))),

if IS_NONE(inp t) ∨ IS_NONE(FST(SND(THE(inp t)))) then NONE

else (FST(SND(THE(inp t)))),

if IS_NONE(inp t) ∨ IS_NONE(SND(SND(THE(inp t))))then NONE

else (SND(SND(THE(inp t)))))

SYSTEM Implementation and Correctness

Now we illustrate how we can compose the components shown before to build a more
elaborate system. A BLOCK implements a SYSTEM (Definition 3.1) that has a certain
delay d, may break according to the failure model e, and computes f . A BLOCK is
constructed as a sequential composition of ERROR, COMB and DEL (see Figure 3.4).

Definition 3.9.
BLOCK d e f (inpout) =

∃out1 out2. ERROR e (inp,out1) ∧
COMB f (out1,out2) ∧
DEL d (out2,out)

26

3.4. HOMOGENEOUS REDUNDANCY

ERROR e COMB f DEL d
out1 out2 outinp

Figure 3.4 The diagram of BLOCK.

Internal signals out1 and out2 are existentially quantified. This quantification hides
from the user of BLOCK the values of these signals, exposing only its external interface.
Signals with the same name connect two components. For instance, out1 is the output of
ERROR and the input of COMB.

Theorem 3.10 presented next shows that a (BLOCK d e f (inp,out)) implements
a (SYSTEM d e f (inp,out)). This theorem states that our definition of SYSTEM is
implementable. This is not the only way of implementing a SYSTEM: in what follows,
we prove that if we plug implementations of SYSTEMs into the fault tolerant patterns, the
resulting circuit is still an implementation of a SYSTEM.

Theorem 3.10.

` ∀d e f inp out. BLOCK d e f (inp,out)⇒ SYSTEM d e f (inp,out)

The proof of this theorem in HOL4 is semi-automatic. It is done by expanding all
definitions, then eliminating the existential and universal quantifiers (see Camilleri et

al. [7] for more details on how to do this in HOL4). After that, the proof is subdivided into
cases and simplification tactics are conveniently applied to finish the proof. All theorems
in this work have been proved mechanically in HOL4. We omit further information on
the proofs from now on. The complete proof script of this dissertation is in Appendices A
and B.

In what follows we describe how we build fault tolerant patterns using the components
described above.

3.4 Homogeneous Redundancy

A homogeneous redundant system HR (Figure 3.5) connects two identical systems S1

and S2 to a BLOCK with delay dm1, failure model em2, and functionality equals to the
1This name is an abbreviation for delay monitor
2This name is an abbreviation for error monitor

27

3.4. HOMOGENEOUS REDUNDANCY

MUX

S2S1

BUS

inpsys1 inpsys2

outsys1 outsys2

BLOCK dm em
MONITOR

out

inp
(inpsys1, inpsys2)

outbus

Figure 3.5 Homogeneous and Heterogeneous Redundancy - HOL4 Model.

function MONITOR (described next). The input inp is split by MUX into two signals:
inpsys1 and inpsys2. These signals are the inputs of S1 and S2, respectively. The output
of both S1 and S2 is combined by BUS and sent to a monitor BLOCK, which decides
which system is used. The definition in HOL4 of Figure 3.5 is given next.

Definition 3.11.

HR dm em S1 S2 (inp : num→ (α option×α option) option,out) =

∃inpsys1 inpsys2 outsys1 outsys2 outbus.

MUX (inp,(inpsys1, inpsys2)) ∧
S1 (inpsys1,outsys1) ∧
S2 (inpsys2,outsys2) ∧
BUS ((outsys1,outsys2),outbus) ∧
BLOCK dm em MONITOR (outbus,out)

Note that the definition of HR does not force S1 and S2 to be duplicates of the same
system. This will be done in the correctness theorem of HR in which we instantiate S1

and S2. Another important thing to note is that the inputs are not necessarily the same.

28

3.4. HOMOGENEOUS REDUNDANCY

In fact, it is common that different replicas acquire input data from different sensors in
order to increase the fault tolerance. We do not restrict the inputs inpsys1 and inpsys2 to
be replicas. It means that our formalisation also admits applying HR to two SYSTEMs
whose inputs are different.

The function MONITOR takes as input the current time and a pair of type α option ×
α option and decides which output to choose: the one from S1 or the one from S2. Note
that the parameter t (time) is not used by MONITOR. It is present in this definition
because in Section 3.2 we define that any function computed by a SYSTEM receives at
least two parameters: the time of its application and the data carried by the signal at this
time. The MONITOR is a function computed by a BLOCK that implements a SYSTEM,
thus the interface of the function computed by a SYSTEM must be satisfied.

Definition 3.12.

MONITOR t inp = if (IS_SOME(FST(inp))) then

THE(FST(inp))

else THE(SND(inp))

If the output from S1 is valid (IS_SOME(FST(inp))) then MONITOR returns the
first element. Otherwise, it returns the second element. Note that MONITOR is not a
component. It instantiates the function f of a BLOCK.

The correctness theorem for HR is shown next. We assume that I1 and I2 are two
implementations of a SYSTEM that has delay d and computes the function f . The
implementations I1 and I2 differ only in their failure models e1 and e2, i.e. they do not
necessarily synchronise on their random failures.3 Given these two implementations of a
SYSTEM that compute f , the theorem states that if we plug them into the HR, the resulting
system also implements a SYSTEM. Moreover, such SYSTEM has a delay d +dm (sum
of the delays of the subsystems and the monitor), a failure model (E e1 e2 em d inp) and
computes the function (FHR f e1). The definitions of E and FHR are given next.

3This assumption is in accordance to real duplicate systems: they do the same thing and they have the
same fail rates, but they do not necessarily fail together. That is the whole point of duplicating them for
fault tolerance.

29

3.4. HOMOGENEOUS REDUNDANCY

Theorem 3.13.

` ∀I1 I2 d e1 e2 f dm em inp out.

(∀inp out. I1(inp,out)⇒ SYSTEM d e1 f (inp,out)) ∧
(∀inp out. I2(inp,out)⇒ SYSTEM d e2 f (inp,out))

⇒ (HR dm em I1 I2 (inp,out)

⇒ SYSTEM (d+dm) (E e1 e2 em d inp) (FHR f e1) (inp,out))

The failure model of an HR that comprises two channels I1 and I2 with failure models
e1 and e2, respectively, is given next.

Definition 3.14.

E e1 e2 em d inp t =

em(t +d) ∨
(e1(t)∧ e2(t)) ∨
(e1(t) ∧ IS_NONE(SND(THE(inp t)))) ∨
(e2(t) ∧ IS_NONE(FST(THE(inp t)))) ∨
(IS_NONE(SND(THE(inp t))) ∧ IS_NONE(FST(THE(inp t))))

The HR can fail under five different conditions: (i) the monitor block fails; or (ii) both
duplicated channels I1 and I2 fail simultaneously; or (iii) I1 fails and the input for S2 is
NONE; or (iv) I2 fails and the input for I1 is NONE; or (v) the input for both I1 and I2

are NONE simultaneously. This failure model was discovered during the process of proof
of the Theorem 3.13.

The HR functionality is described by the function (FHR f e1), where f is the func-
tionality of both I1 and I2, e1 is the failure model of primary channel I1 and t is the
current time.

Definition 3.15.
FHR f e1 t inp =

if IS_SOME(FST(inp))∧¬e1(t)

then (f t (THE(FST(inp))))

else (f t (THE(SND(inp))))

If the input for I1 is valid (IS_SOME(FST(inp))) and I1 itself does not break at time
t (¬e1(t)), then HR behaves like I1 (it applies f to the input of I1). Otherwise, it behaves

30

3.5. HETEROGENEOUS REDUNDANCY

like I2 by applying f to the input of I2. As we need to check if there is no failure of I1 at
time t, we take both the time and the failure model e1 as argument. Notice that, in both
cases, the same function f is applied in both branches of the if -then-else. This suggests
informally that HR preserves the behaviour of its subsystems I1 and I2. The formalisation
of behavioural preservation is presented in Chapter 4. Similar to the case of the failure
model, the functionality of the HR was also discovered during the process of proof of the
Theorem 3.13. In general, the failure model and the functionality of the patterns were
not known a priori, they were discovered during the process of proof of the respective
theorems.

Theorem 3.13 is intuitively depicted in Figure 3.6. It shows that if I1 and I2 implement
SYSTEMs that compute f , then an HR built from them implements a SYSTEM that
computes f applied to the input of I1 or the input of I2. Note that this theorem is
compositional: if we use two implementations I1 and I2 that are SYSTEMs, then an HR

built from them also implements a SYSTEM.

I
1

I
2

I
1

I
2

HR

if implements a SYSTEM that computes (f t inp
1
) ˄

 implements a SYSTEM that computes (f t inp
2
)

then
 implements a SYSTEM that computes

 (f t inp
1
) OR (f t inp

2
)

Figure 3.6 Theorem 3.13 intuitively.

3.5 Heterogeneous Redundancy

The Heterogeneous Redundant pattern HetR specification is quite similar to HR, except
that the inputs have different types as the replicated systems have different implementa-
tions. Their outputs, however, have the same types as they must compute the same thing.
As in HR, the HetR connects two systems S1 and S2 to a BLOCK with delay dm, failure
model em and that implements the function MONITOR. The monitor function is the same
of HR.

31

3.5. HETEROGENEOUS REDUNDANCY

Definition 3.16.

HetR dm em S1 S2 (inp : num→ (α option×β option) option,out) =

∃inpsys1 inpsys2 outsys1 outsys2 outbus

MUX (inp,(inpsys1, inpsys2)) ∧
S1 (inpsys1,outsys1) ∧
S2 (inpsys2,outsys2) ∧
BUS ((outsys1,outsys2),outbus) ∧
BLOCK dm em MONITOR (outbus,out)

Note that the input is now of type num→(α option×β option) option. For HR, the
input is of type num→(α option×α option). This is what captures heterogeneity in our
model. As the difference between homogeneous and heterogeneous depends only on the
type of the input, their architectures are the same (Figure 3.5).

The correctness theorem is also very similar to the HR. If I1 and I2 are correct
implementations of a SYSTEM, then an HetR system that contains I1 and I2 is also an
implementation of a SYSTEM. Such SYSTEM, however, computes the function FHetR

(shown next).

Theorem 3.17.

` ∀I1 I2 d e1 e2 f1 f2 dm em inp out.

(∀inp out.I1(inp,out)⇒ SYSTEM d e1 f1 (inp,out)) ∧
(∀inp out.I2(inp,out)⇒ SYSTEM d e2 f2 (inp,out))

⇒ (HetR dm em I1 I2 (inp,out)

⇒ SYSTEM (d +dm) (E e1 e2 em d inp) (FHetR f1 f2 e1) (inp,out))

The function FHetR chooses between the functionalities provided by the replicas.
Note that we do not make assumptions about f1 and f2. It means that if we build a system
by combining two systems with different functionalities (but having the same output type)
using HetR, the functionality of this system is also described by FHetR.

Definition 3.18.

FHetR f1 f2 e1 t (inp : (α option×β option)) =

if IS_SOME(FST(inp)) ∧¬e1(t)

then (f1 t THE(FST(inp)))

else (f2 t THE(SND(inp)))

32

3.6. TRIPLE MODULAR REDUNDANCY

If the input for I1 has no error and this system does not break at time t, then the
function f1 of I1 is used. Otherwise, f2 of I2 is computed.

Theorem 3.17 is intuitively represented in Figure 3.7. As Theorem 3.13, this theorem
is also compositional in the sense that if the parts I1 and I2 implement a SYSTEM, then
an HetR built from them also implements a SYSTEM. The proof of this theorem reuses
the effort spent in proof of the Theorem 3.13.

I
1

I
2

I
1

I
2

HetR

if implements a SYSTEM that computes (f
1
 t inp

1
) ˄

 implements a SYSTEM that computes (f
2
 t inp

2
)

then
 implements a SYSTEM that computes

 (f
1
 t inp

1
) OR (f

2
 t inp

2
)

Figure 3.7 Theorem 3.17 intuitively.

3.6 Triple Modular Redundancy

A Triple Modular Redundant system increases the reliability of a channel by triplicating
it and submitting the outputs to a voter, which produces a measure of central tendency
like average, median or mode [38]. We assume that the channel’s outputs can diverge
slightly, i.e. two SOME outputs do not need to be exactly the same. This assumption
reflects the fact that every channel receives its input from independent sources (typically,
distinct sensors), and that these sources can produce slightly different values even using
the same technology. This happens specially when the input sources produce values of
type real.

The VOTER shown next is a function that averages the valid outputs from the channels
in order to minimise deviations. We assume that the type of the function computed by the
channels is num→α→real as real arithmetic is needed in order to compute the average.
For simplicity, the input inp is subdivided in three components: in1, in2 and in3. These
components refer to the output of the three channel replicas. If all signals are valid, the
VOTER outputs the arithmetic average of all them; in case of just one signal is invalid, this
signal is disregarded and the average of the other two replicas is given as result. Finally,
if just one signal is valid, this signal is the output itself.

33

3.6. TRIPLE MODULAR REDUNDANCY

Definition 3.19.

VOTER t inp =

let in1 = FST(inp) in

let in2 = FST(SND(inp)) in

let in3 = SND(SND(inp)) in

if IS_SOME(in1) ∧ IS_SOME(in2) ∧ IS_SOME(in3) then

(1/3)∗ (THE(in1)+THE(in2)+THE(in3))

else if IS_SOME(in1) ∧ IS_SOME(in2) then

(1/2)∗ (THE(in1)+THE(in2))

else if IS_SOME(in1) ∧ IS_SOME(in3) then

(1/2)∗ (THE(in1)+THE(in3))

else if IS_SOME(in2) ∧ IS_SOME(in3) then

(1/2)∗ (THE(in2)+THE(in3))

else if IS_SOME(in1) then THE(in1)

else if IS_SOME(in2) then THE(in2)

else THE(in3)

The TMR pattern connects three systems S1, S2 and S3 to a BLOCK with delay dv4,
failure model ev5 and that implements the function VOTER (see Figure 3.8). Notice that
TBUS and TMUX play the role of BUS and MUX used with HR and HetR. The HOL4
definition of a TMR is given next.

Definition 3.20.

TMR dv ev S1 S2 S3 (inp : num→ (α option× (α option×α option)) option,out) =

∃inpsys1 inpsys2 inpsys3 outsys1 outsys2 outsys3 outbus.

TMUX (inp,(inpsys1, inpsys2, inpsys3)) ∧
S1 (inpsys1,outsys1) ∧
S2 (inpsys2,outsys2) ∧
S3 (inpsys3,outsys3) ∧
TBUS (outsys1,outsys2,outsys3,outbus) ∧
BLOCK dv ev VOTER (outbus,out)

The correctness theorem states that if I1, I2 and I3 are correct implementations of a
SYSTEM, then a TMR system that contains I1, I2 and I3 is also an implementation of a

4This name is an abbreviation for delay voter
5This name is an abbreviation for error voter

34

3.6. TRIPLE MODULAR REDUNDANCY

TMUX

S3S1

TBUS

inpsys1 inpsys3

outsys1 outsys3

BLOCK dv ev
VOTER

out

inp
(inpsys1, (inpsys2, inpsys3))

outbus

S2

inpsys2

outsys2

Figure 3.8 Triple Modular Redundancy - HOL4 Model.

35

3.6. TRIPLE MODULAR REDUNDANCY

SYSTEM. Such SYSTEM has a delay d +dv, a failure model (ETMR e1 e2 e3 ev d inp)
and computes the function (FTMR e1 e2 e3 f). The definitions of ETMR and FTMR are
explained next. These definitions were discovered during the process of proof.

Theorem 3.21.

` ∀I1 I2 I3 dv ev d e1e2 e3 f inp out.

(∀inp out.I1(inp,out)⇒ SYSTEM d e1 f (inp,out)) ∧
(∀inp out.I2(inp,out)⇒ SYSTEM d e2 f (inp,out)) ∧
(∀inp out.I3(inp,out)⇒ SYSTEM d e3 f (inp,out))

⇒ (TMR dv ev I1 I2 I3 (inp,out)

⇒ SYSTEM (d +dv) (ETMR e1 e2 e3 ev d inp)

(FTMR e1 e2 e3 f) (inp,out))

The TMR can fail in one of these cases: either i) all channels present a random failure
simultaneously; or ii) the voter presents a random failure; or iii) there is a combination of
NONE inputs and channel failures that involves all channel replicas; or iv) all inputs are
NONE.

Definition 3.22.

ETMR e1 e2 e3 ev dv inp t =

let in1 = FST(T HE(inp)) in

let in2 = FST(SND(THE(inp))) in

let in3 = SND(SND(THE(inp))) in

(e1(t) ∧ e2(t) ∧ e3(t)) ∨
(ev(t +dv)) ∨
(IS_NONE(in1) ∧ e2(t) ∧ e3(t)) ∨
(IS_NONE(in2) ∧ e1(t) ∧ e3(t)) ∨
(IS_NONE(in3) ∧ e1(t) ∧ e2(t)) ∨
(IS_NONE(in1) ∧ IS_NONE(in2) ∧ e3(t)) ∨
(IS_NONE(in1) ∧ IS_NONE(in3) ∧ e2(t)) ∨
(IS_NONE(in2) ∧ IS_NONE(in3) ∧ e1(t)) ∨
(IS_NONE(in1) ∧ IS_NONE(in2) ∧ IS_NONE(in3))

The function FTMR (shown below) takes 6 arguments: the failure model of each
replica, the computing function of the replicas (which is the same function for all repli-
cas), the current time, and the input. Based on the input and the failure models, FTMR

36

3.6. TRIPLE MODULAR REDUNDANCY

dismisses NONE outputs of each channel and outputs the average of the valid out-
puts. This function assumes that the input inp has at least one valid signal. This as-
sumption is always satisfied as inp comes from TMUX, which never outputs the value
SOME(NONE, (NONE, NONE)).

Definition 3.23.

FTMR e1 e2 e3 f t inp =

let in1 = FST(inp) in

let in2 = FST(SND(inp)) in

let in3 = SND(SND(inp)) in

i f IS_SOME(in1) ∧ IS_SOME(in2) ∧ IS_SOME(in3) ∧
¬e1(t) ∧ ¬e2(t) ∧ ¬e3(t)

then (1/3)∗ (f t (THE in1)+ f t (THE in2)+ f t (THE in3))

else if IS_SOME(in1) ∧ IS_SOME(in2) ∧ ¬e1(t) ∧ ¬e2(t)

then (1/2)∗ (f t (THE in1)+ f t (THE in2))

else if IS_SOME(in1) ∧ IS_SOME(in3) ∧ ¬e1(t) ∧ ¬e3(t)

then (1/2)∗ (f t (THE in1)+ f t (THE in3))

else if IS_SOME(in2) ∧ IS_SOME(in3) ∧ ¬e2(t) ∧ ¬e3(t)

then (1/2)∗ (f t (THE in2)+ f t (THE in3))

else if IS_SOME(in1) ∧ ¬e1(t) then (f t (THE in1))

else if IS_SOME(in2) ∧ ¬e2(t) then (f t (THE in2))

else (f t (THE in3))

An intuitive version of Theorem 3.21 is shown in Figure 3.9. It states that if we build
a TMR from three implementations of a SYSTEM, then the whole TMR is also a SYSTEM

(compositionality). Each implementation I1, I2 and I3 is used in the computation of
the average (provided their outputs are valid). In this figure, EIj(t) = 1 means that the
implementation Ij produces a valid output at time t and EIj(t) = 0 means that Ij failures at
time t.

Differently from HR and HetR, it is hard to see that triple modular redundancy
preserves the essence of behaviour of the channels. By looking at Definition 3.23, it is
not so clear that TMR behaves like its subsystems. In Chapter 4 we define new notions of
refinement in order to formalise a relation between each pattern and its subsystems.

37

3.7. CONCLUDING REMARKS

I
1

I
2

I
1

I
2

TMR

I
3

I
3 ∑ j=1

3 E I j t ∗ f t inp j

E I 1
t E I 2

t E I 3
t

if implements a SYSTEM that computes (f t inp
1
) ˄

 implements a SYSTEM that computes (f t inp

2
) ˄

 implements a SYSTEM that computes (f t inp
3
)

then
 implements a SYSTEM that computes

Figure 3.9 Theorem 3.21 intuitively.

3.7 Concluding Remarks

In this chapter we specified the nominal and faulty behaviour of a generic hardware
SYSTEM, presented components that make up the implementation of a SYSTEM, and
formalised three fault tolerant patterns: Homogeneous Redundancy (HR), Heterogeneous
Redundancy (HetR) and Triple Modular Redundancy (TMR).

For each pattern, we proved a theorem that states that the pattern implements a
SYSTEM with: (i) a specific delay (which depends on the delay of its subsystems and the
delay of the redundancy manager); (ii) a specific failure model (which depends on the
failure model of its subsystems and the failure model of the redundancy manager); and
(iii) a functionality that depends on the functionality of its subsystems.

All theorems are compositional: if the fault tolerant patterns are built from subsystems
that implement a SYSTEM, then they become SYSTEMs themselves. Compositionality
allows us to compose patterns ad infinitum and prove (almost effortlessly) that the whole
system is still a SYSTEM. For instance, it is easy to prove in HOL4 that if we apply HR to
some SYSTEMs, followed by HetR, followed by TMR, followed by HR again, the result
is still a SYSTEM. Actually, we can even mechanise such proofs completely in HOL4.
Such mechanisation has not been done for this work yet, but is a potential future work.

Each fault tolerant pattern presented here behaves “similarly” to its subsystems. In
Chapter 4 we present a refinement calculus that formalises the notion of “similarly” and
that allows us conclude that the patterns preserve the behaviour of its subsystems.

As an alternative model for the Heterogeneous Redundancy pattern, we could relax
the requirement for the subsystems outputs to have the same type. In order to do that, we
could extend the interface of HetR to accept a retrieve relation [44] between the output

38

3.7. CONCLUDING REMARKS

values of its subsystems. The retrieve relation would be used to unify the types of the
output.

The voter presented in this chapter is only suitable to systems whose output is of
type real. However, we could formalise other voting algorithms in order to remove this
restriction. For example, the specification of the Redundant Management System (RMS)
of the X33 [38] uses different voting algorithms for different data-types, namely majority
voting for finite discrete data; mid-value selection for integer or floating-point numbers;
and mean of medial extreme values for time. The majority voting chooses the value that
has the higher occurrence among the input values and the mid-value selection chooses the
value of the middle for sorted list. The mean of the medial extreme values requires use
of real types as uses real arithmetic to compute the a central tendency value then would
not be suitable to remove the type restriction of the outputs. We leave such extensions as
future work.

The entire HOL4 model presented in this chapter contains 580 lines of specification
(see Appendix A) and takes about 5 minutes to load and prove all theorems.6 This work
was the first contact of the author with the HOL notation and the HOL4 tool. He had
previous knowledge with the Z/EVES theorem prover [36], which shortened significantly
his learning curve in order to guide proofs with HOL4. The specification discussed in
this chapter took approximately three months to be formalised and the proofs discharged
in HOL4. Most of the proof steps in this work required human intervention to provide
the appropriate parameters (typically a list of theorems, and simplification sets) to guide
the proof.

The specification and components described in the Chapter 3 are generic in the sense
that they could be used to model other patterns not described in Section 2.4, as for
example the M-out-of-N pattern [2]. This pattern consists of N identical channels that
operate in parallel until N-M random faults occur simultaneously. However, perhaps
it may be necessary define new components in order to formalise other patterns as the
Watchdog Pattern [2].

6These figures were obtained by running the HOL4 system on Linux Ubuntu 9.4 in a Intel T7250 with
2 GB of RAM, 2.0 GHz and 2 MB of cache.

39

4
New Notions of Refinement

In this chapter we formalise new notions of refinement and prove that the fault tolerant
patterns HR, HetR and TMR preserve the behaviour of their subsystems. In the previous
chapter we said that the function computed by a replicated system behaves similarly to
the function of its non-replicated subsystems. For example, we proved that, by replicating
a system that behaves like f using TMR, we implement a SYSTEM that behaves like
(FTMR e1 e2 e3 f). In this chapter we define a refinement relation that allows us to state,
for example, that f v (FT MR e1 e2 e3 f). In order to achieve that, we define new notions
of refinement to capture the common assumption taken by all systems engineers: fault
tolerant patterns preserve the behaviour of their subsystems. This behaviour preservation
occurs in a non-traditional way. We postulate that: (i) the introduction of replicas; and
(ii) the computation of the average of the replicas preserve functionality. Although
these notions seem controversial and different from traditional refinement notions [3],
these postulates simply capture what is a common practise for systems engineers. By
postulating such practise we could prove that the behaviour of HR, HetR, and TMR are a
refinement of the behaviour of their subsystems.

In this chapter, we formalise systems behaviour as mathematical expressions that de-
pend on time, input signal and are amenable to present random failures. Such expressions
are simply the body1 of the functions used to compute the functionality of a SYSTEM. We
also propose a transitive, reflexive and anti-symmetric relation to ordering expressions
under behavioural preserving. The chapter is organised as follows: Section 4.1 presents a
model of expressions without detailing the generation of the conditional in if−then−else

expressions. Section 4.2 presents the definition of behavioural preserving and introduces a
refinement calculus for relating expressions. Section 4.3 extends the ideal expressions by

1We use the term body to refer to the definition of a function, e.g. in f x = x+ x−1 the body of the
function f is x+ x−1.

40

4.1. IDEAL EXPRESSIONS

Expression→ Application
| BinaryExpr
| IfExpr

Application→ Function Time (THE Input)
BinaryExpr→ z(Expression, Expression)

| Expression+Expression
| Expression/n
| . . .

IfExpr→ if Condition then Expression else Expression

Figure 4.1 Expressions – BNF Grammar

detailing the generation of the conditional of if−then−else expressions, and introduces a
explicit failure model. Section 4.4 extends the refinement calculus to support the failure
model and the generation of the conditional of if−then−else expressions. Section 4.5
concludes.

4.1 Ideal Expressions

The expressions discussed in this section are generated by the grammar presented in
Figure 4.1. Typically, these expressions represent the body of functions like FHR, FHetR

and FTMR defined in Chapter 3.
The initial symbol of this grammar is Expression. Each expression is either an appli-

cation (Application), or a binary expression (BinaryExpr) or an if−then−else expression
(IfExpr). Applications have the form Function Time (THE Input), where Function is an
identifier of the function and Input is the value carried out by the input signal at time Time.
Binary expressions are formed by the non-deterministic composition of expressions z,
and arithmetic expressions like sum, division and so on. The non-deterministic compo-
sition z is discussed in details later. Finally, if−then−else expressions comprise two
expressions and a conditional (Condition). When the conditional evaluates to true, the
if−then−else expression reduces to the then branch, otherwise the expression is reduced
to the else branch. Conditionals are boolean sentences and are omitted for simplicity. In
Section 4.3 these conditionals are discussed in details.

We assume that all expressions have the type real. This assumption is justified by the
fact that expressions represent information manipulated in digital circuits and these can
be abstracted as manipulators of signals of real numbers. An example of an expression

41

4.1. IDEAL EXPRESSIONS

generated by this grammar is presented next:

if c1

then f t (THE FST(inp))

else f t (THE SND(inp))

This expression is produced by the derivation

Expression→ IfExpr→ if Condition then Expression else Expression.

The production Condition generates the boolean sentence c1 and each production
Expression generates an Application. The Application in the then branch generates
f t (THE FST(inp)). The Application in the else branch produces the expression
f t (THE SND(inp)).

The non-deterministic composition z is a binary expression inspired by the non-
deterministic choice operator u of the process algebra CSP2 [19]. The expression
z(f1, f2) represents a system that behaves non-deterministically as f1 or f2. The non-
deterministic composition, z, takes two expressions and produces an expression that
satisfies the following axioms (where f , g, and h are expressions):

Axiom 4.1.
z(f ,z(g,h)) =z(z(f ,g),h)

Axiom 4.2.
z(f ,g) =z(g, f)

Axiom 4.3.
z(f , f) = f

Axiom 4.1 establishes the associativity of z, Axiom 4.2 establishes commutativity and
Axiom 4.3 states that z is idempotent. For example, these axioms allow us to show that
the expressions z(z(f1,z(f2, f3)),z(f1, f2)) and z(f1,z(f2, f3)) are equal. It means
that it does not matter the order, repetition or nesting of subexpressions, both behaves as
z(f1,z(f2, f3)). To show this equivalence, we start from z(z(f1,z(f2, f3)),z(f1, f2))

and apply Axiom 4.1 to the most external z, followed by the application of Axiom
2Communicating Sequential Processes (CSP) is an algebra for describing the event flow and interactions

between concurrent systems. The process PuQ of CSP refers the non-deterministic composition of the
processes P and Q and behaves as P, or Q. This process has the same event flow of P, or Q, but not both.

42

4.2. REFINEMENT

4.2 to z(z(f1,z(f2, f3)), f1), Axiom 4.1 to z(f1,z(f1,z(f2, f3))) and Axiom 4.3 to
z(f1, f1). These steps reduce the original expression to z(z(f1,z(f2, f3)), f2). The
next step is to eliminate one of the duplicated f2 from this expression. This is done
applying Axiom 4.2 to the most external z, followed the application of the axioms
4.1 to z(f2,z(f1,z(f2, f3))), 4.1 to z(z(f2, f1),z(f2, f3)), 4.2 to z(z(f2, f1), f2), 4.1
to z(f2,z(f2, f1)) and 4.3 to z(f2, f2). The expression obtained after this steps is
z(f2,z(f1, f3)). To finish the proof, the order of subexpressions is changed by applying
the Axioms 4.1 and 4.2 in a convenient order. The entire proof is presented next.

1. z(z(f1,z(f2, f3)),z(f1, f2))

2. z(z(z(f1,z(f2, f3)), f1), f2) 4.1 Associativity of z
3. z(z(f1,z(f1,z(f2, f3))), f2) 4.2 Commutativity of z
4. z(z(z(f1, f1),z(f2, f3)), f2) 4.1 Associativity of z
5. z(z(f1,z(f2, f3)), f2) 4.3 Idempotence of z
6. z(f2,z(f1,z(f2, f3))) 4.2 Commutativity of z
7. z(z(f2, f1),z(f2, f3)) 4.1 Associativity of z
8. z(z(z(f2, f1), f2), f3) 4.1 Associativity of z
9. z(z(f2,z(f2, f1)), f3) 4.2 Commutativity of z

10. z(z(z(f2, f2), f1), f3) 4.1 Associativity of z
11. z(z(f2, f1), f3) 4.3 Idempotence of z
12. z(f3,z(f2, f1)) 4.2 Commutativity of z
13. z(z(f3, f2), f1) 4.1 Associativity of z
14. z(f1,z(f3, f2)) 4.2 Commutativity of z
15. z(f1,z(f2, f3)) 4.2 Commutativity of z

Notational Conventions
As z is associative and commutative, we omit the internal parentheses of z in what

follows. For example, z(f1,z(f2, f3)) is written as z(f1, f2, f3).

4.2 Refinement

The refinement relation proposed here is inspired by the traditional refinement [3] and
defines a partial order on the set of the expressions. This relation establishes our notion
of behavioural preservation: given expressions S and S′ we say that S′ preserves the
behaviour of S′ if S v S′. By definition, the three basic axioms presented below must
be satisfied by the refinement relation, since it defines a partial order. In the following

43

4.2. REFINEMENT

equations, e, f and g are expressions.

Axiom 4.4.
e v e

Axiom 4.5.
e v f f v g

e v g

Axiom 4.6.
e v f f v e

e = f

Axiom 4.4 states that every system is refined by itself and Axiom 4.5 and 4.6 establish
transitivity and anti-symmetry, respectively. In addition to these axioms, two common
practises in engineering that results from the introduction of replicas of a component
are introduced to the refinement axioms. The first practise is to consider that a system
is refined by another system in which a backup replica is present. The second practise
assumes that any system is refined by another system where replicas are present and
whose output is the average of all replicas outputs.

Axiom 4.7 is inspired by the first practise. It states that given two refinements
e1 v f1 and e2 v f2 of expressions e1 and e2 (replicas), then z(e1,e2) is refined by
if c then f1 else f2. The condition c depends of the failure model and input signal used
in f1. How to build this condition is discussed in the next section. For now, this axiom is
used to develop refinements that construct if−then−else expressions that choose which
replica of a system is executed, i.e. a switch-to-backup policy.

Axiom 4.7.
e1 v f1 e2 v f2

z(e1,e2) v if c then f1 else f2

To exemplify how this law is applied, we derive an expression with structure similar
to the body of FHetR. The proof is presented below. For the sake of simplicity, we define
constants by using let expressions.

44

4.2. REFINEMENT

1. let f = f1 t (THE FST(inp))

2. let g = f2 t (THE SND(inp))

3. f v f 4.4 [f/e]

4. g v g 4.4 [g/e]

5. z(f ,g) v if c1 then g else f 4.7 in 3, 4

We omit the construction of the condition c1 for now. In Section 4.4 we define a strategy
to build such conditions of the if−then−else expressions.

Axiom 4.8 defines that a non-deterministic expression is refined by the average of its
operands. An example of how this axiom is used is presented below.

Axiom 4.8.
z(e1, . . . ,en) v (e1+...+en)

n

We derive below an expression with structure similar to FTMR.

1. let f1 = f t (THE FST(inp))

2. let f2 = f t (THE FST(SND(inp)))

3. let f3 = f t (THE SND(SND(inp)))

4. f1 v f1 4.4 [f1/e]

5. f2 v f2 4.4 [f2/e]

6. f3 v f3 4.4 [f3/e]

7. z(f2, f3) v if c1 then f2 else f3 4.7 in 5, 6
8. let κ1 = if c1 then f2 else f3
9. z(f1, f2, f3) v if c2 then f1 else κ1 4.7 in 4, 7

10. let κ2 = if c2 then f1 else κ1

11. z(f2, f3) v (f2 + f3)/2 4.8 to z(f2, f3)

12. z(f1, f2, f3) v if c3 then (f2 + f3)/2 else κ2 4.7 in 11, 9; 4.1 - 4.3
13. let κ3 = if c3 then (f2 + f3)/2 else κ2

14. z(f1, f3) v (f1 + f3)/2 4.8 to z(f1, f3)

15. z(f1, f2, f3) v if c4 then (f1 + f3)/2 else κ3 4.7 in 14, 12; 4.1 - 4.3
16. let κ4 = if c4 then (f1 + f3)/2 else κ3

17. z(f1, f2) v (f1 + f2)/2 4.8 to z(f1, f2)

18. z(f1, f2, f3) v if c5 then (f1 + f2)/2 else κ4 4.7 in 17, 15; 4.1 - 4.3
19. let κ5 = if c5 then (f1 + f2)/2 else κ4

45

4.2. REFINEMENT

20. z(f1, f2, f3) v (f1 + f2 + f3)/3 4.8 to z(f1, f2, f3)

21. z(f1, f2, f3) v if c6 then (f1 + f2 + f3)/3 else κ5 4.7 in 20, 18; 4.1 - 4.3

We start by defining aliases in the Steps 1-3 to shorten the expressions. The first axiom
used is Axiom 4.4 in Steps 4-6 to state that the expressions f1, f2 and f3 are refined
by themselves. Step 7 applies Axiom 4.7 to Steps 5 and 6 to produce an if−then−else

expression. Note that c is renamed to c1. Such renaming is applied in the remaining steps
of the proof. Step 9 applies Axiom 4.7 to Steps 4 and 7. Note that one of the if−then−else

branches is the if−then−else obtained in Step 7. Step 11 applies Axiom 4.8 to z(f2, f3).
Step 12 applies Axiom 4.7 to Steps 11 and 9 to produce an if−then−else expression.
Notice that the expression z(z(f2, f3),z(f1, f2, f3)) is written as z(f1, f2, f3). We apply
such a simplification whenever possible. Step 14 applies Axiom 4.8 to z(f1, f3). Step 15
applies Axiom 4.7 to Steps 14 and 12 to produce an if−then−else expression. Step 17
applies Axiom 4.8 to z(f1, f2). Step 18 applies Axiom 4.7 to Steps 17 and 15 to produce
an if−then−else expression. Step 20 uses Axiom 4.8, and Step 21 concludes the proof.

After expanding κ1, ...,κ5 in the equation obtained in Step 21 it is easy to confirm
that the right side of this equation has the same structure of Definition 3.23 (on page 37).

Equation 4.9.

z(f1, f2, f3) v let f1 = f t (THE FST(inp)) in

let f2 = f t (THE(FST SND(inp))) in

let f3 = f t (THE(SND SND(inp))) in

i f c6 then (1/3)∗ (f1+ f2+ f3)

else i f c5 then (1/2)∗ (f1+ f2)

else i f c4 then (1/2)∗ (f1+ f3)

else i f c3 then (1/2)∗ (f2+ f3)

else i f c2 then f1

else i f c1 then f2

else f3

Intuitively, this equation states that f1 is refined by the body of FTMR, f2 is refined by
the body of FTMR and f3 is refined by the body of FTMR. As z chooses an expression
non-deterministically, each expression f1, f2 and f3 (non-replicated systems) is refined
by a replicated system in the form of (the body of) FTMR.

In the next section we introduce a failure model into expressions in order to allow us
to build the conditions c1, c2, . . ., c6.

46

4.3. REAL EXPRESSIONS

4.3 Real Expressions

This section extends the notation for expressions presented in Section 4.1 to include a
failure model for expressions. We annotate the expressions with failure information in
order to generate the conditions c1, c2, . . . that remained undefined in the previous section.
The annotations do not store all information needed to build the conditions, but they play
a crucial role in generating them.

An extended grammar is presented in Figure 4.2. Notice in Application that Function

is labelled with a superscript FailureID. This label establishes a failure condition for the
associated Application at time Time. FailureID is a function from time to boolean. When-
ever FailureID(Time) returns true, the result of the associated Application is undefined.

Expression→ Application
| BinaryExpr
| IfExpr

Application→ FunctionFailureID Time (THE Input)
BinaryExpr→ z(Expression, Expression)

| Expression+Expression
| Expression/n
| . . .

IfExpr→ if Conditional then Expression else Expression
Conditional→ (Conditional∧Conditional)

| (Conditional∨Conditional)
| ¬Conditional
| IS_SOME(Input)
| IS_NONE(Input)
| FailureID(Time)

Figure 4.2 Expressions – BNF Grammar

Some examples of the FailureIDs that can be associated to applications are:
(λ t. t > 100) — permanent failure after 100 time units, (λ t. F) — never fails,
(λ t. (t mod 2 = 0)) — failure at even times, (λ t. (∃k : Z. sin(t) = k ∗ cos(t))) — failures
in periodic time intervals. We can also specify the function in terms of other predefined
functions, as in (λ t. f1(t) ∨ f2(t)) for example. Any function from time to boolean can
be used. These functions are used to build the conditions of if−then−else expressions.
Note that these functions capture the failure rate of the expressions. For example, the
function (λ t. (t mod 2 = 0)) represents a system with failure rate equals to 50%. In our

47

4.4. EXTENDED REFINEMENT

particular case of our fault tolerant patterns, the FailureIDs will look like parts of the
conditions of the FHR, FHetR and FTMR (see definitions 3.15, 3.18 and 3.23). Detailed
examples are given shortly.

In this grammar, we detail the conditions of if−then−else expressions. Conditions
are defined recursively as conjunction, disjunction, negation or one of the three base
cases: IS_SOME(Input), IS_NONE(Input), which determine if the input signal comes
with an error or not, respectively, and FailureID(Time), which determines if a random
failure occurs at time Time.

4.4 Extended Refinement

In this section we discuss the concept of equivalence between expressions and redefine
Axiom 4.7 to construct the conditional c.

Axiom 4.10 postulates that given two equivalent expressions, each one of them is
refined by the non-deterministic composition of both.

The concept of equivalent expressions (denoted by ∼) is informal and states that two
expressions are equivalent whenever they are (homogeneous or heterogeneous) replicas
of each other. In the real world, this assumption is supposed to be introduced by engineers
when they decide whether two systems are replicas of each other or not, even when the
systems are dissimilar. Alternatively, two expressions are equivalents if one can replace
the other in case of a failure. Due to the informal nature of this statement, the equivalence
between expressions is always introduced in proofs as an assumption. Let f and g be
expressions. Then,

Axiom 4.10.
(f ∼ g) ⇒ (f v z(f ,g)) ∧ (g v z(f ,g))

This theorem states that if two expressions f and g are equivalent then each one
separately is refined by the non-deterministic choice of both. Intuitively, this axiom states
that the non-deterministic composition of equivalent expressions generates results that
are better or as good as the expression alone.

Expression equivalence (∼) presented in Axiom 4.10 is an equivalence relation (re-
flexive, transitive and symmetric). Axioms 4.11, 4.12 and 4.13 formalise these properties
(where f , g and h are expressions):

48

4.4. EXTENDED REFINEMENT

Axiom 4.11.
f ∼ f

Axiom 4.12.
(f ∼ g∧g∼ h)⇒ f ∼ h

Axiom 4.13.
f ∼ g⇒ g∼ f

To illustrate how to use the Axiom 4.10, we show that the equivalent expressions
f e1 t (THE inp) and f e2 t (THE inp) are refined by z(f e1 t (THE inp), f e2 t (THE inp)).

1. f e1 t (THE inp) ∼ f e2 t (THE inp) Assumption
2. f e1 t (THE inp) v z(f e1 t (THE inp), f e2 t (THE inp)) 4.10 to 1
3. f e2 t (THE inp) v z(f e1 t (THE inp), f e2 t (THE inp)) 4.10 to 1

Axiom 4.14 redefines Axiom 4.7. It states that given two refinements e v g and
f v h, the expression z(e, f) is refined by (if WELL_DEF(g) then g else h).

Axiom 4.14.
e v g f v h

z(e, f) v if WELL_DEF(g) then g else h

The function WELL_DEF takes an expression as argument and generates an expres-
sion that checks whether the expression given as argument does not fail. This function is
responsible for generating the conditions of the if−then−else expressions. WELL_DEF

is defined below in Equation 4.15.

Definition 4.15.

WELL_DEF(f FailureID t (THE inp)) = IS_SOME(inp) ∧ ¬FailureID(t)

WELL_DEF(f �g) = WELL_DEF(f) ∧ WELL_DEF(g)

WELL_DEF(f/n) = WELL_DEF(f)

49

4.4. EXTENDED REFINEMENT

The symbol � denotes any binary arithmetic operator like addition, subtraction,
multiplication, etc. Note that WELL_DEF builds the conditions for each if−then−else

expression using the labels (annotations) FailureID.

4.4.1 Behavioural Preservation of the HR, HetR and TMR

In this section, we prove that the Homogeneous Redundancy pattern, the Heterogeneous
Redundancy pattern and the Triple Modular Redundancy pattern preserve the behaviour
of their subsystems. The proof is done showing that the body of the function computed
by these patterns, namely FHR (Definition 3.15), FHetR (Definition 3.18) and FTMR

(Definition 3.23), is a refinement of their subsystems. Each subsystem behaviour is
represented by a function application.

Homogeneous Redundancy

The proof of behavioural preservation of the Homogeneous Redundancy pattern is pre-
sented below. Step 3 adds to the proof the assumption that f1 and f2 are equivalent
expressions, which, in this case, means homogeneous replicas. Steps 4 and 5 apply
Axiom 4.4 to state that each expression f1 and f2 is refined by itself. Step 6 applies
Axiom 4.14 to steps 4 and 5 to show that z(f1, f2) v if WELL_DEF(f1) then f1 else f2.
Steps 7, 8 apply axioms 4.10 and 4.5 to show that each one of applications f1 and f2 is
refined by if WELL_DEF(f1) then f1 else f2.

1. let f1 = f e1 t (THE FST (inp))

2. let f2 = f e2 t (THE SND(inp))

3. f1 ∼ f2 Assumption
4. f1 v f1 4.4 [f1/e]

5. f2 v f2 4.4 [f2/e]

6. z(f1, f2) v if WELL_DEF(f1) then f1 else f2 4.14 in 4, 5
7. f1 v if WELL_DEF(f1) then f1 else f2 4.10 in 3; 4.5
8. f2 v if WELL_DEF(f1) then f1 else f2 4.10 in 3; 4.5

Finally, WELL_DEF(f1) is expanded with Definition 4.15. It results in two equations
that state that FHR refines f1 and f2 alone (Equations 4.16 and 4.17). Compare the right
side of these equations with the Definition 3.15 (on page 30). If we ignore the label
annotations, the body of FHR is the refinement of f e1 t (THE FST(inp)) (the primary
channel) and f e2 t (THE SND(inp)) (the backup channel).

50

4.4. EXTENDED REFINEMENT

Equation 4.16.

f e1 t (THE FST (inp)) v if IS_SOME(FST(inp))∧¬ e1(t)

then f e1 t (THE FST(inp))

else f e2 t (THE SND(inp))

Equation 4.17.

f e2 t (THE SND(inp)) v if IS_SOME(FST(inp))∧¬ e1(t)

then f e1 t (THE FST(inp))

else f e2 t (THE SND(inp))

Heterogeneous Redundancy

The proof of behavioural preservation of Heterogeneous Redundancy pattern is done as
follows. First, assume that f and g are equivalent expressions (in this case, heterogeneous
replicas). Steps 4 and 5 apply Axiom 4.4 to establish the fact that each one of expressions
f and g is refined by itself. Step 6 applies Axiom 4.14 to steps 4 and 5 to derive an
if−then−else expression. Steps 7 and 8 use the Axioms 4.10 and 4.5 to conclude that
each application is refined by the if WELL_DEF(f) then f else g.

1. let f = (f1)
e1 t (THE FST (inp))

2. let g = (f2)
e2 t (THE SND(inp))

3. f ∼ g Assumption
4. f v f 4.4 [f/e]

5. g v g 4.4 [g/e]

6. z(f ,g) v if WELL_DEF(f) then f else g 4.14 in 4, 5
7. f v if WELL_DEF(f) then f else g 4.10 in 3; 4.5
8. g v if WELL_DEF(f) then f else g 4.10 in 3; 4.5

By expanding the Definition 4.15 in the last two equations, we obtain the Equa-
tions 4.18 and 4.19. Compare the right side of these equations with the Definition 3.18
(on page 33). If we ignore the label annotations, the right side of the refinement is exactly
the body of FHetR.

51

4.4. EXTENDED REFINEMENT

Equation 4.18.

f e1
1 t (THE FST (inp)) v if IS_SOME(FST(inp))∧¬ e1(t)

then (f1)
e1 t (THE FST(inp))

else (f2)
e2 t (THE SND(inp))

Equation 4.19.

f e2
2 t (THE SND(inp)) v if IS_SOME(FST(inp))∧¬ e1(t)

then (f1)
e1 t (THE FST(inp))

else (f2)
e2 t (THE SND(inp))

Triple Modular Redundancy

The proof of behavioural preservation of the Triple Modular Redundancy pattern is longer
than the proofs for FHR and FHetR. It starts by adding three assumptions stating that the
applications f1, f2 and f3 are equivalent. In this case, these expression are homogeneous
replicas.

1. let f1 = f e1 t (THE FST(inp)))

2. let f2 = f e2 t (THE FST(SND(inp))))

3. let f3 = f e3 t (THE SND(SND(inp))))

4. f1 ∼ f2 Assumption
5. f1 ∼ f3 Assumption
6. f2 ∼ f3 Assumption

Steps 7, 8 and 9 use Axiom 4.4 to add the fact that each one of applications is refined
by itself. In Step 11, Axiom 4.14 is applied to steps 8 and 9 to produce an if−then−else.
Step 14 apply Axiom 4.14 to steps 7 and 11. Step 16 infers that z(f2, f3) v (f2 + f3)/2
using Axiom 4.8. Step 18 applies Axiom 4.14 to steps 16 and 14 and the Axioms 4.1 -
4.3 to unify expressions.

52

4.4. EXTENDED REFINEMENT

7. f1 v f1 4.4 [(f1)/e]

8. f2 v f2 4.4 [(f2)/e]

9. f3 v f3 4.4 [(f3)/e]

10. let c1 = WELL_DEF(f2)

11. z(f2, f3) v if c1 then f2 else f3 4.14 in 8, 9
12. let κ1 = if c1 then f2 else f3
13. let c2 = WELL_DEF(f1)

14. z(f1, f2, f3) v if c2 then f1 else κ1 4.14 in 7, 11
15. let κ2 = if c2 then f1 else (κ1)

16. z(f2, f3) v (f2 + f3)/2 4.8 to z(f2, f3)

17. let c3 = WELL_DEF((f2 + f3)/2)
18. z(f1, f2, f3) v if c3 then (f2 + f3)/2 else κ2 4.14 in 16, 14; 4.1 - 4.3
19. let κ3 = if c3 then (f2 + f3)/2 else κ2

Step 20 is similar to Step 16, but infers that z(f1, f3) v (f1 + f3)/2. Step 22 applies
Axiom 4.14 to steps 20 and 18 to achieve an if−then−else expression and the Axioms
4.1 - 4.3 to unify expressions. Steps 24 and 28 follow the same structure of Step 20, but
infer refinements from different expressions. Step 26 applies Axiom 4.14 to steps 24 and
22 and the Axioms 4.1 - 4.3 to unify expressions.

20. z(f1, f3) v (f1 + f3)/2 4.8 to z(f1, f3)

21. let c4 = WELL_DEF((f1 + f3)/2)
22. z(f1, f2, f3) v if c4 then (f1 + f3)/2 else κ3 4.14 in 20, 18; 4.1 - 4.3
23. let κ4 = if c4 then ((f1 + f3)/2) else (κ3)

24. z(f1, f2) v (f1 + f2)/2 4.8 to z(f1, f2)

25. let c5 = WELL_DEF((f1 + f2)/2)
26. z(f1, f2, f3) v if c5 then (f1 + f2)/2 else κ4 4.14 in 24, 22; 4.1 - 4.3
27. let κ5 = if c5 then (f1 + f2/2) else κ4

28. z(f1, f2, f3) v (f1 + f2 + f3)/3 4.8 to z(f1, f2, f3)

Step 30 applies Axiom 4.14 to steps 28 and 26 to produce the most external
if−then−else and the Axioms 4.1 - 4.3 to unify expressions. Steps 31 - 39 manipu-
late equivalences to infer that each one of applications is equivalent to z(f1, f2, f3). Steps
31, 32 and 33 finish the proof applying the Axioms 4.10 and 4.5.

53

4.4. EXTENDED REFINEMENT

29. let c6 = WELL_DEF((f1 + f2 + f3)/3)
30. z(f1, f2, f3) v if c6 then (f1 + f2 + f3)/3 else κ5 4.14 in 28, 26; 4.1 - 4.3
31. f1 ∼z(f1, f2) 4.10 in 4, 5
32. f2 ∼z(f1, f2) 4.10 in 4, 5
33. f1 ∼z(f1, f3) 4.10 in 4, 6
34. f3 ∼z(f1, f3) 4.10 in 4, 6
35. z(f1, f2)∼z(f1, f2, f3) 4.13, 4.12 in 31, 32
36. z(f1, f3)∼z(f1, f2, f3) 4.13, 4.12 in 33, 34
37. f1 ∼z(f1, f2, f3) 4.12 in 31, 35
38. f2 ∼z(f1, f2, f3) 4.12 in 32, 35
39. f3 ∼z(f1, f2, f3) 4.12 in 33, 36
40. f1 v if c6 then (f1 + f2 + f3)/3 else κ5 4.10 in 37; 4.5
41. f2 v if c6 then (f1 + f2 + f3)/3 else κ5 4.10 in 38; 4.5
42. f3 v if c6 then (f1 + f2 + f3)/3 else κ5 4.10 in 39; 4.5

Before comparing the right side of the equations obtained in Steps 40, 41 and 42 with
Definition 3.23 (on page 37), we need to expand the conditions using the definition of
WELL_DEF (Definition 4.15). Below we expand each condition separately.

1. c1 =WELL_DEF(f2) = IS_SOME(FST (SND(inp)))∧¬e2(t)
2. c2 =WELL_DEF(f1) = IS_SOME(FST (inp))∧¬e1(t)
3. c3 =WELL_DEF((f2 + f3)/2) = IS_SOME(FST (SND(inp)))∧

IS_SOME(SND(SND(inp)))∧¬e2(t)∧¬e3(t)
4. c4 =WELL_DEF((f1 + f3)/2)) = IS_SOME(FST (inp))∧

IS_SOME(SND(SND(inp)))∧¬e1(t)∧¬e3(t)
5. c5 =WELL_DEF(f1 + f2)/2) = IS_SOME(FST (inp))∧

IS_SOME(FST (SND(inp)))∧¬e1(t)∧¬e2(t)
6. c6 =WELL_DEF((f1 + f2 + f3)/3) = IS_SOME(FST (inp))∧

IS_SOME(FST (SND(inp)))∧ IS_SOME(SND(SND(inp)))∧
¬e1(t)∧¬e2(t)∧¬e3(t)

After expanding all definitions, we can conclude:

54

4.4. EXTENDED REFINEMENT

Equation 4.20.

f e1 t (THE FST(inp)) v
let in1 = FST(inp) in

let in2 = FST(SND(inp)) in

let in3 = SND(SND(inp)) in

i f IS_SOME(in1) ∧ IS_SOME(in2) ∧ IS_SOME(in3) ∧
¬e1(t) ∧ ¬e2(t) ∧ ¬e3(t)

then (1/3)∗ (f e1 t (THE in1)+ f e2 t (THE in2)+ f e3 t (THE in3))

else if IS_SOME(in1) ∧ IS_SOME(in2) ∧ ¬e1(t) ∧ ¬e2(t)

then (1/2)∗ (f e1 t (THE in1)+ f e2 t (THE in2))

else if IS_SOME(in1) ∧ IS_SOME(in3) ∧ ¬e1(t) ∧ ¬e3(t)

then (1/2)∗ (f e1 t (THE in1)+ f e3 t (THE in3))

else if IS_SOME(in2) ∧ IS_SOME(in3) ∧ ¬e2(t) ∧ ¬e3(t)

then (1/2)∗ (f e2 t (THE in2)+ f e3 t (THE in3))

else if IS_SOME(in1) ∧ ¬e1(t) then (f e1 t (THE in1))

else if IS_SOME(in2) ∧ ¬e2(t) then (f e2 t (THE in2))

else (f e3 t (THE in3))

Equation 4.21.

f e2 t (THE FST(SND(inp))) v
let in1 = FST(inp) in

let in2 = FST(SND(inp)) in

let in3 = SND(SND(inp)) in

i f IS_SOME(in1) ∧ IS_SOME(in2) ∧ IS_SOME(in3) ∧
¬e1(t) ∧ ¬e2(t) ∧ ¬e3(t)

then (1/3)∗ (f e1 t (THE in1)+ f e2 t (THE in2)+ f e3 t (THE in3))

else if IS_SOME(in1) ∧ IS_SOME(in2) ∧ ¬e1(t) ∧ ¬e2(t)

then (1/2)∗ (f e1 t (THE in1)+ f e2 t (THE in2))

else if IS_SOME(in1) ∧ IS_SOME(in3) ∧ ¬e1(t) ∧ ¬e3(t)

then (1/2)∗ (f e1 t (THE in1)+ f e3 t (THE in3))

else if IS_SOME(in2) ∧ IS_SOME(in3) ∧ ¬e2(t) ∧ ¬e3(t)

then (1/2)∗ (f e2 t (THE in2)+ f e3 t (THE in3))

else if IS_SOME(in1) ∧ ¬e1(t) then (f e1 t (THE in1))

else if IS_SOME(in2) ∧ ¬e2(t) then (f e2 t (THE in2))

else (f e3 t (THE in3))

55

4.5. CONCLUDING REMARKS

Equation 4.22.

f e3 t (THE FST(SND(SND(inp)))) v
let in1 = FST(inp) in

let in2 = FST(SND(inp)) in

let in3 = SND(SND(inp)) in

i f IS_SOME(in1) ∧ IS_SOME(in2) ∧ IS_SOME(in3) ∧
¬e1(t) ∧ ¬e2(t) ∧ ¬e3(t)

then (1/3)∗ (f e1 t (THE in1)+ f e2 t (THE in2)+ f e3 t (THE in3))

else if IS_SOME(in1) ∧ IS_SOME(in2) ∧ ¬e1(t) ∧ ¬e2(t)

then (1/2)∗ (f e1 t (THE in1)+ f e2 t (THE in2))

else if IS_SOME(in1) ∧ IS_SOME(in3) ∧ ¬e1(t) ∧ ¬e3(t)

then (1/2)∗ (f e1 t (THE in1)+ f e3 t (THE in3))

else if IS_SOME(in2) ∧ IS_SOME(in3) ∧ ¬e2(t) ∧ ¬e3(t)

then (1/2)∗ (f e2 t (THE in2)+ f e3 t (THE in3))

else if IS_SOME(in1) ∧ ¬e1(t) then (f e1 t (THE in1))

else if IS_SOME(in2) ∧ ¬e2(t) then (f e2 t (THE in2))

else (f e3 t (THE in3))

Notice that the right side of these equations are exactly the body of FTMR (Defini-
tion 3.23 on page 37).

4.5 Concluding Remarks

Systems engineers assume that redundancy patterns improve the system. They regard that
these patterns improve the safety and preserve the functionality of the system (although
they might worsen timing, power consumption, weigh, etc.).

In this work we note that the behavioural preservation does not occur according to the
classical notions of refinement. In this chapter we axiomatised new refinement notions
that capture the industry practise: a system preserves the behaviour when replicated
(Axiom 4.14); and a system also preserves the behaviour if it outputs the average of
its subsystems (Axiom 4.8). By using these two axioms, we are able to prove that an
individual system is refined by HR, HetR and TMR.

56

4.5. CONCLUDING REMARKS

We have also experimented other approaches. For example, interval arithmetic could
also be a possible formalism. However, by using interval arithmetic we could not prove
that an isolated system is refined by the average of its replicas. This only happens when
the isolated system has the worst precision among all replicas. This does not capture
exactly what is common practise in the industry.

The refinement calculus proposed in this chapter is suitable to prove the behavioural
preservation of HR, HetR and TMR. In order to prove the behavioural preservation of
other patterns that use other mechanisms to manage the redundant systems, it may be
necessary extend our refinement calculus. We have not analysed our refinement calculus
regarding completeness.

The approach presented in the Section 4.2 was mechanised in HOL4 using the
command new_axiom. The theorems of Section 4.2 were proved mechanically using
HOL4. However, axiom postulation is not an acceptable practise in the theorem proving
community, as it is not a model built as a conservative extension. Therefore, we decided
to mechanise only Section 4.2 as proof of concept. Nevertheless, we believe that we
could have implemented labels (Section 4.3) in a similar way to our mechanisation of
Section 4.2 easily.

57

5
Case Study

This chapter presents a case study that describes the introduction of a fault tolerant pattern
to a simplified model of an aircraft Elevator Control System (ECS). Elevator surfaces
control the aircraft’s orientation by changing the up-and-down movement of the aircraft’s
nose. The original model of the ECS used in this case study was developed by Embraer
(Empresa Brasileira de Aeronáutica) using Simulink [26], one of the main modelling
environments used to simulate and validate mathematical/physical models. The original
model consists of block diagrams representing the architecture and operation of an ECS
and employs several fault tolerant patterns to obtain reliable information from different
sensors. In this work, we used an ECS inspired by that from Embraer and published by
Jesus [9].

Here, we aim to show the applicability of the results described in chapters 3 and 4 in
the development of aeronautical systems. We informally translate the Simulink diagram
to a HOL4 function and show how to introduce more redundancy in order to increase the
fault tolerance to the component that runs the control algorithm of the ECS.

This chapter is organised in four sections. Section 5.1 provides an overview of the
ECS. Section 5.2 details the translation of the control algorithm of the ECS to a HOL4
function. Section 5.3 applies the triple modular redundancy pattern to the ECS, and
Section 5.4 concludes.

5.1 Elevator Control System

In most aircrafts, the pitching movement (the up-and-down movement of the aircraft’s
nose) is controlled by two elevator surfaces at the rear of the fuselage. The ECS is the
main system responsible for controlling these two surfaces [9]. When the elevator’s
surfaces are in the up position (upward deflection) the nose of the aeroplane is forced to

58

5.1. ELEVATOR CONTROL SYSTEM

Figure 6.1: Command Augmentation System

6.1.2 Architectural Requirements

Fig. 6.2 shows an overview of our ECS. The system is composed of Inceptors,
Display, Sensors, Controllers and Actuators. Inceptors (side-sticks) capture
commands from the pilots: priorities, from push-buttons (PB); and longi-
tudinal side-stick deflections (in degrees), from Linear Variable Differential
Transformers (LVDT). These signals are processed by four controllers, which
also consider the state of the airplane to generate commands to the associated
actuator (PCU). The flight conditions are derived from three airplane state
variables: pitch rate (in degrees per second), aircraft location (“on ground”
or “in air”) and flap position (retracted or deployed). These signals are
provided by three Inertial Reference Units (IRUs), four Weight-On-Wheels
(WOW) sensors (two for each landing gear below the wings) and the Flap-
Slat Actuator Control Electronics (FSACE), respectively.

IRU

WOW

SideStick

PB

PB

cmd xCmd

cmd

aircraft locationWOW Voting

position
surfaceActuator

Servo Valve

SideStick

Captain
Elevator

FSACE

Controller

Hinge
Soleinoid

Horizontal

Stabilisator

Pitch

Monitor Lane

Command Lane

Logic

Priority
Function

pitch rate

IRU and SS
Voting

Engagement
Logic

C R M

First Officer

IRU/SS

Voting

WOW Voting

Priority

Logic

LVDT

Function

WOW

IRU
Stick

Side

Elevator

Valve

LVDT

LVDT

Figure 6.2: The Elevator Control System - Overview

The system captures commands or intents from pilots through inceptors

98

Figure 5.1 The Elevator Control System - Overview [9]

point upward. And when the elevators are deflected downward, then the nose is forced
downward.

Two typical mechanisms are used by aeronautical industry to control the surfaces
responsible for changing the aircraft’s direction. The conventional mechanism consists of
employing mechanical devices, which limit the force used to steer and manoeuvre the
aeroplane by the pilots’ physical capabilities. The second mechanism is called Fly-By-

Wire (FBW), which employs electronic devices for weight savings and better performance
and handling qualities. Our case study uses FBW technology to control the elevator
surfaces. An overview of this model is presented in the Figure 5.1.

The ECS receives commands from inceptors, which are side-stick joysticks that cap-
ture the commands from the pilots. Each pilot has a private side-stick, which is composed
of a priority button (PB) and three longitudinal side-stick deflections, captured from
three Linear Variable Differential Transformers (LVDT). The deflections are measured
in degrees and the priority button is a push-button “normally closed”, i.e. a button that,
whenever pressed, interrupts the electrical current in a circuit. Inceptors are depicted in
Figure 5.2. The priority button installed in each side-stick sets the respective stick as
the only one in control of the system (by keeping the button pressed). Each LVDT is
connected to an exclusive digital data bus and sends signals to a voter equipment. In

59

5.1. ELEVATOR CONTROL SYSTEM

Figure 5.2 Inceptors (Side-stick)

addition, signals captured from three external sensors are sent to other voters. These
sensors capture: the pitch rate in degrees per second, the aircraft location (“on ground” or
“in air”), and the flap position (retracted or deployed). Flaps are hinged surfaces on the
trailing edge of the wings of a fixed-wing aircraft. As the flaps are extended, the stalling
speed of the aircraft is reduced. These signals are provided by three Inertial Reference
Units (IRUs), four Weight-On-Wheels (WOW) sensors and the Flap-Slat Actuator Con-
trol Electronics (FS-ACE), respectively. All information obtained from inceptors and
sensors can be seen as electronic signals. After processing these signals according to
specific control algorithm the controllers send command signals to the PCUs (actuator)
via electrical wiring, which in turn will drive the surface movements. Actuators are the
devices that really move the surfaces. The actuator depicted in Figure 5.1 is composed of
a solenoid valve and a electrical-hydraulic servo valve. These valves are used to controls
the engagement of the actuator from power pumps that supply the hydraulic pressure
used to displace the actuator ram (piston).

In this case study we are interested in increasing the level of fault tolerance of the
Elevator Control System by applying the triple modular redundancy pattern to the control
algorithm of ECS. The original model [9] does not have this replication, thus in this sense
this case study is a contribution to the original model.

60

5.2. TRANSLATION

ElevatorCommand_deg

1

Switch
Treshold= 0.5

RateLimiter
RisingRate = 0.25
FallingRate = −0.5

In Out

Low Pass Filter

InOut

NOT

AND

GainFlapExtend
k = −150

−150

GainFlapClean
k = −67

−67

Elevator
Command

Shaper

ElevSaturation
−25 to 15

Compensator

InOut

Flap_IN_D

5

WOW_Voted

4

PitchRate_Voted_V

3

PitchRate_Voted_deg_s

2

LongSideStick_CM_deg

1

unfaded Elevator Feedback

Elevator Demand

elevator feedback

Figure 5.3 Control Algorithm of the ECS in Simulink

5.2 Translation

This section describes how we manually translated the Simulink block diagrams [26] for
the ECS into a HOL4 function. Such a function was later embedded into a BLOCK.

Figure 5.3 depicts the Simulink diagram for the block “Function” depicted in Fig-
ure 5.1. Except for the block Elevator Command Shaper, each block could be easily
translated into a transfer function. A transfer function is a mathematical representation of
the relation between input and output of a linear time-invariant system [32]; it captures
the behaviour of the blocks and is used as a specification. (Some blocks like Compensator

and Low Pass Filter had to be expanded before we could infer their transfer function.)
The Elevator Command Shaper did not have an explicit transfer function available in the
original Simulink files, although the parameters of this block were provided. In this case,
we calculated an approximate transfer function based on the parameters of this block and
the Lagrange interpolation method [45] (this block performs a linear interpolation).

The translated HOL4 function was obtained by mapping the components of the control
algorithm (Figure 5.3) to the corresponding transfer function and then composing these

61

5.2. TRANSLATION

functions according to the connections among the blocks. At the end of the translation,
the main function of the ECS (control algorithm) was embedded into a BLOCK as we
defined in Chapter 3. We assume the translation is correct. This assumption does not
compromise our case study as our verification concerns the redundancy of the ECS
instead of verifying the ECS itself. The next paragraphs describe some components of
the elevator control algorithm, present their Simulink blocks and show their respective
transfer function.

The block Gain amplifies the input by a certain amount given by the first argument.
Simulink describes this component as a signal multiplier. Figure 5.4 presents the HOL4
representation of this block at the left and its corresponding block at the right. This
convention is followed in the next figures.

Gain(K : real, inp) = K ∗ inp
out

1

Gain
k = K

K

inp

1

Figure 5.4 Gain block

The SwitchThreshold (Figure 5.5) chooses between two inputs (inpA and inpB). The
decision is made according to the value of a threshold k and the switch input t.

SwitchTreshold (k, t, inpA, inpB) =
if (t >= k) then inpB
else inpA out

1

Switch
Treshold= k

t

3

inpB

2

inpA

1

Figure 5.5 Switch Threshold

The ElevSaturation (Figure 5.6) imposes upper and lower bounds on a value. When
the input value z is within the range kmin and kmax, the output signal is equal to the input
signal. Otherwise, it restricts the signal to the upper and lower bounds.

The Low_Pass_Filter (Figure 5.7) filters low-frequency signals and reduces the am-
plitude of signals with frequencies higher than a certain cut-off frequency. It is used to
generate the “filtered pitch rate” signal.

62

5.2. TRANSLATION

ElevSaturation(kmin,kmax,z) =
if (z > kmax) then kmax
else if (v < kmin) then kmin
else z

out

1

ElevSaturation

-25 to 15

z

1

Figure 5.6 Elevator Saturation

Low_Pass_Filter(z) =

0.0725z+0.0725
z−0.8551

out

1

Low Pass Filter

In Out

z

1

Figure 5.7 Low Pass Filter

The compensator (Figure 5.8) increases the stability of the system response by im-
proving the undesirable frequency response in a feedback and control system. It is done
by decreasing the gain of the system at frequencies above the location of the pole, and
decreasing the phase of the system near the pole and zero locations. It is a second order
filter used in the ECS to generate the “compensated pitch rate” signal.

Compensator(z) =

0.0058z2−0.0115z+0.0057
(88.4z2 +680.13z+1) out

1

Compensator

In Out

z

1

Figure 5.8 Compensator

The RateLimiter limits the first derivative of the signal passing through it. The output
changes no faster than the specified limit. Unfortunately, for this particular case, the
original Simulink model gives no information about the computation of the RateLimiter.
We abstracted this function by defining it as a simple identity function. This decision
does not compromise the case study, as our model of the elevator is not been verified here.
We are concerned here with a correct replication of the elevator via our fault tolerant
patterns.

63

5.2. TRANSLATION

The ElevatorCommandShaper performs a linear interpolation among the values
shown in Figure 5.9. It is used to generate the“elevator demand” signal. In the ECS
documentation, the transfer function is not given explicitly, but the parameters of this
block are present. With these parameters, we could calculate the transfer function using
the Lagrange Interpolation method [45].

ElevatorCommandShaper(x) =

(12314146553082069706217045714300 · x7−
375094022390379325508830389203000 · x6−
16735880068062678550941672637144643 · x5+

407355932416064821116145878025717030 · x4+

7256363864686050117546540409148666875 · x3−
95695167884615315360532825481007218250 · x2−
72561965071167841460692379630440000 · x+
956910943628005569513595965731100000)/
1157528627950752592593107723986171860000

Planilha1

Página 1

-25 15
-20 15
-10 10
-0.1 0
0.1 0
20 -20
30 -25
35 -25

Stick Shaper Table
Longitudinal Side Stick

Command[deg] (z)
Elevator Demmand[deg]

(out)

out

1

Elevator

Command

Shaper

z

1

Figure 5.9 Elevator Command Shaper

The functions NOT , AND, SUM, MULT represent boolean negation, boolean con-
junction, arithmetic addition and arithmetic multiplication, respectively. The translation
is completely straightforward (see Figure 5.10).

Finally, as Simulink carries out implicit data type conversions, the original model
does not need any block to perform conversion between types. However, in HOL4 this
conversion needs to be done explicitly. The function B2REAL is used to convert a boolean
input to real.

B2REAL(a : bool) = if a then 1 else 0

64

5.3. APPLYING TRIPLE MODULAR REDUNDANCY TO ECS

NOT(In1 : bool) = ¬ In1
out

1NOT

In1

1

AND(In1, In2) = In1∧ In2
out

1AND

In2

2

In1

1

SUM(In1 : real, In2) =
In1+ In2 out

1

In2

2

In1

1

MULT(In1 : real, In2) =
In1∗ In2

out

1

In2

2

In1

1

Figure 5.10 NOT,AND,SUM,MULT

Now we present the elevator control function itself (Figure 5.11). This function is
built based on the connections among the blocks depicted in Figure 5.3. The elevator
controller takes as input the angular momentum of the aeroplane (PitchRate), the flap
position (Flap), the weight on wheels (WOW), the longitudinal side-stick deflection
(LongSideStick) and a signal that validates the pitch rate (PitchRate_Voted).

We embedded the elevator function into a BLOCK. It is easy to build such a BLOCK.
Let d be the delay and e be an error function of the elevator. Then

BLOCK d e elevator (inp,out)

is a block whose input has type num→(real # boolean # boolean # real # boolean)option

and whose output has type num→ real option.

5.3 Applying Triple Modular Redundancy to ECS

We applied the Triple Modular Redundancy to ECS. However we could have chosen any
one of our verified patterns to illustrate this case study. The first step in order to apply a
pattern is to build an implementation that computes the function elevator. It is easy to

65

5.3. APPLYING TRIPLE MODULAR REDUNDANCY TO ECS

elevator t (PitchRate,Flap,WOW,LongSideStick,PitchRate_Voted) =
let out_lpf = Low_Pass_Filter(PitchRate) in
let out_cpt = compensator(out_lpf) in
let out_gfe = Gain(−150,out_cpt) in
let out_gfc = Gain(−67,out_cpt) in
let out_sth = SwitchThreshold(1/2,B2REAL(Flap),out_gfe,out_gfc) in
let out_not = NOT(WOW) in
let out_and = AND(out_not,PitchRate_Voted) in
let out_rtl = RateLimiter(B2REAL(out_and)) in
let out_mul = MULT(out_rtl,out_sth) in
let out_ecs = ElevatorCommandShaper(LongSideStick_CM_deg) in
let out_sum = SUM(out_ecs,out_mul) in
let out_str = ElevSaturation(−25,25,out_sum)
in out_str

Figure 5.11 The elevator control function.

prove that a BLOCK that computes the elevator is a SYSTEM.

` ∀d e inp out. BLOCK d e elevator(inp,out)

⇒ SYSTEM d e elevator(inp,out)

The proof of this theorem is a simple instantiation of the function f of the Theorem 3.10
(on page 27).

In a similar way, we can instantiate the correctness theorem for the Triple Modular
Redundancy in order to prove that the redundant system implements an FTMR that
averages the computation of the elevator.

` ∀d e1 e2 e3 ev dv inp out.

TMR dv ev (BLOCK d e1 elevator) (BLOCK d e2 elevator)

(BLOCK d e3 elevator) (inp,out)

⇒ SYSTEM (d+dv) (ETMR e1 e2 e3 ev d inp)

(FTMR e1 e2 e3 elevator) (inp,out)

The correctness theorem for the TMR is easily derived from the theorems shown
in Section 2.4. The proofs for these theorems are trivial. We only have to instantiate
the function to be elevator. The proof effort was entirely on the proof of the theorems
of Section 2.4. It is possible to make this particular proof of the elevator completely
automatic, although we have not done it yet.

66

5.3. APPLYING TRIPLE MODULAR REDUNDANCY TO ECS

Note we do not need to instantiate the failure model in the theorem above. This is
because the correctness theorem for TMR (and the other patterns) universally quantify the
failure model. This is an advantage of our model, since our theorems can be applied to
systems with any failure model (our main concern is behavioural preservation, not safety
improvement).

To prove that the TMR pattern applied to elevator preserves the behaviour of elevator

we need to prove that

elevatore1 t (THE FST(inp)) v
(FTMR e1 e2 e3 elevator)(ETMR e1 e2 e3 ev d inp) t (THE inp)

By rewriting the application (FTMR e1 e2 e3 elevator)(ETMR e1 e2 e3 ev d inp) t

(THE inp) using the FTMR (Definition 3.23) we obtain the equation next, which is essen-
tially the Equation 4.20 with f replaced by elevator. Recall that, in the TMR, all replicas
are equivalent as they are identical copies of each other. This refinement establishes the be-
havioural preservation of TMR applied to elevator. Similarly, we could prove refinements
for elevatore2 t (THE(FST(SND(inp)))) and elevatore3 t (THE(SND(SND(inp)))) (the
other replicas of the elevator).

elevatore1 t (THE FST(inp)) v
let in1 = FST(inp) in

let in2 = FST(SND(inp)) in

let in3 = SND(SND(inp)) in

i f IS_SOME(in1) ∧ IS_SOME(in2) ∧ IS_SOME(in3) ∧
¬e1(t) ∧ ¬e2(t) ∧ ¬e3(t)

then (1/3)∗ (elevatore1 t (THE in1)+ elevatore2 t (THE in2)

+elevatore3 t (THE in3))

else if IS_SOME(in1) ∧ IS_SOME(in2) ∧ ¬e1(t) ∧ ¬e2(t)

then (1/2)∗ (elevatore1 t (THE in1)+ elevatore2 t (THE in2))

else if IS_SOME(in1) ∧ IS_SOME(in3) ∧ ¬e1(t) ∧ ¬e3(t)

then (1/2)∗ (elevatore1 t (THE in1)+ elevatore3 t (THE in3))

else if IS_SOME(in2) ∧ IS_SOME(in3) ∧ ¬e2(t) ∧ ¬e3(t)

then (1/2)∗ (elevatore2 t (THE in2)+ elevatore3 t (THE in3))

else if IS_SOME(in1) ∧ ¬e1(t) then (elevatore1 t (THE in1))

else if IS_SOME(in2) ∧ ¬e2(t) then (elevatore2 t (THE in2))

else (elevatore3 t (THE in3))

67

5.4. CONCLUDING REMARKS

5.4 Concluding Remarks

This chapter illustrated how the theorems of the Chapters 3 and 4 can be used in prac-
tise. We have shown how a Simulink model of a simplified elevator control system
(ECS) can take advantage of the triple modular redundancy pattern to improve the safety
and reliability of the original model. We translated manually the Simulink model to a
HOL4 function called elevator. We have shown that by plugging into the TMR three
BLOCKs that implement a SYSTEM that computes the elevator function, the new sys-
tem behaves as one that computes FTMR e1 e2 e3 elevator, where e1, e2 and e3 are
the failure models of each BLOCK. By applying the refinement notions developed at
Chapter 4 we easily proved that the body of the function FTMR e1 e2 e3 elevator refines
elevatore1t(THE FST(inp)). Therefore, we showed that the elevator system is improved
by one that computes FTMR e1 e2 e3 elevator.

The ECS case study uses 116 lines of specification in HOL4 (see Appendix A). To
prove the case study described in this chapter, the HOL4 system takes less than 2 seconds
to discharge the proofs.1

Thanks to the compositionality of our theorems, we could continue to apply more
fault redundant patterns if we wished. For instance, we could replicate the entire TMR

system and plug the replicas into an HR (see Figure 5.12). As the TMR also implements a
SYSTEM, the entire replication with HR could be easily proved to implement a SYSTEM

too. This SYSTEM would compute the function (FHR (FTMR e1 e2 e3 elevator)) e1).
With a bit of an effort we could prove that the correspondent expression to this SYSTEM

refines elevatore1 t (THE (FST inp)).

1These figures were obtained by running the HOL4 system on Linux Ubuntu 9.4 in a Intel T7250 with
2 GB of RAM, 2.0 GHz and 2 MB (cache).

68

5.4. CONCLUDING REMARKS

System1 out1inp1

System2 out2inp2 Voter

System3 out3inp3

System1' out1'inp1'

System2' out2'inp2' Voter

System3' out3'inp3'

Monitor outinp

Figure 5.12 Compositionality of patterns.

69

6
Related Work

This chapter presents an overview of previous work on the formal verification of fault
tolerant systems and of block diagrams. We start by discussing related works on the
formalisation of block diagrams in Section 6.1 and then focus on works that specifically
model fault tolerant patterns (Section 6.2). At the end of this chapter, in Section 6.3 we
evaluate each approach with respect to ours.

6.1 Formal Model of Block Diagrams

IEC 61131-3 [20] is a standard that specifies Function Block Diagrams (FBD) as a
programming language. FBD is a notation usually applied to model programmable
controllers and are composed of blocks that compute functions and can present a failure
during its execution. Each block has two input signals: one carries data and the other is
a control signal that enables or disables the execution of the block. Disabling does not
necessarily happens due to a failure in the data signal. It is the environment responsibility
to set that signal. The model also presents two output signals: one for validation and
another for data. The output validation signal indicates when a failure occurs during the
block execution.

Orlarey et al. [33] proposed an algebraic approach to block diagram construction. The
proposed algebra is based on three binary operators: sequential, parallel and recursive
composition. These operations are used in order to connect two block diagrams to
generate a new one. The main aim of Orlarey et al. [33] is to provide a denotational
semantics for a block diagram language that describes temporal and functional aspects
of the operators. The authors assume that basic blocks are pre-defined. However, two
operations on basic blocks are defined: ins(b), which gives the number of input ports
of a block b, and outs(b), which gives the number of output ports of b. The operations

70

6.2. VERIFICATION OF FAULT TOLERANT SYSTEMS

defined on block diagrams are constrained by a type system that limits the composition
to cases where the number of input and output ports satisfy specific rules. Signals are
modelled as functions from natural numbers to real and the block functionality is given
by functions from tuple of signals to tuple of signals.

6.2 Verification of Fault Tolerant Systems

Pioneering work on the verification of fault tolerant patterns were done by Owre et al. [34],
Butler et al. [6] and Sokolsky et al. [38] in the nineties. They verified a model for a fault
tolerant architecture for distributed processors called the Reliable Computing Platform
(RCP) and a redundancy management system (RMS) for a Space Launch Vehicle. More
recently, Dajani-Brown et al. applied SCADE [1] (a commercial language and tool similar
to Lustre [17]) to verify a triple modular redundancy with SCADE’s model checker [8],
and Jesus [9] verified properties of a model of an Elevator Control System (ECS) using
Communicating Sequential Processes (CSP) [19]. In what follows we describe each work
in more detail.

6.2.1 Formal verification of fault-tolerant architectures: Prolegom-
ena to the design of PVS

The formalisation of Owre et al. [34] was done in EHDM 1 [27] (the predecessor of
PVS [35]). The authors point out that the redundancy management is a challenging
problem that, if not handled correctly, can itself become the primary source of system
failure. The Reliable Computing Platform (RCP) [34] is a real-time computing architec-
ture designed to run in aerospace missions. Therefore it must be able to recover from
the effects of transient failures, which are the most common failures in this environment.
Transient failures are temporary failures caused by single-event upsets such as cosmic
radiation, electromagnetic interference and others passing hazards. In the case of a
hardware running in an aerospace environment, these failures occur naturally when an
equipment cross high intensity radiated fields (HIRF). After some random time or after
resetting the hardware component, the transient failures disappears. The RCP architecture
has several independent computing channels (processors) operating synchronously. All
channels run the same application on the same data at approximately the same time and
the results are submitted to majority voting before being sent to the actuators.

1Enhanced Hierarchical Development Methodology

71

6.2. VERIFICATION OF FAULT TOLERANT SYSTEMS

Faults are classified in three categories: byzantine (non-detectable faults in all chan-
nels), symmetric faults (systematic faults in all channels) and manifest faults (that can be
detected by all non-faulty receivers). It is assumed that all faults are transient and that
damages to a data caused by one subsystem do not propagate to cause another working
subsystem to failure. Recovering from manifest faults typically requires less resources
than recovering from byzantine faults. For example, in order to withstand two byzantine
failures, the RCP architecture requires at least five channels operating in parallel. In
contrast, five channels are enough to withstand up to four manifest faults. Owre et al.

proved that a replicated synchronous system using majority voting presents the same
behaviour of a single system with no failures.

The tool used to perform the verification of behavioural preservation of the RPC
was EHDM. It is a system for the development, management and analysis of formal
specifications. The proofs in EHDM are structured in a similar way to HOL4, with proof
strategies that looks like tactics. During the verification of the RCP architecture, several
other verifications were conducted by the same team in cooperation with the National
Aeronautics and Space Administration (NASA). Besides the mechanisation effort to build
verified hardware and software, these verifications fostered improvements in EHDM
that guided the authors to developed the “next generation” of EHDM, which became
PVS [35].

6.2.2 Formal design and verification of a reliable computing plat-
form for real-time control (phase 3 results)

A more ambitious and detailed verification of the RCP was carried out by Butler et

al [6]. Their verification is divided into 5 levels of specifications as depicted in Figure 6.1.
The topmost level of hierarchy, called Uniprocessor Synchronous (US), consists of an
operating system that sequentially invokes the tasks. This level behaves as a single
processor that never fails: it is used as a correctness criterion in comparison with the
lower levels. In comparison to Owre’s verification, this level is equivalent to a single
ideal system.

The level below US is the replicated synchronous system (RS). It extends the operating
system to support multiple processors that execute the same application. At this level,
it is assumed the existence of a global time base (i.e. synchronised time) and a reliable
voting mechanism that does not fail itself. In this level the fault tolerance is achieved by

72

6.2. VERIFICATION OF FAULT TOLERANT SYSTEMS

Uniprocessor Synchronous (US)

Replicated Synchronous (RS)

Distributed Synchronous (DS)

Distributed Asynchronous (DA)

Local Executive (LE)

Figure 6.1 Five-level of RCP Hierarchy of Butler et al. [6]

applying an exact match voting2 mechanism to the results of each processor result. The
voting and the data exchange are regarded as atomic actions as they do not take time to
occur.

The next level is the distributed replicated synchronous system (DS). It models the
interprocessor communication mechanism and breaks the voting and data exchange
transitions of the RS level into four sequential sub-transitions (compute, broadcast,
compute and synchronisation). This break is done in order to separate the concerns
related to real-time computation from those related to interprocessor communication,
and the time involved in the computation, communication and voting. At this level all
processors still share a common clock time.

The fourth level is the distributed asynchronous replicated system (DA). At this
level the assumptions of the ideal synchronisation among channels is discharged and
each process is associated to a different clock time. The DA machine implements a DS
machine provided an underlying clock synchronisation mechanism has been established.

The last level of RCP architecture is the local executive (LE), which takes into
account details of the operating system memory management, task management, and
inter-processor communication. The verification of the behavioural preservation between
the layers was done in EHDM. The verification between US and RS layers is quite similar
to verification of RCP carried out by Owre et al. [34].

Each level is described by at least one state and a set of operations. These operations
are functions that change the state. Axioms were introduced to relate the operations and
the components of the states at the same level. This style of specification reminds the
Z [39] specification style, which uses state schemes to model a system and operations

2Exact match voting uses a single source input data that must be shared by all redundant processors to
ensure that the same input had been processed by all channels [5].

73

6.2. VERIFICATION OF FAULT TOLERANT SYSTEMS

schemes to model possible changes in the state. The correctness proof between levels
is established by defining a mapping that relates the state of these levels. Besides this
mapping, two theorems are proved for each correctness proof: the frame_commutes,
which states that any state changing in one level has an equivalent state changing in the
other level; and the initial_maps, which states that any initial state in the lower level can
be mapped into an initial state in the higher level.

The overall specification and proofs are described along a series of technical reports
and papers published by Butler et a.l [41, 5, 6, 40, 42].

6.2.3 Verification of the redundancy management system for space
launch vehicle: A case study

Sokolsky et al. [38] verified the Multiple computer Architecture for Fault Tolerance
(MAFT), a redundancy management system (RMS) designed for a Space Launch Vehicle
. MAFT is a modular architecture that consists of multiple processing nodes (channels),
called application processors, that compute exactly the same function simultaneously.
Every node is connected to an RMS processor, which detects faulty nodes and exclude
them from the voting process. All RMS processors are mutually connected through
exclusive links. An overview of this architecture for four application processes is depicted
in Figure 6.2. Note that there is no central node that synchronises the computation
between the application processors. Each RMS node receives the outputs from other
RMS nodes and locally performs the voting process and sends the result back to the
application node.

RMS RMS RMS RMS

Application
Processor

Application
Processor

Application
Processor

Application
Processor

I/O I/O I/OI/O

Cross Channel Data Links

Fault Tolerant Bus

Figure 3. A four-channel RMS based fault-tolerant system

5. The system should be able to readmit a fault-free node

into the operating set within one major frame in order

to preserve system resources.

6. At startup RMS should synchronize with all other

nodes to form the potential operating set (OPS) incre-

mentally. All nodes in the OPS should maintain a syn-

chronization skew of less than 0.1 ms.

7. RMS should use different voting algorithms [10, 15]

for different types of data: (A) Majority voting for fi-

nite discrete data. (B) Mid-Value Selection voting for

integer or floating-point numbers. (C) Mean of Medial

Extremes voting for system synchronization.

8. RMS should collect application data at the minor

frame boundary, vote the data, and signal the availabil-

ity of the voted data with the application data ready

signal before the next minor frame boundary.

9. CCDL communications should be by serial link that

runs at a minimum speed of 8Mbps.

10. The CCDL shall be able to receive messages frommul-

tiple nodes (including itself) simultaneously.

11. Messages sent through the CCDL should include error

detection code to detect transmission errors.

2.2. RMS Design and Implementation

Since RMS and application partitioning can be either

logical or physical, both software and hardware implemen-

tation of RMS are feasible. RMS may be a software ker-

nel that shares the same processor with application tasks,

resulting in only logical partition. RMS may also be a

hardware device that is physically separated from the ap-

plication processor. For the X-33, a dedicated VME-based

computer board separate from the application hosts RMS.

A total hardware implementation of RMS makes the design

less portable in spite of providing superior performance. On

the other hand, a full software implementation can be easily

ported to a different platform although it may not meet the

timing constraints. To meet the performance goals for the

VMC on the X-33 VentureStar, a hybrid approach is used

by providing most of the RMS functions in software, while

implementing cross channel communication between RMS

nodes in hardware.

Thus, RMS consists of two parts as shown in Figure 4:

(a) the Fault-Tolerant Executive (FTE) and (b) the Cross-

Channel Data Link (CCDL). The FTE performs the re-

dundancy management functions in software, whereas the

CCDL performs cross-channel data communication in hard-

ware. The FTE provides major RMS functions which in-

clude: maintaining system synchronization (Synchronizer);

voting on application data and RMS internal state (Voter);

error detection and fault isolation and recovery (Fault Tol-

erator); managing the cross channel data link (Manage

CCDL); performing built-in-test at startup (Diagnostics);

managing the application interface (Task Communicator);

and, coordination of correct and timely operations of all the

functions above (Kernel). The Cross Channel Data Link

(CCDL) is designed as a mezzanine board that is seated on

the VME card running the FTE. The CCDL card provides

the physical interface between the redundant nodes and per-

forms error checking on message transmission. Pseudo

code is prepared for various components of the FTE and re-

viewed by peers. In addition, a detailed design of the CCDL

including schematics is developed and verified.

RMS development follows various well-established soft-

ware engineering process for software development, testing,

and validation. Peer reviews are conducted during prelimi-

nary and detailed design. In addition, code inspection is per-

Figure 6.2 Four channel RMS based fault-tolerant system [38]

74

6.2. VERIFICATION OF FAULT TOLERANT SYSTEMS

The partition between application processors and the RMS processor can be physical,
in case where each one is a dedicated hardware, or logical, in case where they share the
same hardware. Independently of how this partition is done, the processor nodes operate
independently of each other in the sense that a fault in an application node must not
influence a fault in the RMS associated. The RMS node is subject to several operational
and functional requirements, being the most of these related to temporal constraints
inherent to real time systems.

The fault tolerance provided by MAFT can be realised in four stages: fault detection,
fault containment, fault diagnosis and recovering. Faults can be transient, intermittent
and permanent. After detecting a fault, it is contained in their originated nodes. The
purpose of this action is to avoid that a fault in one application process node propagates
to other nodes during the voting process.

An important point of MAFT is a separation of two concerns: the redundancy man-
agement system and the application. This separation of concerns was also done in the
RCP and reduces the development complexity of designing new application.

The verification of the MAFT was carried out in PARAGON [37], a tool-set for visual
specification and formal verification of distributed real-time systems, which is based on
the Algebra of Communicating Shared Resources (ACSR) [4]. PARAGON formalises
temporal properties easily and checks for absence of zenoness3. The goal of formal
analysis of MAFT was to ensure the compliance of the RMS design with the operational
and functional requirements of this component. Not all requirements were verified by
formal analysis due to the abstractions and assumptions made to represent the model.
Actually, the verified requirements refer to interactions among RMS nodes and temporal
constraints that the MAFT must satisfy, as maximum time to complete the functional
computation. One of the requirements that were not verified concerns the verification
of different voting algorithms specific for particular datatypes. The authors assumed
that whatever algorithm used for voting would produce correct results regardless the
datatypes.

The formal model consisted of three parallel processes representing three RMS nodes.
Each one of these processes is described by the composition of internal processes. The
most important processes are: the Fault Tolerant Executive (FTE), which performs
the redundancy management functions, the Cross Channel Data Link (CCDL), which
performs the cross-channel data communication and the Timer, which represents the

3Zenoness refers to the situation that infinite actions may take place in a finite amount of time. It is a
behaviour often considered as undesirable since it violates a fundamental requirement for timed systems
for they cannot be infinitely fast [16].

75

6.2. VERIFICATION OF FAULT TOLERANT SYSTEMS

hardware timer included in each node. For every property to be verified, an observer
process was created to run in parallel with the system and to detect violation of the
property in question. The verification was carried out by the PARAGON model checker.
Whenever an illegal behaviour was observed, the observer induced a deadlock in order to
stop the checker.

At the end of the verification, the authors could verify 11 of 32 requirements of
MAFT. Several violations were detected in the original specification. Besides the verified
properties, properties as behavioural preservation were also formalised. However, these
properties were not verified due the state explosion problem.

6.2.4 Formal Verification of an Avionics Sensor Voter Using
SCADE

More recently, Dajani-Brown et al. [8] applied SCADE (Safety Critical Application
Development Environment) [1], a commercial language and tool based on the Lustre
language [17], to verify a triple modular redundancy with SCADE’s model checker.

The authors used as a starting point the Simulink diagram of a triplex sensor voter that
takes inputs from three redundant sensors. The voter assumes that each input comes with
data and a self-check bit (validity flag) and outputs a single reliable output. The inputs
that do not differ more than a threshold are used in order to produce the output, which is
the average of them. Valid outputs are always produced when there are one or three valid
inputs. However, if there are two valid inputs and they differ more than a threshold, the
voter cannot determine which one is the faulty. In this case, the voter produces an output
signalling the data as invalid. Faults are classified in two categories: hardware faults and
signal faults. The former comprises faults that are identified by the validity flag. These
faults are detected by the voter, which eliminates the sensor after 2 voting cycles. Signals
faults are only detectable during the voting process when two valid signals differ more
than a threshold. All faults regarded in this work are permanent faults.

In the SCADE model checker, called Design Verifier, safety properties are modelled
as an observer node, which is a diagram that receives as input the variables involved in
the property and produces an output that should always be true. If the output is always
true, the model checker validates the property, otherwise a counter-example that violates
the property is generated. The counter-example is a set of input values that makes the
assertion to be false.

Although the voter supports up to two sensors faults without producing an invalid
output, the model does not capture simultaneous fault injection. Two or three faults can

76

6.2. VERIFICATION OF FAULT TOLERANT SYSTEMS

occur subsequently, i.e. in cascade. This assumption was done due to the probability of
two simultaneous faults be sufficiently low. The possible states transitions of the voter are
depicted in Figure 6.3. Note that sensor recovering is not allowed by this model as there
is no transition from a state with more faulty sensors to a state with less faulty sensors.
The initial state of the diagram is S0.

S4
0 valid sensors,
Output not valid

S3
1 valid sensor,
Output valid

S2
2 valid sensors
Miscompare,

Output not valid

S0
3 valid sensors,

Output valid

S1
2 valid sensors
No miscompare,

Output valid

Figure 6.3 Fault states of the sensor voter [17]

The properties that were verified state that, after a specific number of cycles of voting,
the voter detects a fault. All transitions depicted in Figure 6.3 were verified to validate
that these expected effects. It was also checked that faulty sensors eliminated by the
voting algorithm do not become available again.

The whole point of this work was to show the significance of modelling the environ-
ment were the sensors act. The environment model limits the range of values the model
checker should explorer, thus making the verification feasible.

6.2.5 Formal Design and Validation of Fly-by-Wire Control Sys-
tems

Jesus [9] verified safety properties of a model of an Elevator Control System (ECS)
developed by Embraer. In his dissertation he proposed a strategy to translate Simulink
block diagrams to CSP [19] using a set of algebraic rules. The original ECS model from
Embraer employs redundancy in the actuators to move two elevator surfaces. According to
the ECS specification, the elevator system must control only the up and down movement

77

6.3. CONCLUDING REMARKS

of the aircraft. Other movements as changing the rolling of the aircraft (rotate the aircraft
body right and left) should not be caused by the elevator system.

The ECS is composed of two elevators surface and four actuators, with two actuators
per surface. The actuators receive commands from different controllers. The analysis in
CSP revealed that if the controllers are not synchronised, there is the possibility of each
elevator surface to reflect the intention of one of the pilots of the aircraft. In this case, if
the side-sticks of the captain and the first-officer are in opposite directions, the controllers
can drive the elevators surfaces to opposite directions, causing the rolling of the aircraft.
This behaviour was revealed by an observer process that induces a deadlock in the system
if the surfaces are driven in opposite directions.

By using the refinement checker FDR2 [12], it was possible check that the alphabe-
tised parallel composition of the system and the observer processes was not deadlock free.
In order the solve this problem, the original architecture was changed to use only two
controllers and force them to read the priorities of the pilots side-sticks synchronously.
These changes solved the synchronisation problem and reduced the time required to
perform the verification using FDR2.

6.3 Concluding Remarks

Function Block Diagrams (FBDs) differ from our block diagram model in HOL4 as
they capture failures caused by abnormal termination (runtime errors, as division by
zero, for example), while our model captures random failures. Besides this, the standard
IEC 61131-3 [20] formalises FBDs as a programming language and not as a formal
specification. In order to verify properties of FBDs, the first step should be to provide a
formal semantics for them.

The work by Orlarey et al. [33] on an algebra for block diagrams has influenced ours
by inspiring us to check if the definitions of BLOCK and SYSTEM are compositional, i.e.
if the sequential and the parallel composition of these definitions still generate BLOCKs

and SYSTEMs, respectively. Compositionality for the fault tolerant patterns were proved
in Chapter 3. In addition to that, we proved that the sequential and the parallel composition
of BLOCKs are well defined if the interfaces of the BLOCKs match (the same was proved
for SYSTEM). We did not present these proofs in this dissertation since they are not
directly related to the verification of fault tolerant patterns. Notwithstanding, these proofs
can be used in future works in the definition of a semantic for block diagrams. Finally,
Orlarey et al. did not formalise faults (neither random nor systematic).

78

6.3. CONCLUDING REMARKS

Regarding the related works on formal verification of fault tolerant systems, they all
differ from ours mainly on the compositionality of the theorems and on the model of
errors. Our work separated the concept of errors from the functional behaviour of the
system. Owre et al. [34] and Butler et al. [6] compared the replicated system with an
original channel that does not fail, which plays the role of an oracle. Different from their
models, our model takes into account the possibility of a failure on every system: both
the original system and the redundancy managers (monitors, voters, etc.) can fail. The
replicated system may fail less often than the original system; but that depends simply
on an appropriate instantiation of the failure model and is concerned with an orthogonal
issue (safety). Different from the work of Owre et al. [34], in our work all faults are
detectable as we use a signal error embedded in the data signal.

Sokolsky et al. [38] verified a redundancy management system with respect to opera-
tional and functional requirements. Their verification assumed that the voter component
is correct in the sense that it never introduces errors in the output when the inputs are
valid. Their model deals with three kinds of voters: majority voting, mid-value selection
and mean of medial extreme values. None of these voters is equivalent to the voter that
we presented in this work. Similar to our work, they assumed that the same function is
computed at same time on replicated systems. Due to our notion of equivalent systems,
we allow dissimilar systems to be used as replicas.

We also capture the situation where a simultaneous failure occurs, differently from
Dajani-Brown et al. [8]. They assumed that all faults are permanent and that the voter
itself does not break, i.e. it always produces valid outputs if the inputs sensors are non-
faulty. The main goal of the Dajani-Brown is not to check the behavioural preservation
of the voter, but to check if temporal restrictions are satisfied by the model. Their model
is very specific with respect to the timing of the failure. Similar to our model, noise is not
formalised.

The work from Jesus [9] can also be used to check the properties of fault tolerant
patterns, mainly those related to synchronisation among the replicated systems. Although
this work does not focus on checking fault tolerant patterns, it was able to reveal that
redundancy management used in the ECS of Embraer could lead to an undesired behaviour.
Different from ours, Jesus’ work does not separate the notions of functionality, delay and
failures.

None of the related works relates the refinement notions with the application of the
fault tolerant patterns. To our knowledge, this is the first work that proposes an axiomatic
basis for reasoning about fault tolerant patterns.

79

7
Conclusions

In this dissertation we proposed a formal model using the HOL4 system to describe the
behaviour of fault tolerant patterns regarding functionality, delay and failures as separate
entities. Thus, a non-replicated channel is a system capable of: computing a certain
function; subject to failure; and having an initialisation delay. The fault tolerant patterns
put together non-replicated channels and pieces of redundancy management systems like
monitors and voters. The separation of concerns (functionality, failure model and the
initialisation delay) distinguishes our model from other related works, which omit the
delay and the failure model.

When we say that the computation performed by the fault tolerant patterns is es-
sentially the same of its subsystems, we mean that its behaviour is a refinement of the
behaviour of its subsystems with respect to our new notions of refinement (Chapter 4).
The traditional refinement notions do not capture the systems engineer practise. Whenever
engineers introduce redundancy, they assume the behaviour is preserved in two cases:
(i) when a replica is introduced as a backup system (Axiom 4.14); (ii) when the output
is produced from the average of the output of the replicas (Axiom 4.8). By postulating
these two scenarios as axioms, we could capture the system engineers practises and could
prove that the behaviour of the patterns HR, HetR and TMR are, in fact, derivable from
these axioms and the functionality of their subsystems.

We also proved that if the fault tolerant patterns are built from subsystems that
implement a SYSTEM, then they become SYSTEMs themselves. Such compositionality
allows us to easily compose patterns and prove that the whole system is still a SYSTEM.

Finally, the process of proving the correctness theorems also revealed us the failure
model of the fault tolerant patterns: it is by proving the correctness theorem that we found
out under which conditions the patterns can fail: i.e. the final definitions of the functions
E and ETMR were discovered during the proof process.

80

7.1. FUTURE WORK

7.1 Future Work

Here we point out possible directions for future works. Some of them has been undertaken,
while others just illustrate possible extensions to this work.

• Formalisation of the notion of cold redundancy. In this work the patterns use hot

redundancy, which requires that all channels to be active at the same time and all
the time. Due to it, the formalised patterns have no notion of intermediate states
during the recovering from a failure: selecting a non-faulty replica is instantaneous.
Cold redundancy uses replicas that are activated just on demand, when the current
active channel has a persistent failure. In this case, the component that manages the
redundancy takes some time to recover from a failure because of the initialisation
delay of the secondary channel. To formalise this notion we should change the
definition of MONITOR and define how to classify a fault as permanent. We could
also introduce delay in the MONITOR to reflect the fact that switching between
channels takes time to occur.

• Investigate how to extend our model to represent a generic block diagram. We
proved theorems stating that the sequential and parallel composition of BLOCKs

result in a BLOCK, and that the sequential and parallel composition of SYSTEMs

result in a SYSTEM. We also intend to investigate if recursive composition of
BLOCKs and SYSTEMs are compositional.

• Extend the BLOCK and the SYSTEM definitions to allow inter-system communica-
tion. The communication protocol should allow a system be depowered or enter
in a fail-safe state. This extension would turn feasible to model lightweight fault
tolerant patterns, such as the watchdog pattern, where a channel is monitored by
another and, in case of a permanent fault, it is depowered or sent to a fail-safe state.

• Extend the SYSTEM definition to support non-deterministic computation. This
extension allows us to specify the behaviour of state in the SYSTEMs. We realise
this extension could allow us to model a monitor with state that records what is the
current active channel. It reflects the fact that the monitor is a physical component
that switches to the alternative channel when a fails occur and, after the switch,
remains in the alternative channel until a new failure be detected.

• Finally, we plan to verify the correctness of other fault tolerant patterns used in real
projects in industry. Especially, those patterns used by our partner, Embraer. In

81

7.1. FUTURE WORK

particular, there are several alternatives for the implementation of the homogeneous
redundancy and triple modular redundancy.

82

Bibliography

[1] The SCADE suite. http://www.esterel-technologies.com/products/scade-suite [On-
line; accessed on 25th February 2012].

[2] Ashraf Armoush. Design Patterns for Safety-Critical Embedded Systems. Disserta-
tion, Embedded Software Laboratory - RWTH Aachen University, 2010.

[3] Ralph J. Back and Joakim Wright. Refinement Calculus: A Systematic Introduction

(Texts in Computer Science). Springer, 1998.

[4] Patrice Bremond-Gregoire, Insup Lee, and Richard Gerber. ACSR: An algebra of
communicating shared resources with dense time and priorities. Lecture Notes in

Computer Science, 715, 1993.

[5] Ricky W. Butler and Ben L. Di Vito. Formal design and verification of a reli-
able computing platform for real-time control (phase 2 results). NASA Technical
Memorandum 104196, 1992.

[6] Ricky W. Butler, Ben L. Di Vito, and C. Michael Holloway. Formal design and
verification of a reliable computing platform for real-time control (phase 3 results).
NASA Technical Memorandum 109140, 1994.

[7] Albert Camilleri, Michael J. C. Gordon, and Tom Melham. Hardware verification
using higher-order logic. In Dominique Borrione, editor, Proceedings of the IFIP

WG 10.2 Working Conference on From HDL Descriptions to Guaranteed Correct

Circuit Designs, pages 43–67. North-Holland, 1987.

[8] Samar Dajani-Brown, Darren Cofer, and Amar Bouali. Formal verification of an
avionics sensor voter using scade. In Yassine Lakhnech and Sergio Yovine, editors,
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
volume 3253 of Lecture Notes in Computer Science, pages 381–386. Springer Berlin
/ Heidelberg, 2004. 10.1007/978-3-540-30206-3_3.

[9] Joabe Bezerra de Jesus Júnior. Design e Validação Formal de Sistemas de Controle
de Voo Fly-By-Wire. Master’s thesis, Universidade Federal de Pernambuco, Recife,
2009.

[10] Diego Machado Dias and Juliano Manabu Iyoda. Behavioural preservation in
fault tolerant patterns. In Proceedings of the 14th Brazilian conference on Formal

83

BIBLIOGRAPHY

Methods: foundations and Applications, SBMF’11, pages 156–171, Berlin, Heidel-
berg, 2011. Springer-Verlag.

[11] Bruce Powel Douglass. Real-Time Design Patterns: Robust Scalable Architecture

for Real-Time Systems. Addison-Wesley Professional, 2002.

[12] M. Goldsmith. FDR: User Manual and Tutorial, version 2.77. Formal Systems
(Europe) Ltd, August 2001.

[13] Michael J. C. Gordon. HOL: A machine oriented formulation of higher order logic.
Technical Report 68, The Computer Laboratory, University of Cambridge, 1985.

[14] Michael J. C. Gordon. Why Higher-Order Logic is a Good Formalism for Specifying
and Verifying Hardware. In G. J. Milne and P. A. Subrahmanyam, editors, Formal

Aspects of VLSI Design. North-Holland, 1986.

[15] Michael J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem

proving environment for higher order logic. Cambridge University Press, New York,
NY, USA, 1993.

[16] Rachid Hadjidj, Hanifa Boucheneb, and Drifa Hadjidj. Zenoness detection and
timed model checking for real time systems. In Workshop on Verification and

Evaluation of Computer and Communication Systems (VECoS), 2007.

[17] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow
programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320,
September 1991.

[18] Keith Hanna and Neil Daeche. Specification and Verification using Higher-Order
Logic: A Case Study. In G. J. Milne and P. A. Subrahmanyam, editors, Formal

Aspects of VLSI Design, 1986.

[19] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International,
1985.

[20] International Electrotechnical Commission. IEC 61131-3 Ed. 1.0 en:1993: Pro-

grammable controllers — Part 3: Programming languages. International Elec-
trotechnical Commission, pub-IEC:adr, 1993.

84

BIBLIOGRAPHY

[21] Jeffrey J. Joyce. More reasons why higher-order logic is a good formalism for
specifying and verifying hardware. Technical report, Vancouver, BC, Canada,
Canada, 1990.

[22] N.M. Karayanakis. Advanced System Modelling and Simulation With Block Diagram

Languages. CRC Press, 1995.

[23] Leroy Keith. Advisory Circular - System Design and Analysis, 25.1309-1A, 1988.

[24] Kathryn Kemp. Formal methods specification and verification guidebook for soft-
ware and computer systems. volume i: Planning and technology insertion. Technical
Report NASA/TP-98-208193, National Aeronautics and Space Administration,
NASA Office of Safety and Mission Assurance, Washington D.C., December 1998.

[25] Israel Koren and C. Mani Krishna. Fault Tolerant Systems. Morgan Kaufmann
Pblishers Inc., San Francisco, CA, USA, 2007.

[26] Mathworks. Matlab/simulink, 2011. http://www.mathworks.com [Online; accessed
on 25th February 2012].

[27] P. Michael Melliar-Smith and John Rushby. The Enhanced HDM system for
specification and verification. In VerkShop III, pages 41–43, Watsonville, CA, 1985.

[28] Michael Norrish and Konrad Slind. The HOL System DESCRIPTION. HOL4
Manual, 1988.

[29] Michael Norrish and Konrad Slind. The HOL System LOGIC. HOL4 Manual, 1988.

[30] Michael Norrish and Konrad Slind. The HOL System REFERENCE. HOL4 Manual,
1988.

[31] Michael Norrish and Konrad Slind. The HOL System TUTORIAL. HOL4 Manual,
1988.

[32] Katsuhiko Ogata. Modern Control Engineering. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 4th edition, 2001.

[33] Y. Orlarey, D. Fober, and S. Letz. An algebraic approach to block diagram construc-
tions. In GMEM, editor, Actes des Journées d’Informatique Musicale JIM2002,

Marseille, pages 151–158, 2002.

85

BIBLIOGRAPHY

[34] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification of fault-
tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on

Software Engineering, 21(2):107–125, February 1995.

[35] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In Deepak Kapur, editor, 11th International Conference on Automated Deduction

(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,
Saratoga, NY, jun 1992. Springer-Verlag.

[36] Mark Saaltink. The Z/EVES System. In ZUM ’97: Proceedings of the 10th

International Conference of Z Users on The Z Formal Specification Notation, pages
72–85, London, UK, 1997. Springer-Verlag.

[37] Oleg Sokolsky, Insup Lee, and Hanêne Ben-Abdallah. Specification and analysis of
real-time systems with PARAGON. Annals of Software Engineering 7(1), 211-234,
1999.

[38] Oleg Sokolsky, Mohamed F. Younis, Insup Lee, Hee-Hwan Kwak, and Jeffrey X.
Zhou. Verification of the redundancy management system for space launch vehicle:
A case study. In IEEE Real Time Technology and Applications Symposium, pages
220–229, 1998.

[39] J. M. Spivey. The Z notation: a reference manual. Prentice Hall International (UK)
Ltd., Hertfordshire, UK, UK, 1992.

[40] Ben L. Di Vito and Ricky W. Butler. Formal Techniques for Synchronized Fault-
Tolerant Systems. In C. E. Landwehr, B. Randell, and L. Simoncini, editors,
Dependable Computing for Critical Applications—3, volume 8 of Dependable

Computing and Fault-Tolerant Systems, pages 163–188. Springer-Verlag, Vienna,
Austria, September 1992.

[41] Ben L. Di Vito, Ricky W. Butler, and James L. Caldwell II. Formal design and
verification of a reliable computing platform for real-time control (phase 1 results).
NASA Technical Memorandum 102716, 1990.

[42] Ben L. Di Vito, Ricky W. Butler, and James L. Caldwell II. High level design
proof of a reliable computing platform. In In Dependable Computing for Critical

Applications 2, Dependable Computing and Fault-Tolerant Systems, pages 279–306.
Springer Verlag, 1992.

86

BIBLIOGRAPHY

[43] Jeannette M. Wing. A specifier’s introduction to formal methods. Computer,
23(9):8–23, 1990.

[44] Jim Woodcock and Jim Davies. Using Z: specification, refinement, and proof.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[45] C.J. Zarowski. An Introduction to Numerical Analysis for Electrical and Computer

Engineers. John Wiley & Sons, 2004.

87

Appendices

88

A
Specification and Case Study:

Proof Scripts

This chapter contains all proof scripts in HOL4, including the case study.

(*--

Definitions and theorems to support composition of blocks and realiability

patterns

--*)

quietdec := true;

show_assums := true;

map load ["metisLib", "optionLib", "combinTheory", "optionTheory",

"realLib", "realTheory", "realSimps", "RealArith"];

open HolKernel

Parse

boolLib

bossLib

metisLib

optionLib

arithmeticTheory

combinTheory

optionTheory

pairTheory

realLib

realTheory

realSimps

RealArith

PairRules;

quietdec := false;

(*---

Start new theory "block"

---*)

89

val _ = new_theory "block";

fun t() = (show_types := not(!show_types));

val kill = (fn theorem => K ALL_TAC theorem);

(*---

In this model, we assume that:

1. Designs are correct

2. Systems may break from fatigue: a random error

3. There are 2 possible sources of random errors: the environment and

our own system

In this setting, signals are modeled as functions from time (natural number)

to ’a option. The type ’a option is a lift of ’a with the value NONE (bottom)

that represents an error. A regular value v is represented by SOME(v).

Example. An num option value can be NONE, SOME(0), SOME(200), etc.

Either the environment can provide NONE signals or our own system.

Once a signal carries NONE, it is carried over to the rest of

the system, i.e. a NONE signal is never transformed into SOME(_).

---*)

(*---

COMB

Combinational (i.e. zero-delay) component with input inp and output out

which computes a function f.

If the input is NONE, then the output is also NONE.

Otherwise, it outputs SOME(f t THE(inp t)) --- this prevents f to

introduce NONE in a valid input as f:’a -> ’b (not ’a option -> ’b option).

---*)

val COMB_def =

Define ‘COMB f (inp:num->’a option,out:num->’b option) =

!t:num. out t = if IS_NONE(inp t) then NONE

else SOME(f t (THE(inp t)))‘;

(*---

DEL

Polymorphic delay component

---*)

val DEL_def = Define ‘DEL d (inp:num->’a option,out) = !t. out(t+d) = inp t‘;

(*---

ERROR

The ERROR box takes as input a boolean function e that decides if

an error is to be introduced or not. If the input is NONE, it returns NONE

regardless e.

90

The decision function e takes as input the current time.

---*)

val ERROR_def =

Define ‘ERROR (e:num->bool) (inp:num->’a option,out) =

!t:num. out t = if e(t) then NONE else (inp t)‘;

(*---

BLOCK

A block is a Simulink system (it represents a network of subsystems).

A block computes f with a certain delay and with possible random errors.

---*)

val BLOCK_def =

Define ‘BLOCK d e f (inp:num->’a option,out) =

?out1 out2. ERROR e (inp,out1) /\

COMB f (out1,out2) /\

DEL d (out2,out)‘;

(*---

SYSTEM

A system computes f with a certain delay and possible error.

A system is not necessarily atomic. It may be the composition of systems

and blocks. This is our specification.

---*)

val SYSTEM_def =

Define ‘SYSTEM (d:num) e f (inp: num->’a option, out: num->’b option) =

!t. out (t+d) = if (IS_NONE (inp t) \/ e(t))

then NONE

else SOME(f t (THE(inp t)))‘;

(*---

BLOCK_IMPL_SYSTEM

A block is an implementation of a system.

---*)

val BLOCK_IMPL_SYSTEM =

Q.store_thm(

"BLOCK_IMP_SYSTEM",

‘ !d e f inp out. BLOCK d e f (inp,out) ==> SYSTEM d e f (inp,out)‘,

PURE_REWRITE_TAC [BLOCK_def, SYSTEM_def, ERROR_def, COMB_def, DEL_def]

THEN REPEAT STRIP_TAC

THEN Cases_on ‘e t‘

THEN ASM_SIMP_TAC bool_ss [IS_NONE_DEF]);

(*--

BUS

A bus convert a pair (’a option, ’b option) into a pair

(’a option, b’ option) option.

MUX undoes what BUS does.

--*)

91

val BUS_def =

Define ‘BUS ((inp1: num->’a option,inp2 : num-> ’b option),out) =

!t. out t = if (IS_NONE(inp1 t) /\ IS_NONE(inp2 t)) then NONE

else SOME(inp1 t, inp2 t)‘;

val MUX_def = Define

‘MUX (inp:num->(’a option # ’b option) option,(out1,out2)) =

!t. (out1 t =

if IS_NONE (inp t) then NONE

else FST (THE (inp t))) /\

(out2 t =

if IS_NONE (inp t) then NONE

else SND (THE (inp t)))‘;

(*--

MONITOR

This function instantiates "f" on the definition of HR.

This function takes as input a type (’a option # ’b option), and assumes

that (NONE,NONE) does not happen. This assumption is OK, since this

function is used in a COMB just after BUS, which eliminates this case.

--*)

val MONITOR_def =

Define ‘MONITOR (t: num) (inp:(’a option # ’a option)) =

if IS_SOME(FST(inp)) then THE(FST(inp))

else THE(SND(inp))‘;

(*--

HR

Homogeneous Redundancy (HR) Pattern

Version 1.0: a monitor that fails

--*)

val HR_def =

Define ‘HR d e s1 s2 (inp:num->(’a option# ’a option) option, out) =

?outsys1 outsys2 outbus inpsys1 inpsys2.

MUX(inp,(inpsys1,inpsys2)) /\

s1(inpsys1, outsys1) /\

s2(inpsys2, outsys2) /\

BUS((outsys1,outsys2),outbus) /\

BLOCK d e MONITOR (outbus,out)‘;

(*--

Few IS_NONE_IS_SOME lemmas

--*)

val IS_NONE_IS_SOME = Q.store_thm("IS_NONE_IS_SOME",

‘!x. IS_NONE(x) = ~(IS_SOME(x))‘,

RW_TAC arith_ss [IS_NONE_DEF,IS_SOME_DEF]);

92

val IS_NONE_IS_SOME2 = Q.store_thm("IS_NONE_IS_SOME2",

‘!x. (IS_SOME(x) = ~(IS_NONE(x)))‘,

METIS_TAC [IS_NONE_IS_SOME]);

val IS_NONE_IS_SOME3 = Q.store_thm("IS_NONE_IS_SOME3",

‘!x. (IS_SOME(x) ==> ~(x = NONE))‘,

METIS_TAC [IS_NONE_DEF,IS_SOME_DEF]);

(*--

EHR

The error of an HR system: it fails whenever both (e1 and e2 fails) or

if the monitor fails at t+d.

FHR

The functionality of an HR system implements a switch-to-backup policy.

--*)

val EHR_def = Define ‘EHR e1 e2 em (d:num) inp t =

em(t+d) \/

e1(t) /\ e2(t) \/

e1(t) /\ IS_NONE(SND(THE(inp t))) \/

e2(t) /\ IS_NONE(FST(THE(inp t))) \/

IS_NONE(SND(THE(inp t))) /\ IS_NONE(FST(THE(inp t)))‘;

(* first version of FHR *)

val FHR_def = Define ‘

FHR f e (t:num) (inp:(’a option # ’a option)) =

if IS_NONE(FST(inp)) \/ e(t) then (f t)(THE(SND(inp)))

else (f t)(THE(FST(inp)))‘;

(* dissertation version of FHR *)

val FHR_dissertation_def = Define ‘

FHR_dissertation f e (t:num) (inp:(’a option # ’a option)) =

if IS_SOME(FST(inp)) /\ ~e(t) then (f t)(THE(FST(inp)))

else (f t)(THE(SND(inp)))‘;

val FHR_EQUALS_FHR_dissertation = Q.store_thm(

"FHR_EQUALS_FHR_dissertation",

‘FHR_dissertation f e t i = FHR f e t i‘,

RW_TAC arith_ss [FHR_def,FHR_dissertation_def,IS_NONE_IS_SOME,

IS_NONE_IS_SOME2, IS_NONE_IS_SOME3]

THEN METIS_TAC []);

(*--

HR_IMPL_SYSTEM

The homogeneous redundancy for the function f implements a system

that computes f.

The delay and functionality of each replica is the same.

The error functions are different.

---*)

val HR_IMPL_SYSTEM = Q.store_thm("HR_IMPL_SYSTEM",‘

93

!dm em d e1 e2 f inp out.

HR dm em (SYSTEM d e1 f) (SYSTEM d e2 f) (inp ,out) ==>

SYSTEM (d+dm) (EHR e1 e2 em d inp) (FHR f e1) (inp,out)‘,

PURE_REWRITE_TAC [HR_def, SYSTEM_def, BLOCK_def,

BUS_def, MONITOR_def, EHR_def, FHR_def,

ERROR_def, COMB_def, DEL_def, MUX_def]

THEN REPEAT STRIP_TAC THEN

ASM_SIMP_TAC bool_ss [] THEN

Cases_on ‘IS_NONE(inp t)‘ THEN

Cases_on ‘em (t+d)‘ THEN

Cases_on ‘e1 t‘ THEN

Cases_on ‘e2 t‘ THEN

Cases_on ‘IS_NONE (FST(THE(inp t)))‘ THEN

Cases_on ‘IS_NONE (SND(THE(inp t)))‘ THEN

ASM_SIMP_TAC bool_ss [IS_SOME_DEF, FST, SND, THE_DEF, IS_NONE_DEF, ADD_ASSOC]);

(*--

HetR

Heterogeneous Redundancy (HetR) Pattern

---*)

val EHetR_def = Define ‘EHetR e1 e2 em (d:num) inp t =

em(t+d) \/

e1(t) /\ e2(t) \/

e1(t) /\ IS_NONE(SND(THE(inp t))) \/

e2(t) /\ IS_NONE(FST(THE(inp t))) \/

IS_NONE(SND(THE(inp t))) /\ IS_NONE(FST(THE(inp t)))‘;

(* the dissertation uses E for EHR and EHetR. It is ok because they are the same *)

val EHR_EQUALS_EHetR =

Q.store_thm("EHR_EQUALS_EHetR",

‘!e1 e2 em d inp t. ((EHR e1 e2 em d inp t) = (EHetR e1 e2 em d inp t))‘,

METIS_TAC [EHR_def,EHetR_def]);

val FHetR_def = Define

‘FHetR f1 f2 e1 (t:num) inp = if IS_NONE(FST(inp)) \/ e1(t)

then (f2 t)(THE(SND(inp)))

else (f1 t)(THE(FST(inp)))‘;

(* dissertation version of FHetR *)

val FHetR_dissertation_def = Define

‘FHetR_dissertation f1 f2 e1 (t:num) inp = if IS_SOME(FST(inp)) /\ ~e1(t)

then (f1 t)(THE(FST(inp)))

else (f2 t)(THE(SND(inp)))‘;

val FHetR_EQUALS_FHetR_dissertation = Q.store_thm(

"FHetR_EQUALS_FHR_dissertation",

‘!f1 f2 e1 t i. ((FHetR_dissertation f1 f2 e1 t i) = (FHetR f1 f2 e1 t i))‘,

RW_TAC arith_ss [FHetR_def,FHetR_dissertation_def,IS_NONE_IS_SOME,

IS_NONE_IS_SOME2, IS_NONE_IS_SOME3]

THEN METIS_TAC []);

94

val HetR_def = Define ‘

HetR d e sys1 sys2 (inp:num->(’a option # ’b option) option,out) =

?inpsys1 inpsys2 outsys1 outsys2 outbus.

MUX(inp,(inpsys1,inpsys2)) /\

sys1(inpsys1,outsys1) /\

sys2(inpsys2,outsys2) /\

BUS((outsys1,outsys2),outbus) /\

BLOCK d e MONITOR (outbus, out)‘;

val HETR_IMPL_SYSTEM = Q.store_thm("HETR_IMPL_SYSTEM",‘

!f1 f2 e1 e2 d dm em inp out.

HetR dm em (SYSTEM d e1 f1) (SYSTEM d e2 f2) (inp, out) ==>

SYSTEM (d+dm)

(EHetR e1 e2 em d inp)

(FHetR f1 f2 e1)

(inp, out)‘,

PURE_REWRITE_TAC [SYSTEM_def, BLOCK_def, BUS_def, MONITOR_def, EHetR_def,

ERROR_def, COMB_def, DEL_def, HetR_def, FHetR_def,

MUX_def] THEN

REPEAT STRIP_TAC THEN

ASM_SIMP_TAC bool_ss [] THEN

Cases_on ‘IS_NONE(inp t)‘ THEN

Cases_on ‘em (t+d)‘ THEN

Cases_on ‘e1 t‘ THEN

Cases_on ‘e2 t‘ THEN

Cases_on ‘IS_NONE (FST(THE(inp t)))‘ THEN

Cases_on ‘IS_NONE (SND(THE(inp t)))‘ THEN

ASM_SIMP_TAC bool_ss [IS_SOME_DEF, FST, SND, THE_DEF, IS_NONE_DEF, ADD_ASSOC]

THEN RES_TAC);

(*--

TMR

Triple Modular Redundancy Pattern

--*)

val TBUS_def = Define ‘

TBUS (inp1: num->’a option, inp2: num->’b option, inp3: num->’c option,out) =

!t. out t = if (IS_NONE(inp1 t) /\

IS_NONE(inp2 t) /\

IS_NONE(inp3 t))

then NONE

else SOME(inp1 t, inp2 t, inp3 t)‘;

val TMUX_def = Define

‘TMUX (inp:num->(’a option # ’b option #’c option) option,(out1,out2,out3)) =

!t. (out1 t =

if IS_NONE (inp t) \/ IS_NONE (FST(THE(inp t)))

then NONE

else FST (THE (inp t))) /\

(out2 t =

if IS_NONE (inp t) \/ IS_NONE (FST(SND(THE(inp t))))

then NONE

95

else FST(SND(THE (inp t)))) /\

(out3 t =

if IS_NONE (inp t) \/ IS_NONE (SND(SND(THE(inp t))))

then NONE

else SND(SND(THE(inp t))))‘;

val VOTER_def = Define ‘

VOTER (t:num) inp =

if ~IS_NONE(FST(inp)) /\ ~IS_NONE(FST(SND(inp))) /\ ~IS_NONE(SND(SND(inp)))

then (1/3)*(THE(FST(inp)) + THE(FST(SND(inp))) + THE(SND(SND(inp))))

else if ~IS_NONE(FST(inp)) /\ ~IS_NONE(FST(SND(inp)))

then (1/2)*(THE(FST(inp)) + THE(FST(SND(inp))))

else if ~IS_NONE(FST(inp)) /\ ~IS_NONE(SND(SND(inp)))

then (1/2)*(THE(FST(inp)) + THE(SND(SND(inp))))

else if ~IS_NONE(FST(SND(inp))) /\ ~IS_NONE(SND(SND(inp)))

then (1/2)*(THE(FST(SND(inp))) + THE(SND(SND(inp))))

else if ~IS_NONE(FST(inp))

then (THE(FST(inp)))

else if ~IS_NONE(FST(SND(inp)))

then (THE(FST(SND(inp))))

else THE(SND(SND(inp)))‘;

val TMR_def = Define ‘

TMR d e S1 S2 S3

(inp:num->(’a option # ’a option # ’a option) option, out) =

? inpsys1 inpsys2 inpsys3 outsys1 outsys2 outsys3

outbus.

TMUX(inp,(inpsys1, inpsys2, inpsys3)) /\

S1 (inpsys1, outsys1) /\

S2 (inpsys2, outsys2) /\

S3 (inpsys3, outsys3) /\

TBUS (outsys1,outsys2,outsys3,outbus) /\

BLOCK d e VOTER (outbus,out)‘;

val ETMR_def = Define ‘

ETMR e1 e2 e3 ev (d:num) inp t = ev (t+d) \/

e1(t) /\ e2(t) /\ e3(t) \/

IS_NONE(FST(THE(inp t))) /\ e2(t) /\ e3(t) \/

IS_NONE(FST(SND(THE(inp t)))) /\ e1(t) /\ e3(t) \/

IS_NONE(SND(SND(THE(inp t)))) /\ e1(t) /\ e2(t) \/

IS_NONE(FST(THE(inp t))) /\

IS_NONE(FST(SND(THE(inp t)))) /\ e3(t) \/

IS_NONE(FST(THE(inp t))) /\

IS_NONE(SND(SND(THE(inp t)))) /\ e2(t) \/

IS_NONE(FST(SND(THE(inp t)))) /\

IS_NONE(SND(SND(THE(inp t)))) /\ e1(t) \/

IS_NONE(FST(THE(inp t))) /\

IS_NONE(FST(SND(THE(inp t)))) /\

IS_NONE(SND(SND(THE(inp t))))‘;

val FTMR_def = Define ‘

FTMR e1 e2 e3 f (t:num) inp =

if ~IS_NONE(FST(inp)) /\ ~IS_NONE(FST(SND(inp))) /\ ~IS_NONE(SND(SND(inp)))

96

/\ ~e1(t) /\ ~e2(t) /\ ~e3(t)

then (1/3)*((f t (THE(FST(inp)))) + (f t (THE(FST(SND(inp))))) +

(f t (THE(SND(SND(inp))))))

else if ~IS_NONE(FST(inp)) /\ ~IS_NONE(FST(SND(inp))) /\

~e1(t) /\ ~e2(t)

then (1/2)*((f t (THE(FST(inp)))) + (f t (THE(FST(SND(inp))))))

else if ~IS_NONE(FST(inp)) /\ ~IS_NONE(SND(SND(inp))) /\

~e1(t) /\ ~e3(t)

then (1/2)*((f t (THE(FST(inp)))) + (f t (THE(SND(SND(inp))))))

else if ~IS_NONE(FST(SND(inp))) /\ ~IS_NONE(SND(SND(inp))) /\

~e2(t) /\ ~e3(t)

then (1/2)*((f t (THE(FST(SND(inp))))) + (f t (THE(SND(SND(inp))))))

else if ~IS_NONE(FST(inp)) /\ ~e1(t)

then (f t (THE(FST(inp))))

else if ~IS_NONE(FST(SND(inp))) /\ ~e2(t)

then (f t (THE(FST(SND(inp)))))

else (f t (THE(SND(SND(inp)))))‘;

(* FTMR as published in the dissertation *)

val FTMR_dissertation_def = Define ‘

FTMR_dissertation e1 e2 e3 f t inp =

if IS_SOME(FST(inp)) /\ IS_SOME(FST(SND(inp))) /\ IS_SOME(SND(SND(inp)))

/\ ~e1(t) /\ ~e2(t) /\ ~e3(t)

then (1/3)*((f t (THE(FST(inp)))) + (f t (THE(FST(SND(inp))))) +

(f t (THE(SND(SND(inp))))))

else if IS_SOME(FST(inp)) /\ IS_SOME(FST(SND(inp))) /\

~e1(t) /\ ~e2(t)

then (1/2)*((f t (THE(FST(inp)))) + (f t (THE(FST(SND(inp))))))

else if IS_SOME(FST(inp)) /\ IS_SOME(SND(SND(inp))) /\

~e1(t) /\ ~e3(t)

then (1/2)*((f t (THE(FST(inp)))) + (f t (THE(SND(SND(inp))))))

else if IS_SOME(FST(SND(inp))) /\ IS_SOME(SND(SND(inp))) /\

~e2(t) /\ ~e3(t)

then (1/2)*((f t (THE(FST(SND(inp))))) + (f t (THE(SND(SND(inp))))))

else if IS_SOME(FST(inp)) /\ ~e1(t)

then (f t (THE(FST(inp))))

else if IS_SOME(FST(SND(inp))) /\ ~e2(t)

then (f t (THE(FST(SND(inp)))))

else (f t (THE(SND(SND(inp)))))‘;

val FTMR_EQUALS_FTMR_dissertation = Q.store_thm(

"FTMR_EQUALS_FTMR_dissertation",

‘!e1 e2 e3 f t i. ((FTMR_dissertation e1 e2 e3 f t i) = (FTMR e1 e2 e3 f t i))‘,

RW_TAC arith_ss [FTMR_def,FTMR_dissertation_def,IS_NONE_IS_SOME,

IS_NONE_IS_SOME2, IS_NONE_IS_SOME3]

THEN METIS_TAC []);

val TMR_IMPL_SYSTEM = Q.store_thm("TMR_IMPL_SYSTEM",‘

!dv ev d e1 e2 e3 f inp out.

TMR dv ev (SYSTEM d e1 f) (SYSTEM d e2 f) (SYSTEM d e3 f) (inp, out) ==>

SYSTEM (dv+d) (ETMR e1 e2 e3 ev d inp) (FTMR e1 e2 e3 f) (inp,out)‘,

PURE_REWRITE_TAC [TMR_def, SYSTEM_def, VOTER_def, ETMR_def,

BLOCK_def, ERROR_def, DEL_def, COMB_def, TBUS_def,

97

TMUX_def, FTMR_def] THEN

REPEAT STRIP_TAC THEN

‘!t d dv. out (t+dv+d) = out(t+d+dv)‘ by RW_TAC arith_ss [] THEN

ASM_SIMP_TAC bool_ss [] THEN

Cases_on ‘IS_NONE(inp t)‘ THEN

Cases_on ‘e1 t‘ THEN

Cases_on ‘e2 t‘ THEN

Cases_on ‘e3 t‘ THEN

Cases_on ‘ev (t+d)‘ THEN

Cases_on ‘ IS_NONE(FST(THE(inp t)))‘ THEN

Cases_on ‘IS_NONE(FST(SND(THE(inp t))))‘ THEN

Cases_on ‘IS_NONE(SND(SND(THE(inp t))))‘ THEN

ASM_SIMP_TAC bool_ss [FST, SND, THE_DEF, IS_NONE_DEF, IS_SOME_DEF, ADD_ASSOC]);

(*------------------ Compositionality of the theorems ------------------------*)

(*---------------------------- HOMOGENEOUS REDUNDANCY ------------------------*)

val LEMMA_HR_COMPOSITIONAL = Q.store_thm("LEMMA_HR_COMPOSITIONAL",

‘!I1 I2 d e1 e2 f dm em inp out.

(!inp out. I1 (inp,out) ==> SYSTEM d e1 f (inp,out)) /\

(!inp out. I2 (inp,out) ==> SYSTEM d e2 f (inp,out))

==> (HR dm em I1 I2 (inp,out)

==> (HR dm em (SYSTEM d e1 f) (SYSTEM d e2 f) (inp,out)))‘,

PURE_REWRITE_TAC [HR_def,SYSTEM_def] THEN REPEAT STRIP_TAC THEN

Q.EXISTS_TAC ‘outsys1‘ THEN Q.EXISTS_TAC ‘outsys2‘ THEN Q.EXISTS_TAC ‘outbus‘

THEN Q.EXISTS_TAC ‘inpsys1‘ THEN Q.EXISTS_TAC ‘inpsys2‘ THEN

ASM_SIMP_TAC bool_ss [IS_NONE_DEF]);

val HR_COMPOSITIONAL = Q.store_thm("HR_COMPOSITIONAL",

‘!I1 I2 d e1 e2 f dm em inp out.

(!inp out. I1 (inp,out) ==> SYSTEM d e1 f (inp,out)) /\

(!inp out. I2 (inp,out) ==> SYSTEM d e2 f (inp,out))

==> (HR dm em I1 I2 (inp,out)

==> SYSTEM (d+dm) (EHR e1 e2 em d inp) (FHR f e1) (inp,out))‘,

PROVE_TAC [LEMMA_HR_COMPOSITIONAL, HR_IMPL_SYSTEM]);

(* as published in the dissertation *)

val HR_COMPOSITIONAL2 = Q.store_thm("HR_COMPOSITIONAL2",

‘!I1 I2 d e1 e2 f dm em inp out.

(!inp out. I1 (inp,out) ==> SYSTEM d e1 f (inp,out)) /\

(!inp out. I2 (inp,out) ==> SYSTEM d e2 f (inp,out))

==> (HR dm em I1 I2 (inp,out)

==> SYSTEM (d+dm) (EHR e1 e2 em d inp) (FHR_dissertation f e1) (inp,out))‘,

METIS_TAC [HR_COMPOSITIONAL, FHR_EQUALS_FHR_dissertation]);

(*--------------------- TRIPLE MODULAR REDUNDANCY --------------------------*)

val LEMMA_TMR_COMPOSITIONAL = Q.store_thm("LEMMA_TMR_COMPOSITIONAL",

‘ !I1 I2 I3 e1 e2 e3 f d dv ev inp out.

(!inp out. I1 (inp,out) ==> SYSTEM d e1 f (inp,out)) /\

(!inp out. I2 (inp,out) ==> SYSTEM d e2 f (inp,out)) /\

98

(!inp out. I3 (inp,out) ==> SYSTEM d e3 f (inp,out))

==> (TMR dv ev I1 I2 I3 (inp,out)

==> (TMR dv ev (SYSTEM d e1 f) (SYSTEM d e2 f) (SYSTEM d e3 f) (inp,out)))‘,

PURE_REWRITE_TAC [TMR_def,SYSTEM_def] THEN REPEAT STRIP_TAC THEN

Q.EXISTS_TAC ‘inpsys1‘ THEN Q.EXISTS_TAC ‘inpsys2‘ THEN

Q.EXISTS_TAC ‘inpsys3‘ THEN Q.EXISTS_TAC ‘outsys1‘ THEN

Q.EXISTS_TAC ‘outsys2‘ THEN Q.EXISTS_TAC ‘outsys3‘ THEN

Q.EXISTS_TAC ‘outbus‘ THEN ASM_SIMP_TAC bool_ss [IS_NONE_DEF]);

val TMR_COMPOSITIONAL = Q.store_thm("TMR_COMPOSITIONAL",

‘!f I1 I2 I3 e1 e2 e3 d dv ev inp out.

(!inp out. I1 (inp,out) ==> SYSTEM d e1 f (inp,out)) /\

(!inp out. I2 (inp,out) ==> SYSTEM d e2 f (inp,out)) /\

(!inp out. I3 (inp,out) ==> SYSTEM d e3 f (inp,out))

==> (TMR dv ev I1 I2 I3 (inp,out)

==> SYSTEM (dv+d) (ETMR e1 e2 e3 ev d inp) (FTMR e1 e2 e3 f) (inp,out))‘,

REPEAT STRIP_TAC THEN

ASSUME_TAC LEMMA_TMR_COMPOSITIONAL THEN ASSUME_TAC TMR_IMPL_SYSTEM THEN

RES_TAC THEN ASM_SIMP_TAC bool_ss []);

(* as published in the dissertation *)

val TMR_COMPOSITIONAL2 = Q.store_thm("TMR_COMPOSITIONAL2",

‘!f I1 I2 I3 e1 e2 e3 d dv ev inp out.

(!inp out. I1 (inp,out) ==> SYSTEM d e1 f (inp,out)) /\

(!inp out. I2 (inp,out) ==> SYSTEM d e2 f (inp,out)) /\

(!inp out. I3 (inp,out) ==> SYSTEM d e3 f (inp,out))

==> (TMR dv ev I1 I2 I3 (inp,out)

==> SYSTEM (dv+d) (ETMR e1 e2 e3 ev d inp) (FTMR_dissertation e1 e2 e3 f) (inp,out))‘,

METIS_TAC [TMR_COMPOSITIONAL, FTMR_EQUALS_FTMR_dissertation]);

(*---------------------------- HETEROGENOUS REDUNDANCY -----------------------*)

val LEMMA_HETR_COMPOSITIONAL = Q.store_thm("LEMMA_HETR_COMPOSITIONAL",

‘ !I1 I2 d e1 e2 f1 f2 dm em inp out.

(!inp out. I1 (inp,out) ==> SYSTEM d e1 f1 (inp,out)) /\

(!inp out. I2 (inp,out) ==> SYSTEM d e2 f2 (inp,out))

==> (HetR dm em I1 I2 (inp,out)

==> (HetR dm em (SYSTEM d e1 f1) (SYSTEM d e2 f2) (inp,out)))‘,

PURE_REWRITE_TAC [HetR_def,SYSTEM_def] THEN REPEAT STRIP_TAC THEN

Q.EXISTS_TAC ‘inpsys1‘ THEN Q.EXISTS_TAC ‘inpsys2‘ THEN

Q.EXISTS_TAC ‘outsys1‘ THEN Q.EXISTS_TAC ‘outsys2‘ THEN

Q.EXISTS_TAC ‘outbus‘ THEN

PROVE_TAC []);

val HETR_COMPOSITIONAL = Q.store_thm("HETR_COMPOSITIONAL",

‘!I1 I2 d e1 e2 f1 f2 dm em inp out.

(!inp out. I1 (inp,out) ==> SYSTEM d e1 f1 (inp,out)) /\

(!inp out. I2 (inp,out) ==> SYSTEM d e2 f2 (inp,out))

==> (HetR dm em I1 I2 (inp,out)

==> SYSTEM (d+dm) (EHetR e1 e2 em d inp) (FHetR f1 f2 e1) (inp,out))‘,

PROVE_TAC [LEMMA_HETR_COMPOSITIONAL, HETR_IMPL_SYSTEM]);

(* as published in the dissertation *)

99

val HETR_COMPOSITIONAL2 = Q.store_thm("HETR_COMPOSITIONAL2",

‘!I1 I2 d e1 e2 f1 f2 dm em inp out.

(!inp out. I1 (inp,out) ==> SYSTEM d e1 f1 (inp,out)) /\

(!inp out. I2 (inp,out) ==> SYSTEM d e2 f2 (inp,out))

==> (HetR dm em I1 I2 (inp,out)

==> SYSTEM (d+dm) (EHetR e1 e2 em d inp) (FHetR_dissertation f1 f2 e1) (inp,out))‘,

METIS_TAC [HETR_COMPOSITIONAL, FHetR_EQUALS_FHetR_dissertation]);

(*--------------------- Case Study: Elevator Controlling --------------------------*)

val LOW_PASS_FILTER_def = Define

‘low_pass_filter(z) = ((725/10000)*z+(725/10000)) / (z-8551/10000)‘;

val GAIN_def = Define ‘Gain (k:real,inp) = k*inp‘;

val SWITCH_TRESHOLD_def = Define

‘SwitchTreshold (k,t,inpA,inpB) =

if (t >= k) then inpB else inpA‘;

val NOT_def = Define ‘NOT (a:bool) = ~a‘;

val SUM_def = Define ‘SUM (a:real,b) = a+b‘;

val MULT_def = Define ‘MULT (a:real,b) = a*b‘;

val B2REAL_def = Define ‘B2REAL(a) = if a then 1 else 0‘;

val AND_def = Define ‘AND (x,y) = x /\ y‘;

val COMPENSATOR_def =

Define ‘compensator(z) =

((58/10000)*(z pow 2) - (115/10000)*z + (57/10000)) /

((884/10)*(z pow 2) + (68013/100)*z + 1)‘;

val ELEVATOR_COMMAND_SHAPER_def =

Define ‘ElevatorCommandShaper(x) =

(12314146553082069706217045714300 * (x pow 7) -

375094022390379325508830389203000 * (x pow 6) -

16735880068062678550941672637144643 * (x pow 5) +

407355932416064821116145878025717030 * (x pow 4) +

7256363864686050117546540409148666875 * (x pow 3) -

95695167884615315360532825481007218250 * (x pow 2) -

72561965071167841460692379630440000 * x +

956910943628005569513595965731100000)/

1157528627950752592593107723986171860000‘;

val ELEV_STATURATION_def = Define ‘ ElevSaturation (kmin,kmax,z) =

if z > kmax then kmax else if z < kmin then kmin else z‘;

val RATE_LIMITER_def =

Define ‘RateLimiter(z:real) = z‘;

val elevator_def = Define ‘

elevator (t:num) (PitchRate, Flap, WOW,

LongSideStick, PitchRate_Voted) =

let out_lpf = low_pass_filter(PitchRate) in

let out_cpt = compensator(out_lpf) in

let out_gfe = Gain(-150, out_cpt) in

let out_gfc = Gain(-67, out_cpt) in

let out_sth = SwitchTreshold (1/2, B2REAL(Flap),out_gfe,out_gfc) in

let out_not = NOT(WOW) in

let out_and = AND(out_not, PitchRate_Voted) in

let out_rtl = RateLimiter(B2REAL(out_and)) in

100

let out_mul = MULT(out_rtl, out_sth) in

let out_ecs = ElevatorCommandShaper(LongSideStick) in

let out_sum = SUM(out_ecs,out_mul) in

let out_str = ElevSaturation(-25,25,out_sum) in out_str‘;

val ELEVATOR_IMPL_SYSTEM = Q.store_thm ("ELEVATOR_IMPL_SYSTEM",

‘!d e inp out.

BLOCK d e elevator (inp,out) ==>

SYSTEM d e elevator (inp, out)‘,

PROVE_TAC [BLOCK_IMPL_SYSTEM]);

val ELEVATOR_HR_COMPLIANCE = Q.store_thm ("ELEVATOR_HR_COMPLIANCE",

‘!d dm e1 e2 em inp out.

HR dm em (BLOCK d e1 elevator)

(BLOCK d e2 elevator) (inp,out) ==>

SYSTEM (d+dm) (EHR e1 e2 em d inp)

(FHR elevator e1) (inp,out)‘,

PROVE_TAC [ELEVATOR_IMPL_SYSTEM, HR_COMPOSITIONAL]);

(* A generic theorem for Elevator *)

val ELEVATOR_TMR_COMPLIANCE = Q.store_thm ("ELEVATOR_TMR_COMPLIANCE",

‘!d e1 e2 e3 ev dv inp out.

TMR dv ev (BLOCK d e1 elevator)

(BLOCK d e2 elevator)

(BLOCK d e3 elevator) (inp,out) ==>

SYSTEM (dv+d) (ETMR e1 e2 e3 ev d inp)

(FTMR e1 e2 e3 elevator) (inp,out)‘,

REPEAT STRIP_TAC THEN

UNDISCH_TAC ‘‘ TMR dv ev (BLOCK d e1 elevator)

(BLOCK d e2 elevator) (BLOCK d e3 elevator)(inp,out)‘‘

THEN

ASSUME_TAC (IPSPECL [‘‘elevator‘‘,

‘‘(BLOCK d e1 elevator)‘‘,

‘‘(BLOCK d e2 elevator)‘‘,

‘‘(BLOCK d e3 elevator)‘‘,

‘‘e1:num->bool‘‘, ‘‘e2:num->bool‘‘,

‘‘e3:num->bool‘‘, ‘‘d:num‘‘, ‘‘dv:num‘‘,

‘‘ev:num->bool‘‘,

‘‘ inp: num ->

((real # bool # bool # real # bool) option #

(real # bool # bool # real # bool) option #

(real # bool # bool # real # bool) option) option ‘‘,

‘‘out :num -> real option‘‘] TMR_COMPOSITIONAL) THEN

ASSUME_TAC ELEVATOR_IMPL_SYSTEM THEN

ASM_SIMP_TAC bool_ss []);

(* A theorem for Elevator fully instantiated *)

val ELEVATOR_TMR_COMPLIANCE_INST = Q.store_thm ("ELEVATOR_TMR_COMPLIANCE_INST",

101

‘TMR dv ev (BLOCK d e1 elevator)

(BLOCK d e2 elevator)

(BLOCK d e3 elevator) (inp,out) ==>

SYSTEM (dv+d) (ETMR e1 e2 e3 ev d inp)

(FTMR e1 e2 e3 elevator) (inp,out)‘,

ASSUME_TAC (IPSPECL [‘‘elevator‘‘,

‘‘(BLOCK d e1 elevator)‘‘,

‘‘(BLOCK d e2 elevator)‘‘,

‘‘(BLOCK d e3 elevator)‘‘,

‘‘e1:num->bool‘‘, ‘‘e2:num->bool‘‘,

‘‘e3:num->bool‘‘, ‘‘d:num‘‘, ‘‘dv:num‘‘,

‘‘ev:num->bool‘‘,

‘‘ inp: num ->

((real # bool # bool # real # bool) option #

(real # bool # bool # real # bool) option #

(real # bool # bool # real # bool) option) option ‘‘,

‘‘out :num -> real option‘‘] TMR_COMPOSITIONAL) THEN

ASSUME_TAC ELEVATOR_IMPL_SYSTEM THEN

ASM_SIMP_TAC bool_ss []);

val _ = export_theory();

102

B
Refinement Calculus:

Proof Scripts

This chapter contains the proofs of the Chapter 4 discussed in Section
refsec:Refinement.

(*---

---*)

quietdec := true;

show_assums := true;

map load ["metisLib", "optionLib", "combinTheory", "optionTheory"];

open HolKernel

Parse

boolLib

bossLib

metisLib

optionLib

arithmeticTheory

combinTheory

optionTheory

pairTheory;

quietdec := false;

Hol_datatype ‘some_exp = COND | E01 | E02 | E03 | E04 | E05

| E06 | E07 | E08 | E09 | E10

| E11 | E12 | E13 | E14 | E15‘;

Hol_datatype ‘exp = SOME_EXP of some_exp

| FF of exp list

| AVG of exp list

| ITE of exp => exp => exp‘;

val AX1_def = new_axiom ("AX1",

103

‘‘!f g h. FF [f ; FF [g;h]] = FF [FF [f;g]; h]‘‘);

val AX2_def = new_axiom ("AX2",

‘‘!f g. FF [f ; g] = FF [g ; f]‘‘);

val AX3_def = new_axiom ("AX3",

‘‘!f. FF [f ; f] = f‘‘);

val AX4_def = new_axiom ("AX4",

‘‘!(e:exp). IS_REF e e‘‘);

val AX5_def = new_axiom ("AX5",

‘‘!(e:exp) (f:exp) (g:exp).

(IS_REF e f) /\ (IS_REF f g) ==> IS_REF e g‘‘);

val AX6_def = new_axiom ("AX6",

‘‘!(e:exp) (f:exp).

(IS_REF e f) /\ (IS_REF f e) ==> (e=e)‘‘);

val AX7_def = new_axiom ("AX7",

‘‘!(e1:exp) (f1:exp) (e2:exp) (f2:exp).

(IS_REF e1 f1) /\ (IS_REF e2 f2)

==> IS_REF (FF [e1;e2]) (ITE (SOME_EXP COND) f1 f2)‘‘);

val AX6_def = new_axiom ("Ax5",

‘‘!(es:exp list). IS_REF (FF es) (AVG es)‘‘);

(* HetR *)

g ‘(IS_REF: exp -> exp -> bool)

(FF [SOME_EXP E01; SOME_EXP E02])

(ITE (SOME_EXP COND)

(SOME_EXP E01)

(SOME_EXP E02))‘;

e(METIS_TAC [AX1_def,AX2_def,AX3_def,AX4_def,AX5_def,AX6_def,AX7_def]);

(* TMR passo 9 *)

g ‘(IS_REF: exp -> exp -> bool)

(FF [SOME_EXP E01; FF [SOME_EXP E02; SOME_EXP E03]])

(ITE (SOME_EXP COND)

(SOME_EXP E01)

(ITE (SOME_EXP COND)

(SOME_EXP E02)

(SOME_EXP E03)

)

)‘;

e(METIS_TAC [AX1_def,AX2_def,AX3_def,AX4_def,AX5_def,AX6_def,AX7_def]);

val p9 = top_thm();

(* TMR passo 9 *)

g ‘(IS_REF: exp -> exp -> bool)

(FF [FF[SOME_EXP E02; SOME_EXP E03]; FF [SOME_EXP E01;

FF[SOME_EXP E02; SOME_EXP E03]]])

104

(ITE (SOME_EXP COND)

(AVG [SOME_EXP E02; SOME_EXP E03])

(ITE (SOME_EXP COND)

(SOME_EXP E01)

(ITE (SOME_EXP COND)

(SOME_EXP E02)

(SOME_EXP E03))))‘;

e(METIS_TAC [AX4_def,AX5_def,AX6_def,AX7_def,p9]);

val p12 = top_thm();

(* TMR passo 15 *)

g ‘(IS_REF: exp -> exp -> bool)

(FF [FF [SOME_EXP E01; SOME_EXP E03];

FF [FF[SOME_EXP E02; SOME_EXP E03]; FF [SOME_EXP E01;

FF[SOME_EXP E02; SOME_EXP E03]]]])

(ITE (SOME_EXP COND)

(AVG [SOME_EXP E01; SOME_EXP E03])

(ITE (SOME_EXP COND)

(AVG [SOME_EXP E02; SOME_EXP E03])

(ITE (SOME_EXP COND)

(SOME_EXP E01)

(ITE (SOME_EXP COND)

(SOME_EXP E02)

(SOME_EXP E03)))))‘;

e(METIS_TAC [AX4_def,AX5_def,AX6_def,AX7_def,p12]);

val p15 = top_thm();

(* TMR passo 18 *)

g ‘(IS_REF: exp -> exp -> bool)

(FF [FF [SOME_EXP E01; SOME_EXP E02];

FF [FF [SOME_EXP E01; SOME_EXP E03];

FF [FF[SOME_EXP E02; SOME_EXP E03];

FF [SOME_EXP E01; FF[SOME_EXP E02; SOME_EXP E03]]]])

(ITE (SOME_EXP COND)

(AVG [SOME_EXP E01; SOME_EXP E02])

(ITE (SOME_EXP COND)

(AVG [SOME_EXP E01; SOME_EXP E03])

(ITE (SOME_EXP COND)

(AVG [SOME_EXP E02; SOME_EXP E03])

(ITE (SOME_EXP COND)

(SOME_EXP E01)

(ITE (SOME_EXP COND)

(SOME_EXP E02)

(SOME_EXP E03))))))‘;

e(METIS_TAC [AX4_def,AX5_def,AX6_def,AX7_def,p15]);

val p18 = top_thm();

(* TMR passo 21 *)

g ‘(IS_REF: exp -> exp -> bool)

(FF [FF [SOME_EXP E01; FF [SOME_EXP E02; SOME_EXP E03]];

FF [FF [SOME_EXP E01; SOME_EXP E02];

105

FF [FF [SOME_EXP E01; SOME_EXP E03];

FF [FF[SOME_EXP E02; SOME_EXP E03];

FF [SOME_EXP E01; FF[SOME_EXP E02; SOME_EXP E03]]]]]])

(ITE (SOME_EXP COND)

(AVG [SOME_EXP E01; FF [SOME_EXP E02; SOME_EXP E03]])

(ITE (SOME_EXP COND)

(AVG [SOME_EXP E01; SOME_EXP E02])

(ITE (SOME_EXP COND)

(AVG [SOME_EXP E01; SOME_EXP E03])

(ITE (SOME_EXP COND)

(AVG [SOME_EXP E02; SOME_EXP E03])

(ITE (SOME_EXP COND)

(SOME_EXP E01)

(ITE (SOME_EXP COND)

(SOME_EXP E02)

(SOME_EXP E03)))))))‘;

e(METIS_TAC [AX4_def,AX5_def,AX6_def,AX7_def,p18]);

val p21 = top_thm();

106

