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Abstract. This paper presents a mathematical foundation and a rewrit-
ing logic infrastructure for the execution and property verification of
synchronous set relations. The mathematical foundation is given in the
language of abstract set relations. The infrastructure consists of an order-
sorted rewrite theory in Maude, a rewriting logic system, that enables
the synchronous execution of a set relation provided by the user. By us-
ing the infrastructure, existing algorithm verification techniques already
available in Maude for traditional asynchronous rewriting, such as reach-
ability analysis and model checking, are automatically available to syn-
chronous set rewriting. The use of the infrastructure is illustrated with
an executable operational semantics of a simple synchronous language
and the verification of temporal properties of a synchronous system.

1 Introduction

Synchronous set relations provide a natural model for describing the operational
semantics of synchronous languages. Previous work by the authors [11] gives a
serialization procedure for simulating the execution of synchronous set relations
by asynchronous term rewriting. The synchronous execution of a set relation
is a parallel reduction, where the terms to be reduced in parallel are selected
according to some strategy. The serialization procedure has been used to pro-
vide the rewriting logic semantics of the Plan Execution Interchange Language
(PLEXIL) [5], a synchronous plan execution language developed by NASA to
support spacecraft automation [6].

Despite being generic, the serialization procedure proposed in [11] has to be
coded by the user for each synchronous language. This paper extends that work
in two ways. First, it generalizes the theoretical development of synchronous
set relations by extending the notion of strategy to enable a larger set of syn-
chronous transformations. Second, it introduces an infrastructure in Maude [4],
a high-performance reflective language and system supporting asynchronous set
rewriting, that implements on-the-fly a serialization procedure for a synchronous
language provided by the user. These contributions allow for simpler and more
succinct language specifications, and more general synchronous set relations.

Formally, a synchronous set relation is defined as the synchronous closure of
an atomic relation with a given strategy. Two sets are synchronously related if



the first set can be transformed into the second set by parallel atomic transfor-
mations. The selection of the redexes in the source set is done by the strategy.
Strategies can be defined using priorities, which solve conflicts arising from the
overlapping of atomic transitions. Section 2 presents, in an abstract setting,
definitions of synchronous set relations, strategies, and priorities.

The infrastructure presented in this paper uses the reflection capabilities of
Maude’s rewriting logic, which is succinctly described in Section 3.1. Maude sup-
ports set rewriting, i.e., rewriting modulo axioms such as associativity, commu-
tativity, and identity. These features are well-suited for object-based concurrent
systems. The infrastructure consists of a rewrite theory in Maude, defining a set
of generic sorts and terms, the algebraic properties of the datatypes, and a set of
functions and rewrite rules that support the synchronous execution of an atomic
set relation. The infrastructure is described in sections 3.2 and 3.3.

As a direct advantage of using this infrastructure, all commands in Maude for
rewrite theories such as its rewrite and search commands, and formal verification
tools such as Maude’s LTL Model Checker, are available for analyzing properties
of synchronous set relations. Section 4 illustrates the use of the infrastructure by
giving an executable semantics of a simple synchronous language with arithmetic
expressions. Section 5 illustrates the use of Maude’s LTL Model Checker for the
verification of temporal properties of a synchronous set relation.

The infrastructure in Maude and the examples presented in this paper are
available from http://shemesh.larc.nasa.gov/people/cam/PLEXIL.

2 Abstract Synchronous Set Relations

This section introduces the concepts of abstract set relations used in this paper.
Let U be a set whose elements are denoted A,B, . . . and let → be a binary

relation on U . An element A ∈ U is called a →-redex if there exists B ∈ U such
that the pair 〈A ;B〉 ∈ →. The expressions A→ B and A 6→ B denote 〈A ;B〉∈→
and 〈A ;B〉 /∈→, respectively. The identity relation and reflexive-transitive closure
of → are defined as usual and denoted →0 and →∗, respectively.

Henceforth, it is assumed that U is the family of all nonempty finite sets over
an abstract and possibly infinite set T , i.e., U ⊆ ℘(T ) and ∅ /∈ U , and, therefore,
→ is a binary relation on finite sets of T . The elements of T will be denoted
by lowercase letters a, b, . . . . When it is clear from the context, curly brackets
are omitted from set notation, e.g., a, b → b denotes {a, b} → {b}. Because of
this abuse of notation, the symbol ‘,’ is overloaded to denote set union, e.g., if
A denotes the set {a, b}, B denotes the set {c, d}, and D denotes the set {d, e},
notation A,B → B,D denotes {a, b, c, d} → {c, d, e}.

The parallel relation →‖ of → is the relation defined as the parallel closure
of→, i.e., the set of pairs 〈A ;B〉 in U ×U such that A→‖ B if and only if there
exist A1, . . . , An, (nonempty) pairwise disjoint subsets of A, and sets B1, . . . , Bn
such that Ai → Bi and B = (A \

⋃
1≤i≤nAi) ∪

⋃
1≤i≤nBi.

This paper focuses on synchronous set relations. The synchronous relation
of an abstract set relation → is defined as a subset of the parallel closure of
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→, where a given strategy selects elements from →. Formally, a →-strategy is
a function s that maps an element A ∈ U into a set s(A) ⊆ ℘(→) such that if
{〈A1 ;B1〉, . . . , 〈An ;Bn〉} ∈ s(A), then Ai ⊆ A and Ai → Bi, for 1 ≤ i ≤ n, and
A1, . . . , An are pairwise disjoint.

Definition 1 (Synchronous Relation). Let s be a →-strategy. The relation
→s denotes the set of pairs 〈A ;B〉 in U × U such that A →s B if and only if
B = (A \

⋃
1≤i≤nAn) ∪

⋃
1≤i≤nBn, where {〈A1 ;B1〉, . . . , 〈An ;Bn〉} ∈ s(A).

Example 1. Let T be the set of distinct elements a, b, c, d, e, and the relation
→= {r1, r2, r3}, where r1 = 〈a, b ; b, d〉, r2 = 〈c ; d〉, and r3 = 〈a, c ; e〉. Let s1, s2,
and s3 be →-strategies defined for A = {a, b, c, d} as follows.

s1(A) = { {r2}, {r3} }, s2(A) = { {r1, r2} }, s3(A) = { {r1, r2}, {r3} }.

It holds that:

a, b, c, d→s1 a, b, d, a, b, c, d→s1 b, d, e, a, b, c, d→s2 b, d,

a, b, c, d→s3 b, d, a, b, c, d→s3 b, d, e.

Some strategies relevant to the operational semantics of synchronous lan-
guages are those strategies defined based on a priority. A priority ≺ for a rela-
tion → is a U-indexed set ≺= {≺A}A∈U with each ≺A a strict partial order on
→ ∩(℘(A)× U). Priorities can be used to decide between overlapping redexes.

Definition 2 (Saturation). A set {〈A1;B1〉, . . . , 〈An;Bn〉}⊆→ is ≺-saturated
for A ∈ U (or ≺A-saturated), with ≺ be a priority for →, if and only if

1. the sets A1, . . . , An are nonempty pairwise disjoint subsets of A,
2. each 〈Ai ;Bi〉 is such that for any A′ → B′ with A′ ⊆ A and A′ ∩ Ai 6= ∅,
〈Ai ;Bi〉 6≺A 〈A′ ;B′〉, and

3. if there is A′ → B′ with 〈A′ ;B′〉 /∈ {〈A1 ;B1〉, . . . , 〈An ;Bn〉} and A′ ⊆ A,
then either
(i) there is 〈Aj ;Bj〉, for some 1 ≤ j ≤ n, such that Aj ∩A′ 6= ∅ or

(ii) there is A′′ → B′′ with A′′ ⊆ A, A′′∩A′ 6= ∅, and 〈A′ ;B′〉 ≺A 〈A′′ ;B′′〉.

A ≺A-saturated set is a complete collection of non-overlapping redexes in a term
A ∈ U , where any overlapping is resolved by keeping ≺-maximal redexes. Note
that the ≺-maximality tests in conditions (2) and (3) of Definition 2, are given
with respect to all pairs 〈A′ ;B′〉 in ≺A, and hence ≺A-saturation exclusively
depends on the ordering of the finitely many subsets of → ∩(℘(A)× U).

Example 2. Recall the relation →= {r1, r2, r3} and the set A = {a, b, c, d} from
Example 1. Let ≺1

A be such that r1 ≺1
A r3. It holds that the sets {r2} and

{r3} are ≺1
A-saturated. However, the set {r1, r2} is not ≺1

A-saturated because
r1 falsifies condition (2) in Definition 2 with witness r3. Let ≺2

A be such that
r3 ≺2

A r1. In this case, the only ≺2
A-saturated set is {r1, r2}. The set {r3} is not

≺2
A-saturated because r3 falsifies condition (2) in Definition 2 with witness r1.

For ≺3
A= ∅, the sets {r1, r2} and {r3} are the only ≺3

A-saturated sets.
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A maximal strategy defines the most general synchronous behavior of a re-
lation, which is given by all saturated sets.

Definition 3 (Maximal Strategies). Let ≺ be a priority for→. A→-strategy
s is ≺-maximal for A∈U (or ≺A-maximal) if and only if s(A) is the collection of
all ≺A-saturated sets. A→-strategy is ≺-maximal if and only if it is ≺A-maximal
for all A ∈ U .

Example 3. From examples 1 and 2,→-strategies s1, s2, and s3 are, respectively,
≺1
A-maximal, ≺2

A-maximal, and ≺3
A-maximal.

Algorithm 1 witnesses the existence of maximal strategies, which are unique
for a given relation → and a priority ≺ (for →).

Theorem 1. Let ≺ be a priority for →. Then a ≺-maximal →-strategy exists.
Therefore, from Definition 3, the ≺-maximal →-strategy is unique.

Proof. It is proved that the existence of a ≺-maximal →-strategy is witnessed
by Algorithm 1, for any A ∈ U and priority ≺ for →. First, the following are
important and easy to prove remarks about Algorithm 1:

– all three loops (lines 3, 6, and 12) repeat finitely many times and all quan-
tified conditions (lines 7 and 4) require finitely many comparisons because
A ∈ U has finitely many elements; also the complexity of γ decreases with
each iteration of the third loop, i.e., Algorithm 1 terminates,

– α =→ ∩(℘(A)× U) is finite and can be computed effectively,
– β = α\{〈A′ ; , B′〉 ∈ α | (∃〈A′′ ;B′′〉∈α)A′∩A′′ 6= ∅∧〈A′ ;B′〉≺A 〈A′′ ;B′′〉},

i.e., β is the subset of α in which all conflicting pairs in α that are not
maximal elements in ≺A have been omitted,

– σ ⊆ ℘(β) is the collection of largest non-conflicting subsets of β, and
– if C ∈ σ, then for any nonempty C ′ ⊆ (β \ C), C ∪ C ′ /∈ σ.

Let D = {〈A1 ;B1〉, . . . , 〈An ;Bn〉}. It is enough to prove, for A ∈ U and priority
≺ for →, that D is ≺A-saturated if and only if D ∈ σ.

(=⇒) If D is ≺A-saturated, then D ⊆ α follows by definition. If D 6⊆ β, then
there is 〈Ai ;Bi〉 ∈ D satisfying 〈Ai ;Bi〉 ≺A 〈A′ ;B′〉 for some 〈A′ ;B′〉 ∈
α with A′ ∩ Ai 6= ∅. But then, for D, 〈Ai ;Bi〉 violates condition (2) in
Definition 2, a contradiction. Hence D ⊆ β. If D /∈ σ, since D ⊆ β and the
A1, . . . , An are pairwise disjoint by assumption, either there is a nonempty
set D′ ⊆ β \ D such that D ∪ D′ ∈ σ or there is nonempty set D′′ ( D
such that D′′ ∈ σ. If D ∪ D′ ∈ σ and since D′ is nonempty, any pair
〈A′ ;B′〉 ∈ D′ violates condition (3.ii) in Definition 2, contradicting the ≺A-
maximality of D. If D′′ ∈ σ, then for any pair 〈A′′ ;B′′〉 ∈ D \ D′′ the set
C = D′′ ∪ {〈A′′ ;B′′〉} falsifies the test in line 14 of Algorithm 1 and hence
C ∈ σ. Since D′′ ∈ σ and D′′ ( C ∈ σ, this contradicts the last remark
aforementioned. Therefore, as desired, D ∈ σ.
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Input : A ∈ U and priority ≺ for →.
Output: s(A), with s the ≺A-maximal →-strategy.

begin1

α, β, γ, σ ← ∅, ∅, ∅, ∅;2

for Ai →-redex, Ai ⊆ A, and Bi such that Ai → Bi do3

add 〈Ai ;Bi〉 to α;4

end5

for 〈Ai ;Bi〉 ∈ α do6

if (∀〈A′ ;B′〉 ∈ α) (Ai ∩A′) 6= ∅ =⇒ 〈Ai ;Bi〉 6≺ 〈A′ ;B′〉 then7

add 〈Ai ;Bi〉 to β;8

end9

end10

γ ← {β};11

while γ 6= ∅ do12

remove C from γ;13

if (∃〈Ai ;Bi〉, 〈Aj ;Bj〉 ∈ C) with i 6= j and Ai ∩Aj 6= ∅14

then add C \ {〈Ai ;Bi〉} and C \ {〈Aj ;Bj〉} to γ;15

else add C to σ;16

end17

return σ;18

end19

Algorithm 1: The ≺-maximal →-strategy.

(⇐=) If D ∈ σ ⊆ ℘(α), then A1, . . . , An are pairwise disjoint →-redexes, thus
subsets, of A. Thus, condition (1) in Definition 2 is satisfied. For condi-
tion (2), since D ∈ σ, it follows that D ⊆ β. Hence, any 〈Ai ;Bi〉 ∈ D satisfies
condition (2) in Definition 2. For condition (3), assume there is 〈A′ ;B′〉 ∈ α
with 〈A′ ;B′〉 /∈ D. Then, either 〈A′ ;B′〉 ∈ (β \D) or 〈A′ ;B′〉 ∈ (α \ β). If
〈A′ ;B′〉 ∈ (β \D), then D ∪ {〈A′ ;B′〉} /∈ σ, as previously stated. However,
〈A′ ;B′〉 ∈ β, so it must be the case that A′ ∩ Ai 6= ∅ for some 1 ≤ i ≤ n.
If 〈A ;B′〉 ∈ (α \ β), then 〈A′ ;B′〉 ≺A 〈A′′ ;B′′〉 for some 〈A′′ ;B′′〉 ∈ α. In
either case, D satisfies condition (3) in Definition 2. Thus, D is ≺A-saturated.

ut

The definitions of strategy and maximal strategy used in this paper are more
general than those in [11,

∮
2]. In that paper, the only possible nondeterminism

in →s arises from →. In the formalization presented in this paper, as illustrated
by strategies s1 and s3, the synchronous relation →s can be nondeterministic
even when the relation → is deterministic.

3 Synchronous Set Relations in Rewriting Logic

This section presents the infrastructure for specifying and executing in Maude
a synchronous relation defined from a language L.
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3.1 A Brief Overview of Rewriting Logic

An order-sorted signature [2] is a triple Σ = (S,≤, F ), where (S,≤) is a finite
poset of sorts and F is a finite set of function symbols. Set X = {Xs}s∈S is
an S-sorted family of disjoint sets of variables with each Xs countably infinite.
The set of terms of sort s is denoted by TΣ(X)s and the set of ground terms of
sort s is denoted by TΣ,s. It is assumed that for each sort s, TΣ,s is nonempty.
Algebras TΣ(X) and TΣ denote the respective term algebras. The set of variables
of a term t is written vars(t) and is extended to sets of terms in the natural way.
A term t is called ground if vars(t) = ∅. A substitution θ is a sorted map from
a finite subset dom(θ)⊆X to ran(θ)⊆ TΣ(X) and extends homomorphically in
the natural way. Substitution θ is called ground if ran(θ) is ground. Expression
tθ denotes the application of θ to term t.

A Σ-equation is a sentence t = u if cond, where t = u is a Σ-equality with
t, u ∈ TΣ(X)s, for some sort s ∈ S, and the condition cond is a finite conjunction
of Σ-equalities. An equational theory is a pair (Σ,E) with order-sorted signature
Σ and finite set of Σ-equations E. For a Σ-equation ϕ, the judgement (Σ,E) ` ϕ
states that ϕ can be derived from (Σ,E) by the deduction rules in [8]. In this
case, it holds that ϕ is valid in all models of (Σ,E). An equational theory (Σ,E)
induces the congruence relation =E on TΣ(X) defined for any t, u ∈ TΣ(X) by
t =E u if and only if (Σ,E) ` (∀X) t = u. The Σ-algebras TΣ/E(X) and TΣ/E
denote the quotient algebras induced by =E over the algebras TΣ(X) and TΣ .
The algebra TΣ/E is called the initial algebra of (Σ,E).

A Σ-rule is a sentence [ : t ⇒ u if cond, where [ is its name, t ⇒ u is a
Σ-sequent with t, u ∈ TΣ(X)s, for some sort s ∈ S, and the condition cond is a
finite conjunction of Σ-equations. A rewrite theory is a tuple R = (Σ,E,R) with
equational theory ER = (Σ,E) and a finite set of Σ-rules R. For R = (Σ,E,R)
and [ a Σ-rule, the judgement R ` [ states that [ can be derived from R by the
deduction rules in [2]. In this case, it holds that [ is valid in all models of R.
For [ a Σ-equation, it can be proved that R ` [ if and only if ER ` [. A rewrite
theory R = (Σ,E,R) induces the rewrite relation ⇒R on TΣ/E(X) defined for
every t, u ∈ TΣ(X) by [t]E ⇒R [u]E if and only if there is a one-step rewrite
proof R ` (∀X) t ⇒ u. Relations ⇒R and ⇒∗R respectively denote a one-step
rewrite and an arbitrary length (but finite) rewrite in R from t to u. Model
TR = (TΣ/E ,⇒∗R) is the initial reachability model of R = (Σ,E,R) [2].

The following conditions on a rewrite theory R = (Σ,E,R) make rewriting
with equations E and with rules R modulo E computable, and are assumed
throughout this paper. First the set of equations E of R can be decomposed
into a disjoint union E′ ] A, with A a collection of axioms (such as associativ-
ity, and/or commutativity, and/or identity) for which there exists a matching
algorithm modulo A producing a finite number of A-matching substitutions, or
failing otherwise. The second condition is that the equations E′ can be oriented
into a set of ground sort-decreasing, ground confluent, and ground terminating
rules

−→
E′ modulo A. The expression [canΣ,E′/A(t)]A ∈ TΣ/A,s will denote the

E′-canonical form of [t]A. The rules R in R are assumed to be ground coherent
relative to the equations E′ modulo A [14].
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3.2 The Synchronous Language L

Recall that definitions in Section 2 are given for an abstract set T , an abstract
relation →, and an abstract priority relation ≺. The language L is given by
the user as an order-sorted rewrite theory (ΣL, EL, RL) that enables the defi-
nition of concrete mathematical objects TΣL,Elem, →L, and ≺L that implement
T ,→, ≺, respectively. The rewrite theory (ΣL, EL, RL) extends the rewrite the-
ory (Σ,E,R), which provides an infrastructure with definitions of basic sorts
and data structures that are suitable for specifying set rewriting systems. This
rewrite theory exploits rewriting logic’s reflection capabilities available in Maude
to soundly and completely simulate the synchronous relation →s

L, where s is the
≺L-maximal strategy for →L.

The Set TΣL,Elem. The set of ground terms TΣL,Elem of the rewrite theory
(ΣL, EL, RL) implements the abstract set T of Section 2. The sort Elem rep-
resents elements in Σ having the form 〈m | a1 : e1, . . . , an : en〉, where m is an
identifier of sort Eid and a1 : e1, . . . , an : en is a map of sort Map. A map is a
collection of attributes. An attribute is a pair a :e where a is an attribute identi-
fier of sort Aid and e is an expression of sort Expr. Attributes are a flexible way
of defining the internal state of an element. Sorts Aid and Eid are declared as
subsorts of Expr. The set U of Section 2 corresponds to the set of ground terms
TΣL,Ctx, where the sort Ctx represents sets of elements of sort Elem. A context is
an element of sort Ctx. The sort Val is defined in Σ as a subsort of Expr and rep-
resents built-in values such as Boolean and numerical values. Function symbol
eval : Ctx× Expr −→ Val is defined in Σ without any equational definition.

The user is free to extend the signature Σ in ΣL with any syntax and sub-
sorts for element identifiers, attribute identifiers, and expressions. However, it is
assumed that attribute identifiers within a map and element identifiers within
a context are unique. It is also assumed that the theory (ΣL, EL) includes a
complete equational interpretation of eval for the set of expressions in ΣL.

The Relation →L. The synchronous relation in Definition 1 is given for an
abstract atomic relation →. In a concrete language, such as L, this relation
represents atomic computational steps that are synchronously executed. For that
reason, the concrete relation →L is called the atomic relation. As shown in [11],
the atomic relation is usually parametric with respect to a context that, in this
infrastructure, provides global information to the function eval. Henceforth, the
atomic relation with respect to a context Γ of sort Ctx will be denoted Γ→L.

The atomic relation →L is specified in RL through atomic rules.

Definition 4 (Atomic Rules). Let ΣL be an order-sorted signature extending
Σ. An atomic ΣL-rule is a ΣL-rule [ : l⇒ r if cond such that:

– rule name [ has the form c–n, where c, the component of [, is an identifier,
and n, the rank of [, is a natural number;

– l does not contain attribute identifier variables, i.e., vars(l)∩XAid = ∅; and
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– attribute names appearing in an element term in r are named for that same
element term in l, i.e., if 〈i | m′〉 ∈ r and (a : e′) ∈ m′, then there is
〈i | m〉 ∈ l such that (a :e) ∈ m for some e ∈ TΣL(X)Expr.

An atomic ΣL-rule specifies transitions of contexts (possibly) constrained by a
condition that may involve expressions in the syntax of L. The component and
rank of ΣL-rules are used to define the priority relation ≺L. The restriction
on attribute identifier names and variables is to prevent the user from defining
an atomic relation →L for which computing a →L-reduction could be highly
inefficient or even incorrect.

Definition 5 (Atomic Relation →L). Let L = (ΣL, EL, RL) be a rewrite
theory with (ΣL, EL) extending (Σ,E) and RL a collection of atomic ΣL-rules
with different names. For a rule [ : l ⇒ r if cond ∈ RL, the (parametric)
relation Γ→[, with parameter Γ ∈ TΣL,Ctx, denotes the set of pairs 〈A ;B〉 in
TΣL,Ctx × TΣL,Ctx such that there is a ground substitution θ : TΣL(X) −→ TΣL
satisfying condθ, A= lθ, and B= rθ in L, where any expression is evaluated in
Γ . The atomic relation →L is the indexed set { Γ→[}Γ∈TΣL,Ctx,[∈RL .

In Definition 5, A, B, and Γ are ground terms of sort Ctx. Furthermore, the term
B is a variant of A in which some expressions and attributes have been modified.
In particular, A and B have the same number of elements with the same element
and attribute identifiers. This means that the atomic relation does not delete
or create elements or attributes in A. This restriction simplifies the technical
development of (Σ,E,R). In any case, creation and deletion of elements and
attributes can be encoded by using additional attributes. Also observe that, due
to the syntactical restrictions of atomic rules in Definition 4, equational sentences
Cθ, A= lθ, and B=rθ can be checked in (ΣL, EL) because they are equational
expressions that, although may depend on context Γ , do not depend on RL.

In general, the atomic relation →L and the rewrite relation ⇒L induced by
the rewrite theory L do not coincide for ground context terms. In particular,→L
is defined as the top-most application of the atomic rules, while ⇒L is defined
as the congruence closure of those rules.

The Priority ≺L. For a given context Γ , the elements in Γ→L can be regarded
as tuples of the form (A,B, c,m)Γ as a shorthand for A Γ→c–m B, with c–m ∈ RL.
The set ≺L= {≺L(Γ )}Γ∈TΣL,Ctx

is defined automatically by the infrastructure:

(A′, B′, c′,m′)Γ ≺L(Γ ) (A,B, c,m)Γ ≡ A ⊆ Γ ∧A′ ⊆ Γ ∧ c = c′ ∧m < m′,

where < is the usual order on natural numbers.

Lemma 1. The indexed set ≺L is a priority for →L.

Proof. It is enough to prove that ≺L(Γ ) is a strict partial order, for any Γ ∈
TΣL,Ctx. Irreflexivity of ≺L(Γ ) follows from the irreflexivity of <. Transitivity of
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≺L(Γ ) follows from the fact that if (A′′, B′′, c′′,m′′)Γ ≺L(Γ ) (A′, B′, c′,m′)Γ and
(A′, B′, c′,m′)Γ ≺L(Γ ) (A,B, c,m)Γ , then A′′ ⊆ Γ , A ⊆ Γ , c′′ = c′ = c, and
m < m′ < m′′. Therefore, (A′′, B′′, c′′,m′′)Γ ≺L(Γ ) (A,B, c,m)Γ . ut

The priority ≺L is an indexed collection of strict partial orders. In particular,
for each Γ ∈ TΣL,Ctx, priority ≺L(Γ ) compares two elements of →L if they are
computed with the same context and they originate from atomic ΣL-rules having
the same component. It assigns a higher priority to elements with smaller rank.

Rewrite theory (Σ,E,R) includes a function max-strat that computes the
≺L-maximal Γ→L-strategy, where Γ ∈ TΣL,Ctx is the parameter of the relation
→L. That function implements Algorithm 1 of Section 2. It takes as input the
language L and ground context Γ and returns the collection s(Γ ), where s is
the ≺L-maximal →L-strategy. The function max-strat is implemented in Maude
using the meta-level capabilities of the system. Henceforth, the strategy s will
denote the ≺L-maximal →L-strategy as computed by max-strat.

3.3 Simulation of →s
L

The set of Σ-rules R of the order-sorted rewrite theory (Σ,E,R) includes only
one rule: for l, r ∈ XCtx, T ∈ XTransition, and S ∈ XTransitionSet

sync : {l} ⇒ {r} if T, S := max-strat(L, l)
∧ r := update(l, T ).

This rule, along with the rules RL provided by the user, implements the se-
rialization algorithm defined in [11], which has been adapted to the notion
of maximal strategy presented in this paper. Sort Transition denotes sets of
pairs in TΣL(X)Ctx and sort TransitionSet denotes collections of transitions.
Function update takes as inputs a ground context A and a ground transition
term C = {〈A1 ;B1〉, . . . , 〈An ;Bn〉}, and computes the ground context B =
(A \

⋃
1≤i≤nAi) ∪

⋃
1≤i≤nBi.

It is noted that the rule sync acts on contexts that are syntactically wrapped
by curly brackets, that is, terms of the form {A} with A a ground context term.
Those terms are of sort SState. The curly brackets operator prevents its context
A to be directly rewritten by the user defined atomic rules in RL. The actual
application of those rules is done by the function update.

Rule sync is nondeterministic because a ground substitution for l matching its
condition depends on the choice of T , i.e., on all possible transitions computed
by max-strat. However, there will be exactly one rewrite with sync for each
transition.

Theorem 2. Let L = (ΣL, EL, RL) be an extension of (Σ,E,R). For A,B ∈
TΣL,Ctx, the following equivalence holds:

L ` {A} ⇒ {B} ≡ A→s
L B,

where s denotes the ≺L-maximal →L-strategy as computed by max-strat.

9



Proof. The key observation is that because max-strat computes the ≺L-maximal
→L-strategy s, the following equivalence holds:

C ∈ s(A) ≡ (∃C ′ ∈ TΣL,TransitionSet)C,C ′ =EL max-strat(L, A).

(=⇒) Since {A} can be rewritten only by rule sync ∈ R, there is a ground
substitution θ : X −→ TΣL satisfying A =EL lθ, B =EL rθ, Tθ, Sθ =EL

max-strat(L, lθ), and rθ=EL update(lθ, Tθ). By the observation above, Tθ ∈
s(A). Then, from the definition of update, it follows that A→s

L B.
(⇐=) If A→s

L B, there is C = {〈A1 ;B1〉, . . . , 〈An ;Bn〉} ∈ s(A) such that B =
(A\

⋃
1≤i≤nAi)∪

⋃
1≤i≤nBi. By the observation above and the definition of

update, there is C ′ ∈ TΣL,TransitionSet such that C,C ′ =EL max-strat(L, A)
and B =EL update(A,C). Then substitution θ satisfying A =EL lθ witnesses
L ` {A} ⇒ {B}.

ut

One key advantage of this approach is that, while it offers support for the
execution of a synchronous relation→s

L, it does that by simulating→s
L using the

standard asynchronous semantics of Maude. Therefore, all commands available
in Maude for executing and verifying rewrite relations are directly available for
→s
L. Sections 4 and 5 illustrate these features with practical examples.

4 Executable Semantics of a Simple Synchronous
Language

Module SMAUDE implements in Maude the rewrite theory (Σ,E,R) presented
in Section 3. This section illustrates the use of SMAUDE by giving the small-step
semantics of a simple synchronous language with arithmetic expressions.

Consider a language that consists of two kinds of elements: memory elements
Mem(m, v) and assignment elements l:=e, where m, l denote memory names, v
denotes a numerical value, and e denotes an arithmetic expression. Arithmetic
expressions are recursively formed using memory names, numerical values, and
expressions of the form e1 + e2, where e1 and e2 are arithmetic expressions. In
this case, set T consists of all elements having the form Mem(m, v) or m:=v.

The small-step semantics of the language requires the definition of an evalu-
ation function eval that takes as inputs a context Γ , which is a set of elements
T , and an arithmetic expression e. It is inductively defined on expressions:

eval(Γ, e) =

8><>:
v if e is the numerical value v,

v if e is the memory name m and Mem(m, v) ∈ Γ ,

v1 + v2 if e has the form e1 + e2, vi = eval(Γ, ei) for i ∈ {1, 2}.

The (parametric) atomic relation → of the language is defined for a context
Γ by A Γ→ B if and only if A ⊆ Γ , A = {Mem(m, v), l:=e}, B = {Mem(m,u), l:=e},
and u = eval(A, e), for some memory name m, values v and u, and expression
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e. The semantic relation of the language is the relation Γ→
s

, where s is the ≺-
maximal Γ→-strategy, Γ is a ground context, and ≺ is the empty priority.

Example 4. Let Γ = {Mem(x, 3), Mem(y, 4), x:=y, y:=x}. Then:

Mem(x, 3), Mem(y, 4), x:=y, y:=x
Γ→
s

Mem(x, 4), Mem(y, 3), x:=y, y:=x.

This language is specified by the Maude module SIMPLE, which includes system
module SMAUDE:

a : Nat → Eid body : → Aid Nat ≤ Val
x : → Eid mem : → Aid + : Expr× Expr→ Expr
y : → Eid to : → Aid

Memory ele-

ments use constructors x and y for element identifiers and have attribute mem
as their only attribute. Assignment elements use constructors a for element iden-
tifiers and have attributes body and to as their only attributes. In the syntax of
SIMPLE, memory element Mem(x, v) and an assignment element x:=e are rep-
resented, for instance, by elements 〈x | mem : v〉 and 〈a(1) | to : x, body : e〉,
respectively. Built-in natural numbers are values of the language. Evaluation of
expressions is given equationally following the definition of eval.

Atomic rule r–1 specifies the atomic relation of the language:

r–1 : 〈I | mem :N〉〈J | body :E, to :I〉 ⇒ 〈I | mem :eval(E)〉.

The specification of atomic rules is slightly different to the usual specification
of rules in rewriting logic. First, in the lefthand side of an atomic rule, it is
sufficient to only mention the attributes involved in the atomic transition. In
this case, SMAUDE will complete each lefthand side term by automatically
adding a variable of sort Map, unique for each element, before any matching is
performed. Second, in the righthand side of an atomic rule, it is sufficient to
only mention the elements and the attributes that can change in the atomic
step. In this case, SMAUDE updates in the current state only the attributes
of the elements occurring in the righthand side of the rule, while keeping the
other ones intact. So, in atomic rule r–1, the only attribute that can change is
attribute mem of the memory element. Note also that in the righthand side of
r–1 a unary version of function eval, without mention to any particular context,
is used; SMAUDE will automatically extend it to its binary counterpart, for the
given context, when computing function max-strat.

The context Γ in Example 4, written in the syntax of SIMPLE, is

〈x | mem :3〉〈y | mem :4〉〈a(1) | to :x, body :y〉〈a(2) | to :y, body :x〉.

Maude’s search command can be used to compute, for instance, the one-step
synchronous semantic relation of the language in Example 4 from context Γ :
Maude> search { Gamma } =>1 X:SState .
search in SIMPLE : { Gamma } =>1 X:SState .
Solution 1 (state 1)
states: 2 rewrites: 514 in 53ms cpu (54ms real) (9655 rewrites/second)
X:SState --> {< x | mem : 4 > < y | mem : 3 >

< a(1) | body : y, to : x > < a(2) | body : x, to : y > }
No more solutions.
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5 Verification of Synchronous Relations

This section illustrates the use of Maude’s LTL Model Checker for the verification
of properties of a synchronous relation.

Consider a system of clocks keeping track of hours and minutes. Each clock
is modeled in rewrite theory CLOCKS by two elements, one displaying hours
and the other displaying minutes:

h : Nat → Eid hour : → Aid min : Nat → Expr
m : Nat → Eid min : → Aid Nat ≤ Val

Hour elements use constructor h for element identifiers and have attribute hour
as its single attribute. Minute elements use constructor m for element identifiers
and have attribute min as its single attribute. Natural numbers are used as values
for the attributes. The n-th clock is represented by the hour element with element
identifier h(n) and the minute element with element identifier m(n). Attribute
min of a minute element m(n) can be accessed by evaluating expression min(n).
A clock displaying 9:15, written in the syntax of CLOCKS, is

〈h(1) | hour :9〉 〈m(1) | min :15〉.

The following clock transitions are of interest:

(i) if hour=11 and min=59, then set hour = 0 and min = 0;
(ii) if hour<11 and min=59, then increment hour in one unit and set min = 0;
(iii) if hour<11 and min<59, then increment min in one unit.

These transitions are intuitively coded via priorities in rewrite theory CLOCKS.
The behavior of the system is modeled by defining a priority such that redexes
of the form (i) have the highest priority and the ones of the form (iii) the lowest.
The following are the atomic rules of CLOCKS, for C,M,N ∈ XNat:

cl–1 : 〈h(C) | hour :11〉
〈m(C) | min :59〉 ⇒ 〈h(C) | hour :0〉〈m(C) | min :0〉

cl–2 : 〈h(C) | hour :N〉 ⇒ if eval(min(C)) == 59
then 〈h(C) | hour :s(N)〉
else 〈h(C) | hour :N〉 fi

cl–3 : 〈m(C) | min :N〉 ⇒ if N == 59
then 〈m(C) | min :0〉
else 〈m(C) | min :s(N)〉 fi

In CLOCKS, resetting a clock (i.e., rule cl–1) has higher priority than exclusively
increasing the hour (i.e., rule cl–2) or the minute (i.e., rule cl–3) of a clock.
Rule cl–1 uses matching for detecting when a clock needs to be reset. In the
righthand side of rule cl–2 the evaluation of expression min(C) will yield the
minute value of clock C, freeing the lefthand side of the rule from explicitly
mentioning the minutes element. Because of this, rules cl–2 and cl–3 can never
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overlap and therefore can be executed in parallel. As a final remark, observe that
the priorities of the last two rules can be switched without altering the behavior
of the system, since their lefthand sides can never overlap.

Two temporal properties that the synchronous relation of CLOCKS must
satisfy is that clocks are always synchronized and that each clock is reset infinitely
often. These two properties are specified by propositions Π = {sync, reset}.
Using the syntax of Maude’s LTL Model Checker and for variables C,C ′, H,M ∈
XNat and Γ ∈ XCtx, the propositions Π are defined in the equational theory
CLOCKS-PREDS as follows:

sync : Nat×Nat → Prop reset : Nat → Prop SState ≤ State

{Γ} |= sync(C,C′) =

8<:
true if 〈h(C) | hour :H〉〈m(C) | min :M〉 ⊆ Γ

∧ 〈h(C′) | hour :H〉〈m(C′) | min :M〉 ⊆ Γ,
false otherwise.

{Γ} |= reset(C) =


true if 〈h(C) | hour :0〉〈m(C) | min :0〉 ⊆ Γ,
false otherwise.

The subsort declaration SState ≤ State tells Maude’s LTL Model Checker
that the semantics of propositions Π (each with sort Prop –provided by the
model checker) is to be defined on sort SState. Two clocks are synchronized
if their hour values and minute values are the same; otherwise they are not
synchronized. A clock is reset if its hour and minute values are 0.

Consider the following state init in the signature of CLOCKS

{〈h(1) | hour :0〉〈m(1) | min :0〉〈h(2) | hour :0〉〈m(2) | min :0〉},

with two clocks, both displaying 0:00. The two temporal properties aforemen-
tioned that the synchronous relation of CLOCKS must satisfy, are formally spec-
ified for state init as follows:

KΠCLOCKS, init |= �sync(1, 2),

KΠCLOCKS, init |= �♦reset(1) ∧ �♦reset(2),

where KΠCLOCKS = (TΣ/E,SState,⇒CLOCKS, LΠ) is the Kripke structure associ-
ated to the initial reachability model TCLOCKS, with topsort SState, and predi-
cates Π (see [4] for details on how KΠCLOCKS is associated to TCLOCKS).

First observe that the set of clock states reachable from init is finite and,
therefore, each property specification problem is decidable. The first property
specification asserts that clocks 1 and 2 are always synchronized, and the second
property specification asserts that each clock is reset infinitely often.

By using Maude’s LTL Model Checker, the following results are obtained:
Maude> red modelCheck(init, [] sync(1,2)) .
reduce in CLOCKS-PREDS : modelCheck(init, []sync(1, 2)) .
rewrites: 124946 in 6023ms cpu (6023ms real) (20744 rewrites/second)
result Bool: true

Maude> red modelCheck(init, ([] <> reset(1)) /\ ([] <> reset(2))) .
reduce in CLOCKS-PREDS : modelCheck(init, []<> reset(1) /\ []<> reset(2)) .
rewrites: 125514 in 6810ms cpu (6812ms real) (18428 rewrites/second)
result Bool: true
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6 Conclusion

Rewriting logic has been used previously as a test bed for specifying and animat-
ing synchronous rewrite relations. M. AlTurki and J. Meseguer [1] have studied
the rewriting logic semantics of the language Orc, which includes a synchronous
reduction relation. T. Serbanuta et al. [13] and C. Chira et al. [3] define the
execution of P -systems with structured data with continuations. The focus of
the former is to use rewriting logic to study the (mainly) non-deterministic be-
havior of Orc programs, while the focus of the latter is to study the relationship
between P -systems and the existing continuation framework for enriching each
with the strong features of the other. D. Lucanu [7] studies the problem of the
interleaving semantics of concurrency in rewriting logic for synchronous systems
from the perspective of P -systems. More recently, T. Serbanuta [12] advances
the rewriting-based framework K with resource sharing semantics that enables
some kind of synchronous rewriting. J. Meseguer and P. Ölveczky [9] present
a formal specification of the physically asynchronous logically synchronous ar-
chitectural pattern as a formal model transformation that maps a synchronous
design, together with performance bounds on the underlying infrastructure, to a
formal distributed real-time specification that is semantically equivalent to the
synchronous design.

The work presented in this paper is closely related to those works in that it
presents techniques for specifying and executing synchronous rewrite relations.
However, the work presented here is a first milestone towards the development of
symbolic techniques for the analysis of synchronous set relations. In particular,
the authors strongly believe that the infrastructure presented in Section 3 can
be extended with rewriting and narrowing based techniques, in the style of [10],
to obtain a deductive approach for verifying symbolic safety properties, such as
invariance or race conditions, of synchronous set relations. Another feature that
distinguishes this work from related work is the idea of priorities as an instrument
to control nondeterminism of synchronous relations. Of course, in some cases
priorities can be encoded in the condition of rewrite rules, but the treatment
here seems more convenient and simpler for the end-user. One interesting exercise
would be to study how best to implement this feature in the framework K and
for real-time specifications in rewriting logic.

The contribution of this paper to rewriting logic research is the implementa-
tion of general synchronous set relations via asynchronous set rewrite systems.
This work extends previous work reported in [11] by giving an on-the-fly im-
plementation of the serialization procedure for rewrite theories that supports
execution and verification of more general synchronous set relations. The frame-
work exploits rewriting logic’s reflective capabilities, and its implementation in
Maude, to soundly and completely simulate the synchronous relation associated
to an atomic relation and a maximal strategy specified by atomic rules. This
work also generalizes the concept of priority, so that more general synchronous
set relations are supported both theoretically and in the Maude infrastructure.
A priority, as treated in this work, allows for nondeterministic synchronous re-
lations even when the atomic relation is deterministic. In [11], the only possible
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nondeterminism in a synchronous relations arises from its atomic relation. A
direct benefit to the user from using the infrastructure presented in this paper,
is the wealth of Maude’s ground analysis tools for rewrite theories such as its
rewrite and search commands, and its LTL Model Checker.

Although the framework is illustrated with simple examples, it is currently
being used to specify an executable semantics in Maude of the Plan Execu-
tion Interchange Language (PLEXIL) [5], an open source synchronous language
developed by NASA to support autonomous spacecraft operations. This spec-
ification enables the application of formal verification techniques available in
Maude, such as model-checking and reachability analysis, to PLEXIL programs.

The Maude infrastructure presented in this work is a first prototype of the
theoretical developments. Future work includes the development of a wider range
of case studies stressing the infrastructure’s capabilities; it is also important
to streamline the algorithms and data structures in the infrastructure. Future
work in the area of deductive analysis will study symbolic reachability analysis
techniques in rewriting logic for synchronous set relations. More specifically,
adapting the rewriting and narrowing based techniques developed in [10], seems
promising for the analysis of safety properties of synchronous set relations.
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