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Abstract. Most current games perform navigation in virtual environments 
through A* for path finding combined with a local movement algorithm. 
Navigation Meshes are the most popular approach to combine path finding with 
local movement. This paper presents a new Automatic Navigation Mesh 
Generator (ANavMG) that subdivides any polygon representing the 
environment, with or without holes, into a suboptimal number of convex cells 
where local movement algorithms can be applied without deadlocks. We 
introduce the concept of convex relaxation to further reduce the number of cells 
depending on the flexibility of the local movement algorithm. Finally we show 
results of the ANavMG and its application to a multi player game. 

Keywords: Navigation meshes. Convex decomposition. Crowd navigation.  

1   Introduction 

Navigation meshes (NavMeshes) are commonly used to represent the walkable 
geometry within a virtual environment. Path finding can then be performed on a graph 
which abstracts away the geometry details, by representing each walkable area as a 
cell and the crossing segments between cells, as the portals of the graph.  

When creating these NavMeshes we have two main restrictions: the first one given 
by the path finding algorithm which implies reducing the number of cells so that the 
path finding algorithm will find a suitable route as fast as possible, while the second 
one is given by the local movement algorithm and it implies having convex cells so 
that agents can move in a straight line between any two points of the cell.  

In many cases, game designers need to create these navigation meshes by hand, 
which is extremely time consuming and can introduce errors which may either leave 
areas of the walkable space not accessible to the Non Player Character (NPC), get the 
NPCs stuck in concave regions, or create paths that do not look natural. 

In this paper we introduce a new approach to automatically obtain NavMeshes for 
a given environment. For clarity, we will explain the algorithm for the case of 2D 
environments, where the input polygon representing the environment can be seen as 
the floor plan, and the holes represent static obstacles. This implies that we are not 
currently handling environments consisting of several levels with staircases, ramps, 
etc., but we will explain how the method could be easily extended to 3D.   

The main contribution of this paper is an algorithm that takes as an input any 2D 
simple polygon (i.e. no self-intersections) with or without holes, and automatically 
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splits it into a suboptimal subdivision of convex polygons that are highly suited to 
path finding by avoiding the presence of both degenerated polygons and almost all ill-
conditioned polygons. We also introduce the concept of convex relaxation to achieve 
smaller navigation meshes based on the flexibility of the local movement algorithm 
being used for obstacle avoidance.  

There is a trade-off when generating the NavMesh between having the minimum 
number of cells possible, so that path finding can run as fast as possible, and having 
portals that best guarantee natural traversals when applying local movement. 
Therefore the overall goals of our navigation mesh generator are: 
1)  To achieve as few cells as possible 
2)  To achieve portals as short as possible (since it introduces less inaccuracies 

when setting attractors to drive the natural movement of the agents). 
3)  To avoid cells with interior angles close to zero, since it complicates the local 

movements and leads to agents being physically in more than two cells 
simultaneously. (For the rest of the paper, we shall define an ill-conditioned 
polygon as a polygon with interior angles close to zero.)  

In this paper we are not concerned about the time complexity of our algorithm, 
since it can be executed during pre-processing, and given that it only deals with static 
geometry, no further changes need to be made at run time. Dynamic obstacles and 
other agents are avoided through local movement techniques based on Reynolds' 
steering behaviors [13].  

Once the subdivision is created, we automatically generate the cell and portal 
graph (CPG) representing the environment, where cells are the convex polygons 
resulting from the subdivision, and portals are the segments created to subdivide the 
original polygon into convex cells.  

We finally present an example of a multi player game where path finding is carried 
out through A* over the generated NavMesh and movement within cells and dynamic 
obstacle avoidance are performed through steering behaviors. The physical library 
Bullet [2] has been integrated for several purposes including: speed up of the local 
movement simulation, guarantee non overlapping between agents, and keeping track 
of agents’ within each cell to quickly update their mental maps in cases where agents 
are accidentally pushed through portals. Section 4 shows results of our ANavMG as 
well as multi agent navigation in a game application.  

2   Related work 

The concept of Navigation Mesh was introduced by Snook in his paper Simplified 3D 
Movement and Pathfinding Using Navigation Meshes [14]. He also proposed some 
ideas to acquire a good NavMesh based on polygon triangulation, but the method does 
not consider the creation of ill-conditioned cells that could introduce problems when 
local movement methods are applied.  

In most games navigation meshes are used to perform path finding. The navigation 
mesh is then represented through a Cell and Portal Graph (CPG), where the cells 
correspond to convex walkable areas, and the portals correspond to the segments that 
are shared by adjacent cells and that can be used for crossing between those cells [11]. 
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Navigation has also been performed through roadmaps [7], Voronoi diagrams [15] 
or hierarchical representation of informed environments [10]. Many techniques have 
been introduced for local movement within convex cells [1][11][13]. Lerner et. al. [8] 
presented an algorithm to automatically generate a CPG for visibility that worked 
both for interiors and exterior scenarios but, since the goal of their algorithm was 
visibility, their method generates cells that are not guaranteed to be convex. 
Haumount, et. al. [1] introduced an algorithm for generating CPG of interiors based 
on a voxelization followed by a watershed.  

Hertel and Mehlhorn [5] presented a non optimal partition by diagonals, which 
works only for polygons without holes. The algorithm first triangulates the polygon 
and then removes inessential diagonals. Partitions based on diagonals are commonly 
used in location problems where they need to keep the total number of vertices of the 
polygon. But when doing a partition for navigation, it is not strictly necessary to 
maintain the number of vertices, and thus new vertices can be created if they result in 
a better partition (meaning less cells or portals that lead to more natural looking 
movement of the agents).   

Kallman proposes an automatic triangular NavMesh generation method [1] based 
on Delaunay’s triangulation, so it generates the lowest possible number of 
degenerated triangles. Using a triangular NavMesh is a good first approach because it 
guarantees that every cell created is convex, so a character can move in a straight line 
from any pair of points inside the cell. In addition, geometric operations over triangles 
are very efficient. The main drawback is that many unnecessary cells are created, 
increasing the time for calculating a path between two given cells, which can be 
specially problematic in videogames where we need a real-time response.  

Although in many cases the NavMesh is created by hand, some Game Engines and 
third parties programs offer the functionality of an automatically generated navigation 
mesh for a given virtual map, but they generate a great number of ill-conditioned cells 
or are map-type-specific. For example, Valve [17] uses a NavMesh generator based 
on subdividing the virtual map by quadrilaters. This method creates a non-optimal 
convex decomposition and is not really extensible to maps with arbitrary geometry. 

Unreal Engine [16] has its own NavMesh generator, but it generates a great number 
of ill-conditioned convex polygons that can affect the application of local movement 
methods and the quality of generated paths. Recast [12] is actually the open-source 
NavMesh generator most used on popular games such as Bulletstorm, but we have 
detected that unnecessary cells are created that could easily be merged together, 
decreasing the final number of cells.  

3   The Automatic Navigation Mesh Generator (ANavMG) 

There are two possibilities when subdividing a polygon into convex cells. The first 
one consists of subdividing by adding diagonals, which are edges between pairs of 
vertices in the original geometry. The second one consists of using segments which 
are edges between a vertex of the geometry and a new point created on the boundary 
of the original geometry. The algorithm presented in this paper carries out a partition 
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based on segments, and thus we are not limited by the position of the vertices in the 
original geometry.  

3.1   Previous Concepts 

The approach followed by our algorithm consists of subdividing the input polygon by 
first detecting which are the notches (concave vertices, i.e. interior angle larger than 
π) that appear in the polygon and then splitting them by creating portals so that for 
each original notch in the geometry, we will split it into two new angles that are both 
convex (i.e. interior angle smaller than π). In this way, we guarantee that if all the 
notches in the original polygon are split into convex angles we will obtain a partition 
consisting only of convex cells. 

In order to ensure that we only require one new segment in the geometry to split 
the notch into two convex angles, we define the area or interest, Ii of a notch vi given 
by two edges of the geometry, ei-1,i and ei,i+1 as the resulting interior area of 
prolonging ei-1,i and ei,i+1 as we indicate in figure 1 (left), where ei-1,i  is the edge that 
joins vi-1 with vi. 

  

Fig. 1. On the left, we show the interest area, Ii of a notch vi. Green vertices are convex, and 
blue vertices are notches that need to be split. On the right, we show a simple example of an 
input given to the algorithm, with the order of the vertices implying polygon (in white) or holes 
(in grey). 

 The floor plan of the virtual environment where we want our characters to navigate is 
given as a simple polygon, and the vertices are given in counter-clockwise order. Any 
obstacle within the virtual environment will be given as a polygon with its vertices in 
clockwise order. Obstacles can be seen as holes in the main polygon that represents 
the entire map (figure 1, right).  

The input geometry consists of a polygon P enclosing other polygons H1, ..., Hm, 
where all holes are simple empty polygons. Let δP be the boundary of the polygon P, 
and δHi the boundary hole δHi. We assume that the following conditions apply:  

iiHH
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The first step of the algorithm consists of determining which vertices are notches. 
This step is performed through an orientation test based on calculating the signed area 
of the triangle defined by three consecutive vertices, vi, vi+1, v1+2: 
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If the area A(vi, vi+1, v1+2) is positive, it means that vertex vi+2 is on the left hand side 
of edge ei,i+1 given by the previous vertices vi, and vi+1. If it is negative, it means that 
vi+2 is on the right hand side of edge ei,i+1. So for the main polygon which is given in 
counter-clockwise order, if the area is negative it means that  vi+1 is a notch and thus 
needs to be split, whereas for the holes, given in clockwise order, we will also find a 
notch when the area is negative. We will introduce all notches of the geometry in a 
vertex list V to be treated in order. This step has cost O(n) where n is the total 
number of vertices of the geometry.   

3.2   Creating portals 

For each vi in V, the algorithm looks for the closest element in the geometry that falls 
within its area of interest Ii to create a portal with it. This has cost O(n·r), where 
n=number of vertices, and r=number of notches. Elements can be other vertices, 
edges of the original geometry, or portals. Depending on the element being selected, 
we classify three types of portals: vertex-vertex, vertex-edge, vertex-portal. Each of 
these cases needs to be treated differently.  

3.2.1  Vertex-Vertex portals. 

When the closest element to vi is another vertex vj of the geometry, the algorithm 
simply needs to create a portal pi between vi and vj. As can be seen in figure 2, the 
portal created guarantees that vi gets split in two convex regions, and thus no further 
processing of vi is necessary to subdivide the original polygon into convex cells. If the 
other vertex vj was also contained in V (which means that it is also a notch), then the 
algorithm also checks whether by creating portal pi, vj gets split in two convex angles. 
This will happen exclusively when vi falls within Ij as we can see in the example 
shown in figure 2. 

 

  

Fig. 2. Vertex-Vertex portal creation. On left, vi also falls within Ij, so it can be removed from 
V, on the right, vi does not fall within Ij  and since it is a notch it still needs to be split.  
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3.2.2  Vertex-Edge portals. 

When the closest element to vi is an edge ej,j+1 of the geometry, the algorithm needs to 
create a portal pi between vi and a point q in the segment ej,j+1. Since we want portals 
to be as short as possible, we first consider the closest point within the segment, 
which is calculated as the projection of vi over ej,j+1, so in this case q=(proje vi).  

If q falls within Ii then a new portals is created and the algorithm proceeds with the 
next notch in V (see figure 3, left), but it could be possible that even though the edge 
ej,j+1  is the closest element to vi, we could have its projection falling outside ej,j+1   or 
outside the interest area, Ii, and thus the portal between those two points would not be 
enough to split vi in two convex angles (see figure 3 center and right).  

Therefore if the projection is not a good candidate to create a unique portal, the 
algorithm considers four new candidates: 

 the two end vertices of ej, j+1, vj and vj+1 (see figure 3, center). 
 the two intersection points ql and qr (if they exist) where ql is the 

intersection between the closest edge ej,j+1, and the result of extending the 
segment ei-1,i (segment on the left of vi), and qr is the intersection between 
ej,j+1, and the result of extending the segment ei,i+1 (segment on the right 
of vi) (see figure 3, right). There is a chance that depending on the 
orientation of each segment, none of those intersections exist, and 
therefore only the ends of segment ej, j+1 are considered. 

 Among the four possible vertices mentioned above, the algorithm selects the 
closest one that falls within Ii and a new portal is created between vi and the selected 
vertex. 

   

Fig. 3. Vertex-Edge portal. Candidate point q being the projection (left), candidates being the 
end points of segment vj+1 (center), and candidate points being the intersections (right). 

In figure 3 we can see the three different types of portals created in the category of 
vertex-edge portal. As we can see the cases on the left (projection) and the right 
(intersection points) are the only cases where new vertices are added into the 
geometry. These vertices can never be notches, therefore the algorithm does not need 
to do any further processing with them.  

3.2.3  Vertex-Portal portals. 

In the case where the closest element to vi in the geometry is a previously created 
portal, the treatment when creating portals differs from the vertex-edge portal since 
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we do not want to have intersecting portals (or T-shapes), which would be the case for 
calculating a projection or intersection over an existing portal. 

Therefore we assume that when the closest element is a portal pk, we will need to 
create a new portal pi with either end vertex of segment pk. The algorithm selects the 
closest vertex that falls within Ii (figure 4, left and center). But since only vertices that 
fall within Ii can guarantee that vi will get split into two convex areas, if none of the 
end vertices of pk satisfy that requirement (figure 4, right), then the algorithm needs to 
create two portals instead of one. The new portals will be pi which joins vi with the 
left end of pk and pi+1 which joins vi  with the right end of pk. Notice that given the 
type of geometry we are dealing with, the interior angle between pi and pi+1 will 
always be smaller than π, and therefore we guarantee that when adding these two 
portals, vi  will get split in three convex regions.  

 

   

Fig. 4. Vertex-Portal portal. Only one end of pk falls within Ii (left), both ends of pk fall within 
Ii (center), and none of the ends of pk fall within Ii (right). 

This case of portal creation is the only one that may require two new portals 
instead of just one per notch, but in most cases when creating these portals we will be 
able to remove the original portal pk, and thus we are on average creating one portal 
per notch.  
 

Removing Previously Created Portals: 
 
When a vertex-portal portal, pi, is created between a vertex vj and a previously 

created portal pk, we will have at least one vertex, vi, where both portals meet, since 
portals always meet at their ends which are located over existing vertices. In order to 
determine whether we could merge the two cells divided by portal pk, the algorihtm 
checks whether pk is still a necessary portal, since it is possible that by adding pi to 
vertex vj, this vertex already gets split in two convex regions, and thus there is no 
need to have two portals splitting one vertex.   

To be able to remove portal pk, it is necessary to check whether both the left and 
right vertices of the portal need pk, not to be a notch. This step is performed by 
calculating the interior angle between the two neighouring segments of portal pk, at 
each end vertex (which can be edges of the geometry or other portals) and testing for 
convexity. If they both pass the convexity test, then we can remove pk, and thus 
merge two convex cells into one larger convex cell (see figure 5). 
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Fig. 5. Removal of previously created portal, pk when creating a new set of portals pi  and pi+1 
(left), or several cases of just one new portal being created (right) 

3.3 Convexity Relaxation. 

A vertex is defined to be convex, if its internal angle is smaller or equal than π, 
otherwise it is a notch. This is the mathematical definition of convexity but, in some 
applications such as the creation of navigation meshes, it may not be necessary to 
consider such a strict definition. As described previously in this paper, most 
navigation meshes consist of a set of convex cells with portals representing the 
traversal segments between them. Movement within a convex cell and between cells 
is driven by some local movement algorithm which can usually deal relatively easily 
with small concavities through obstacle avoidance behavior which also applies to 
static geometry (such as walls). Therefore, depending on the local movement 
algorithm being implemented, we can relax the definition of convexity by allowing a 
certain threshold τ. Relaxing the definition of convexity results in a smaller number of 
portals since more cells can be merged together into τ-convex cells, where τ is the 
threshold given by the local movement algorithm. We provide the following 
definitions:  

Def: a vertex vi is said to have τ-convexity if its internal angle is smaller than π+ τ. 

Relaxing convexity affects not only the classification of vertices into notches, but 
also the definition of the area of interest of a node.  

Def: an area of interest Ii is said to have τ-convexity if its internal angle is αi+ τ, 
where αi is the original internal angle of Ii before applying convexity relaxation. 

In order to avoid obtaining degenerate or non-simple polygons, it is necessary to 
refine the definition of the threshold per vertex, so that we ensure that the best 
candidate for any given vertex vi, will never be laying over the same edge as vi, or 
causing an intersection with the boundary of the original polygon. This is achieved by 
limiting α+τ to always be smaller than π. And this leads us to the next definition: 

Def: a polygon P is said to have been split into τ-convexity cells, when all its 
vertices have at most τ-convexity.   

The effect of increasing the internal angle of the Ii with the threshold τ, implies a 
larger area to look for candidates, which not only reduces the total number of cells, 
but also implies a reduction in the number of ill-conditioned polygons (see figure 6).  
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Fig. 6. On the left a cell created with strict convexity, on the right the same scenario but 

applying the concept of convexity relaxation. 

3.4 Discussion on the Navigation Mesh Created. 

Considering a polygon P with r notches, let the optimal number of convex cells, O 
be within the following bounds: 

121
2







rO
r  (3) 

Since at most two diagonals are essential for any notch [5] then any subdivision 
without inessential diagonals is within four times of the minimum subdivision (which 
gives us the upper bound). This holds even for polygons with holes, as proved in [4]. 
The lower bound is given by the best case scenario where we only need one portal to 
join pairs of notches. 

In the case of subdivision based on diagonals, there may be more than one edge 
created per concave vertex, since it is possible that no vertex of the geometry fall 
within the area of interest. If we create an edge outside this area, we will split the 
current concave vertex into two regions, one convex and one concave, therefore, we 
will still need additional edges to guarantee that all the final regions are convex.  

Since our algorithm is not limited to diagonals, it only needs one new edge per 
concave vertex, which indicates that our number of cells will be of O(r). This 
indicates that our method is always going to give a subdivision with fewer cells than 
any solution based exclusively on diagonals. In fact as we will see in the results 
section, our algorithm provides a subdivision of less than r cells.  

4   Results and Future Work 

The method presented in this paper generates navigation meshes that can 
successfully be used for path finding and driving local movement between cells. The 
subdivision meshes generated in all cases contain a number of cells lower than the 
number of notches in the geometry. Since calculating the optimal subdivision mesh 
for a convex polygon with holes is NP-hard, we consider that any algorithm that can 
guarantee a maximum number of cells equal to the number of notches can be 
considered a good suboptimal subdivision.  

Another advantage of our method is that we obtain NavMeshes without 
degenerated polygons, and almost no ill-conditioned polygons. Therefore our 
NavMeshes can be used with any local movement technique guaranteeing natural 
looking movement of the characters. 
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Even though the time complexity of our method was not the main concern, the 
ANavMG can generate NavMeshes with a temporal cost of O(r·n), where r is the 
number of notches, and n the number of vertices.  

We have tested scenarios with increasing numbers of obstacles (see table 1), and 
the results show that for the first version of the algorithm (strict convexity rule and no 
elimination of old portals as new ones are generated) we achieve a ratio on average of 
0.8 cells per notch. When applying the optimization of previous portal removal 
explained in section 3.2.3, we achieve an improvement of 10%, with the new ratio 
being 0.71 cells per notch. Finally the contribution based on convexity relaxation 
(section 3.3), achieves a ratio of 0.67 cells per notch on average, which implies an 
improvement of around 20% with τ-convexity=5º. 

Table 1.  Results from 8 scenarios with increasing number of notches. For each version of the 
algorithm we have calculated the number of resulting cells, and the ratio cells/notches.  

Geom. #Notches #cells 
original

ratio 
c/r 

#cells 
Portal 
removal 

ratio  
c/r 

#cells 
Conv. 
relaxation

ratio 
c/r 

1 15 15 1.00 12 0.80 12 0.80 
2 22 21 0.95 17 0.77 16 0.73 
3 32 27 0.84 22 0.69 21 0.66 
4 43 34 0.79 30 0.70 29 0.67 
5 55 39 0.71 38 0.69 35 0.64 
6 68 46 0.68 46 0.68 42 0.62 
7 93 63 0.68 63 0.66 58 0.62 
8 106 73 0.69 72 0.68 62 0.58 

Average   0.8  0.71  0.67 

 
As the number of vertices in the geometry increases, we observe that the ratio of 

cells/notches drops, since there are more chances of a vertex-vertex portal splitting 
simultaneously two notches, and thus reducing the number of portals per notch 
needed towards 0.5. We have tested scenarios of up to 136 vertices, with 106 being 
notches, and we believe that the average ratios calculated would be reduced even 
further as we test larger scenarios. 

Figure 7 shows an example of a NavMesh obtained with ANavMG. (The following 
video http://www.lsi.upc.edu/~npelechano/videos/MIG2011_NavMesh.avi shows the 
result generated step by step as well as its associated CPG. 

Game Application: Capture the Flag 

Our ANavMG generator has been successfully integrated into Ninja Flag, a tactical 
multiplayer online game, inspired by the famous outdoor sport called Capture The 
Flag, that we have developed.  

To determine how a character moves from one cell to another and to describe its 
behavior inside a convex cell, we use several steering behaviors [13]. Attractors are 
set based on the agents' projection over the portals, as they move within a cell. This 
avoids agents sharing the same attraction points when crossing and leads to natural 
looking movement.  
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Overlapping is solved by integrating the physical library Bullet [1]. To keep track 
of characters within a cell at all times, we employ Bullet’s GhostObjects, which are 
special physic bodies that do not interact with the rest of the standard physics bodies 
of the simulation, but they track an updated list of the objects they are in contact with.  

 

Fig. 7. Example of a NavMesh with 106 notches and 62 cells. Green lines represent portals.  

5   Conclusions and Future Work 

The ANavMG provides an automatic convex cells subdivision for any simple 
polygon with our without holes. The polygons can represent the floor plan of a given 
environment, with holes representing static objects such as walls. Although the 
current work has been tested with environments consisting of only one level, it could 
be expanded by considering each different level individually, and then creating cells 
for ramps, stairs, etc. connecting two levels following the same idea. 

We have introduced a novel algorithm which focuses on the idea of sequentially 
splitting notches into convex areas instead of being limited to some preliminary 
triangle subdivision. Since our approach is based on subdividing the original polygons 
with segments, instead of diagonals, we achieve on average a smaller number of 
convex cells in the environment than previous work in the literature based on 
diagonals.  

In this paper we have also included the concept of convexity relaxation, based on 
the fact that small concavities in the environment can be easily overcome with most 
local movement algorithms, and thus we state that for navigation meshes it is not 
strictly necessary to be limited to interior vertices smaller than π. We have 
experimentally observed that a τ-convexity of 5º is a conservative value which works 
well in all the tested scenarios, however in the future we would like to further explore 
this idea, so that the τ-convexity can be automatically calculated, and moreover, 
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dependent not only on the interior angle of the vertex, but also on other factors such 
as the length of the adjacent edges, or the type of vertices at either end of the adjacent 
edges. Adjusting the τ-convexity per vertex, will allow us to have even larger values 
for the threshold τ which will lead to an even smaller number of cells generated.  
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