
Automatic Generation of Suboptimal NavMeshes

Ramon Oliva, Nuria Pelechano

Universitat Politècnica de Catalunya, Barcelona, Spain

ramon.oliva.martinez@gmail.com, npelechano@lsi.upc.edu

Abstract. Most current games perform navigation in virtual environments
through A* for path finding combined with a local movement algorithm.
Navigation Meshes are the most popular approach to combine path finding with
local movement. This paper presents a new Automatic Navigation Mesh
Generator (ANavMG) that subdivides any polygon representing the
environment, with or without holes, into a suboptimal number of convex cells
where local movement algorithms can be applied without deadlocks. We
introduce the concept of convex relaxation to further reduce the number of cells
depending on the flexibility of the local movement algorithm. Finally we show
results of the ANavMG and its application to a multi player game.

Keywords: Navigation meshes. Convex decomposition. Crowd navigation.

1 Introduction

Navigation meshes (NavMeshes) are commonly used to represent the walkable
geometry within a virtual environment. Path finding can then be performed on a graph
which abstracts away the geometry details, by representing each walkable area as a
cell and the crossing segments between cells, as the portals of the graph.

When creating these NavMeshes we have two main restrictions: the first one given
by the path finding algorithm which implies reducing the number of cells so that the
path finding algorithm will find a suitable route as fast as possible, while the second
one is given by the local movement algorithm and it implies having convex cells so
that agents can move in a straight line between any two points of the cell.

In many cases, game designers need to create these navigation meshes by hand,
which is extremely time consuming and can introduce errors which may either leave
areas of the walkable space not accessible to the Non Player Character (NPC), get the
NPCs stuck in concave regions, or create paths that do not look natural.

In this paper we introduce a new approach to automatically obtain NavMeshes for
a given environment. For clarity, we will explain the algorithm for the case of 2D
environments, where the input polygon representing the environment can be seen as
the floor plan, and the holes represent static obstacles. This implies that we are not
currently handling environments consisting of several levels with staircases, ramps,
etc., but we will explain how the method could be easily extended to 3D.

The main contribution of this paper is an algorithm that takes as an input any 2D
simple polygon (i.e. no self-intersections) with or without holes, and automatically

2 R. Oliva, N. Pelechano

splits it into a suboptimal subdivision of convex polygons that are highly suited to
path finding by avoiding the presence of both degenerated polygons and almost all ill-
conditioned polygons. We also introduce the concept of convex relaxation to achieve
smaller navigation meshes based on the flexibility of the local movement algorithm
being used for obstacle avoidance.

There is a trade-off when generating the NavMesh between having the minimum
number of cells possible, so that path finding can run as fast as possible, and having
portals that best guarantee natural traversals when applying local movement.
Therefore the overall goals of our navigation mesh generator are:
1) To achieve as few cells as possible
2) To achieve portals as short as possible (since it introduces less inaccuracies

when setting attractors to drive the natural movement of the agents).
3) To avoid cells with interior angles close to zero, since it complicates the local

movements and leads to agents being physically in more than two cells
simultaneously. (For the rest of the paper, we shall define an ill-conditioned
polygon as a polygon with interior angles close to zero.)

In this paper we are not concerned about the time complexity of our algorithm,
since it can be executed during pre-processing, and given that it only deals with static
geometry, no further changes need to be made at run time. Dynamic obstacles and
other agents are avoided through local movement techniques based on Reynolds'
steering behaviors [13].

Once the subdivision is created, we automatically generate the cell and portal
graph (CPG) representing the environment, where cells are the convex polygons
resulting from the subdivision, and portals are the segments created to subdivide the
original polygon into convex cells.

We finally present an example of a multi player game where path finding is carried
out through A* over the generated NavMesh and movement within cells and dynamic
obstacle avoidance are performed through steering behaviors. The physical library
Bullet [2] has been integrated for several purposes including: speed up of the local
movement simulation, guarantee non overlapping between agents, and keeping track
of agents’ within each cell to quickly update their mental maps in cases where agents
are accidentally pushed through portals. Section 4 shows results of our ANavMG as
well as multi agent navigation in a game application.

2 Related work

The concept of Navigation Mesh was introduced by Snook in his paper Simplified 3D
Movement and Pathfinding Using Navigation Meshes [14]. He also proposed some
ideas to acquire a good NavMesh based on polygon triangulation, but the method does
not consider the creation of ill-conditioned cells that could introduce problems when
local movement methods are applied.

In most games navigation meshes are used to perform path finding. The navigation
mesh is then represented through a Cell and Portal Graph (CPG), where the cells
correspond to convex walkable areas, and the portals correspond to the segments that
are shared by adjacent cells and that can be used for crossing between those cells [11].

Automatic Generation of Suboptimal NavMeshes 3

Navigation has also been performed through roadmaps [7], Voronoi diagrams [15]
or hierarchical representation of informed environments [10]. Many techniques have
been introduced for local movement within convex cells [1][11][13]. Lerner et. al. [8]
presented an algorithm to automatically generate a CPG for visibility that worked
both for interiors and exterior scenarios but, since the goal of their algorithm was
visibility, their method generates cells that are not guaranteed to be convex.
Haumount, et. al. [1] introduced an algorithm for generating CPG of interiors based
on a voxelization followed by a watershed.

Hertel and Mehlhorn [5] presented a non optimal partition by diagonals, which
works only for polygons without holes. The algorithm first triangulates the polygon
and then removes inessential diagonals. Partitions based on diagonals are commonly
used in location problems where they need to keep the total number of vertices of the
polygon. But when doing a partition for navigation, it is not strictly necessary to
maintain the number of vertices, and thus new vertices can be created if they result in
a better partition (meaning less cells or portals that lead to more natural looking
movement of the agents).

Kallman proposes an automatic triangular NavMesh generation method [1] based
on Delaunay’s triangulation, so it generates the lowest possible number of
degenerated triangles. Using a triangular NavMesh is a good first approach because it
guarantees that every cell created is convex, so a character can move in a straight line
from any pair of points inside the cell. In addition, geometric operations over triangles
are very efficient. The main drawback is that many unnecessary cells are created,
increasing the time for calculating a path between two given cells, which can be
specially problematic in videogames where we need a real-time response.

Although in many cases the NavMesh is created by hand, some Game Engines and
third parties programs offer the functionality of an automatically generated navigation
mesh for a given virtual map, but they generate a great number of ill-conditioned cells
or are map-type-specific. For example, Valve [17] uses a NavMesh generator based
on subdividing the virtual map by quadrilaters. This method creates a non-optimal
convex decomposition and is not really extensible to maps with arbitrary geometry.

Unreal Engine [16] has its own NavMesh generator, but it generates a great number
of ill-conditioned convex polygons that can affect the application of local movement
methods and the quality of generated paths. Recast [12] is actually the open-source
NavMesh generator most used on popular games such as Bulletstorm, but we have
detected that unnecessary cells are created that could easily be merged together,
decreasing the final number of cells.

3 The Automatic Navigation Mesh Generator (ANavMG)

There are two possibilities when subdividing a polygon into convex cells. The first
one consists of subdividing by adding diagonals, which are edges between pairs of
vertices in the original geometry. The second one consists of using segments which
are edges between a vertex of the geometry and a new point created on the boundary
of the original geometry. The algorithm presented in this paper carries out a partition

4 R. Oliva, N. Pelechano

based on segments, and thus we are not limited by the position of the vertices in the
original geometry.

3.1 Previous Concepts

The approach followed by our algorithm consists of subdividing the input polygon by
first detecting which are the notches (concave vertices, i.e. interior angle larger than
π) that appear in the polygon and then splitting them by creating portals so that for
each original notch in the geometry, we will split it into two new angles that are both
convex (i.e. interior angle smaller than π). In this way, we guarantee that if all the
notches in the original polygon are split into convex angles we will obtain a partition
consisting only of convex cells.

In order to ensure that we only require one new segment in the geometry to split
the notch into two convex angles, we define the area or interest, Ii of a notch vi given
by two edges of the geometry, ei-1,i and ei,i+1 as the resulting interior area of
prolonging ei-1,i and ei,i+1 as we indicate in figure 1 (left), where ei-1,i is the edge that
joins vi-1 with vi.

Fig. 1. On the left, we show the interest area, Ii of a notch vi. Green vertices are convex, and
blue vertices are notches that need to be split. On the right, we show a simple example of an
input given to the algorithm, with the order of the vertices implying polygon (in white) or holes
(in grey).

 The floor plan of the virtual environment where we want our characters to navigate is
given as a simple polygon, and the vertices are given in counter-clockwise order. Any
obstacle within the virtual environment will be given as a polygon with its vertices in
clockwise order. Obstacles can be seen as holes in the main polygon that represents
the entire map (figure 1, right).

The input geometry consists of a polygon P enclosing other polygons H1, ..., Hm,
where all holes are simple empty polygons. Let δP be the boundary of the polygon P,
and δHi the boundary hole δHi. We assume that the following conditions apply:

iiHH

hiHP

ji

i




,)2

,...,1,)1  (1)

The first step of the algorithm consists of determining which vertices are notches.
This step is performed through an orientation test based on calculating the signed area
of the triangle defined by three consecutive vertices, vi, vi+1, v1+2:

Automatic Generation of Suboptimal NavMeshes 5

 
yiiyii

xiixii
iii vvvv

vvvv
vvvA

,21,1

,21,1
21 2

1




  (2)

If the area A(vi, vi+1, v1+2) is positive, it means that vertex vi+2 is on the left hand side
of edge ei,i+1 given by the previous vertices vi, and vi+1. If it is negative, it means that
vi+2 is on the right hand side of edge ei,i+1. So for the main polygon which is given in
counter-clockwise order, if the area is negative it means that vi+1 is a notch and thus
needs to be split, whereas for the holes, given in clockwise order, we will also find a
notch when the area is negative. We will introduce all notches of the geometry in a
vertex list V to be treated in order. This step has cost O(n) where n is the total
number of vertices of the geometry.

3.2 Creating portals

For each vi in V, the algorithm looks for the closest element in the geometry that falls
within its area of interest Ii to create a portal with it. This has cost O(n·r), where
n=number of vertices, and r=number of notches. Elements can be other vertices,
edges of the original geometry, or portals. Depending on the element being selected,
we classify three types of portals: vertex-vertex, vertex-edge, vertex-portal. Each of
these cases needs to be treated differently.

3.2.1 Vertex-Vertex portals.

When the closest element to vi is another vertex vj of the geometry, the algorithm
simply needs to create a portal pi between vi and vj. As can be seen in figure 2, the
portal created guarantees that vi gets split in two convex regions, and thus no further
processing of vi is necessary to subdivide the original polygon into convex cells. If the
other vertex vj was also contained in V (which means that it is also a notch), then the
algorithm also checks whether by creating portal pi, vj gets split in two convex angles.
This will happen exclusively when vi falls within Ij as we can see in the example
shown in figure 2.

Fig. 2. Vertex-Vertex portal creation. On left, vi also falls within Ij, so it can be removed from
V, on the right, vi does not fall within Ij and since it is a notch it still needs to be split.

6 R. Oliva, N. Pelechano

3.2.2 Vertex-Edge portals.

When the closest element to vi is an edge ej,j+1 of the geometry, the algorithm needs to
create a portal pi between vi and a point q in the segment ej,j+1. Since we want portals
to be as short as possible, we first consider the closest point within the segment,
which is calculated as the projection of vi over ej,j+1, so in this case q=(proje vi).

If q falls within Ii then a new portals is created and the algorithm proceeds with the
next notch in V (see figure 3, left), but it could be possible that even though the edge
ej,j+1 is the closest element to vi, we could have its projection falling outside ej,j+1 or
outside the interest area, Ii, and thus the portal between those two points would not be
enough to split vi in two convex angles (see figure 3 center and right).

Therefore if the projection is not a good candidate to create a unique portal, the
algorithm considers four new candidates:

 the two end vertices of ej, j+1, vj and vj+1 (see figure 3, center).
 the two intersection points ql and qr (if they exist) where ql is the

intersection between the closest edge ej,j+1, and the result of extending the
segment ei-1,i (segment on the left of vi), and qr is the intersection between
ej,j+1, and the result of extending the segment ei,i+1 (segment on the right
of vi) (see figure 3, right). There is a chance that depending on the
orientation of each segment, none of those intersections exist, and
therefore only the ends of segment ej, j+1 are considered.

 Among the four possible vertices mentioned above, the algorithm selects the
closest one that falls within Ii and a new portal is created between vi and the selected
vertex.

Fig. 3. Vertex-Edge portal. Candidate point q being the projection (left), candidates being the
end points of segment vj+1 (center), and candidate points being the intersections (right).

In figure 3 we can see the three different types of portals created in the category of
vertex-edge portal. As we can see the cases on the left (projection) and the right
(intersection points) are the only cases where new vertices are added into the
geometry. These vertices can never be notches, therefore the algorithm does not need
to do any further processing with them.

3.2.3 Vertex-Portal portals.

In the case where the closest element to vi in the geometry is a previously created
portal, the treatment when creating portals differs from the vertex-edge portal since

Automatic Generation of Suboptimal NavMeshes 7

we do not want to have intersecting portals (or T-shapes), which would be the case for
calculating a projection or intersection over an existing portal.

Therefore we assume that when the closest element is a portal pk, we will need to
create a new portal pi with either end vertex of segment pk. The algorithm selects the
closest vertex that falls within Ii (figure 4, left and center). But since only vertices that
fall within Ii can guarantee that vi will get split into two convex areas, if none of the
end vertices of pk satisfy that requirement (figure 4, right), then the algorithm needs to
create two portals instead of one. The new portals will be pi which joins vi with the
left end of pk and pi+1 which joins vi with the right end of pk. Notice that given the
type of geometry we are dealing with, the interior angle between pi and pi+1 will
always be smaller than π, and therefore we guarantee that when adding these two
portals, vi will get split in three convex regions.

Fig. 4. Vertex-Portal portal. Only one end of pk falls within Ii (left), both ends of pk fall within
Ii (center), and none of the ends of pk fall within Ii (right).

This case of portal creation is the only one that may require two new portals
instead of just one per notch, but in most cases when creating these portals we will be
able to remove the original portal pk, and thus we are on average creating one portal
per notch.

Removing Previously Created Portals:

When a vertex-portal portal, pi, is created between a vertex vj and a previously

created portal pk, we will have at least one vertex, vi, where both portals meet, since
portals always meet at their ends which are located over existing vertices. In order to
determine whether we could merge the two cells divided by portal pk, the algorihtm
checks whether pk is still a necessary portal, since it is possible that by adding pi to
vertex vj, this vertex already gets split in two convex regions, and thus there is no
need to have two portals splitting one vertex.

To be able to remove portal pk, it is necessary to check whether both the left and
right vertices of the portal need pk, not to be a notch. This step is performed by
calculating the interior angle between the two neighouring segments of portal pk, at
each end vertex (which can be edges of the geometry or other portals) and testing for
convexity. If they both pass the convexity test, then we can remove pk, and thus
merge two convex cells into one larger convex cell (see figure 5).

8 R. Oliva, N. Pelechano

Fig. 5. Removal of previously created portal, pk when creating a new set of portals pi and pi+1
(left), or several cases of just one new portal being created (right)

3.3 Convexity Relaxation.

A vertex is defined to be convex, if its internal angle is smaller or equal than π,
otherwise it is a notch. This is the mathematical definition of convexity but, in some
applications such as the creation of navigation meshes, it may not be necessary to
consider such a strict definition. As described previously in this paper, most
navigation meshes consist of a set of convex cells with portals representing the
traversal segments between them. Movement within a convex cell and between cells
is driven by some local movement algorithm which can usually deal relatively easily
with small concavities through obstacle avoidance behavior which also applies to
static geometry (such as walls). Therefore, depending on the local movement
algorithm being implemented, we can relax the definition of convexity by allowing a
certain threshold τ. Relaxing the definition of convexity results in a smaller number of
portals since more cells can be merged together into τ-convex cells, where τ is the
threshold given by the local movement algorithm. We provide the following
definitions:

Def: a vertex vi is said to have τ-convexity if its internal angle is smaller than π+ τ.

Relaxing convexity affects not only the classification of vertices into notches, but
also the definition of the area of interest of a node.

Def: an area of interest Ii is said to have τ-convexity if its internal angle is αi+ τ,
where αi is the original internal angle of Ii before applying convexity relaxation.

In order to avoid obtaining degenerate or non-simple polygons, it is necessary to
refine the definition of the threshold per vertex, so that we ensure that the best
candidate for any given vertex vi, will never be laying over the same edge as vi, or
causing an intersection with the boundary of the original polygon. This is achieved by
limiting α+τ to always be smaller than π. And this leads us to the next definition:

Def: a polygon P is said to have been split into τ-convexity cells, when all its
vertices have at most τ-convexity.

The effect of increasing the internal angle of the Ii with the threshold τ, implies a
larger area to look for candidates, which not only reduces the total number of cells,
but also implies a reduction in the number of ill-conditioned polygons (see figure 6).

Automatic Generation of Suboptimal NavMeshes 9

Fig. 6. On the left a cell created with strict convexity, on the right the same scenario but

applying the concept of convexity relaxation.

3.4 Discussion on the Navigation Mesh Created.

Considering a polygon P with r notches, let the optimal number of convex cells, O
be within the following bounds:

121
2







rO
r (3)

Since at most two diagonals are essential for any notch [5] then any subdivision
without inessential diagonals is within four times of the minimum subdivision (which
gives us the upper bound). This holds even for polygons with holes, as proved in [4].
The lower bound is given by the best case scenario where we only need one portal to
join pairs of notches.

In the case of subdivision based on diagonals, there may be more than one edge
created per concave vertex, since it is possible that no vertex of the geometry fall
within the area of interest. If we create an edge outside this area, we will split the
current concave vertex into two regions, one convex and one concave, therefore, we
will still need additional edges to guarantee that all the final regions are convex.

Since our algorithm is not limited to diagonals, it only needs one new edge per
concave vertex, which indicates that our number of cells will be of O(r). This
indicates that our method is always going to give a subdivision with fewer cells than
any solution based exclusively on diagonals. In fact as we will see in the results
section, our algorithm provides a subdivision of less than r cells.

4 Results and Future Work

The method presented in this paper generates navigation meshes that can
successfully be used for path finding and driving local movement between cells. The
subdivision meshes generated in all cases contain a number of cells lower than the
number of notches in the geometry. Since calculating the optimal subdivision mesh
for a convex polygon with holes is NP-hard, we consider that any algorithm that can
guarantee a maximum number of cells equal to the number of notches can be
considered a good suboptimal subdivision.

Another advantage of our method is that we obtain NavMeshes without
degenerated polygons, and almost no ill-conditioned polygons. Therefore our
NavMeshes can be used with any local movement technique guaranteeing natural
looking movement of the characters.

10 R. Oliva, N. Pelechano

Even though the time complexity of our method was not the main concern, the
ANavMG can generate NavMeshes with a temporal cost of O(r·n), where r is the
number of notches, and n the number of vertices.

We have tested scenarios with increasing numbers of obstacles (see table 1), and
the results show that for the first version of the algorithm (strict convexity rule and no
elimination of old portals as new ones are generated) we achieve a ratio on average of
0.8 cells per notch. When applying the optimization of previous portal removal
explained in section 3.2.3, we achieve an improvement of 10%, with the new ratio
being 0.71 cells per notch. Finally the contribution based on convexity relaxation
(section 3.3), achieves a ratio of 0.67 cells per notch on average, which implies an
improvement of around 20% with τ-convexity=5º.

Table 1. Results from 8 scenarios with increasing number of notches. For each version of the
algorithm we have calculated the number of resulting cells, and the ratio cells/notches.

Geom. #Notches #cells
original

ratio
c/r

#cells
Portal
removal

ratio
c/r

#cells
Conv.
relaxation

ratio
c/r

1 15 15 1.00 12 0.80 12 0.80
2 22 21 0.95 17 0.77 16 0.73
3 32 27 0.84 22 0.69 21 0.66
4 43 34 0.79 30 0.70 29 0.67
5 55 39 0.71 38 0.69 35 0.64
6 68 46 0.68 46 0.68 42 0.62
7 93 63 0.68 63 0.66 58 0.62
8 106 73 0.69 72 0.68 62 0.58

Average 0.8 0.71 0.67

As the number of vertices in the geometry increases, we observe that the ratio of

cells/notches drops, since there are more chances of a vertex-vertex portal splitting
simultaneously two notches, and thus reducing the number of portals per notch
needed towards 0.5. We have tested scenarios of up to 136 vertices, with 106 being
notches, and we believe that the average ratios calculated would be reduced even
further as we test larger scenarios.

Figure 7 shows an example of a NavMesh obtained with ANavMG. (The following
video http://www.lsi.upc.edu/~npelechano/videos/MIG2011_NavMesh.avi shows the
result generated step by step as well as its associated CPG.

Game Application: Capture the Flag

Our ANavMG generator has been successfully integrated into Ninja Flag, a tactical
multiplayer online game, inspired by the famous outdoor sport called Capture The
Flag, that we have developed.

To determine how a character moves from one cell to another and to describe its
behavior inside a convex cell, we use several steering behaviors [13]. Attractors are
set based on the agents' projection over the portals, as they move within a cell. This
avoids agents sharing the same attraction points when crossing and leads to natural
looking movement.

Automatic Generation of Suboptimal NavMeshes 11

Overlapping is solved by integrating the physical library Bullet [1]. To keep track
of characters within a cell at all times, we employ Bullet’s GhostObjects, which are
special physic bodies that do not interact with the rest of the standard physics bodies
of the simulation, but they track an updated list of the objects they are in contact with.

Fig. 7. Example of a NavMesh with 106 notches and 62 cells. Green lines represent portals.

5 Conclusions and Future Work

The ANavMG provides an automatic convex cells subdivision for any simple
polygon with our without holes. The polygons can represent the floor plan of a given
environment, with holes representing static objects such as walls. Although the
current work has been tested with environments consisting of only one level, it could
be expanded by considering each different level individually, and then creating cells
for ramps, stairs, etc. connecting two levels following the same idea.

We have introduced a novel algorithm which focuses on the idea of sequentially
splitting notches into convex areas instead of being limited to some preliminary
triangle subdivision. Since our approach is based on subdividing the original polygons
with segments, instead of diagonals, we achieve on average a smaller number of
convex cells in the environment than previous work in the literature based on
diagonals.

In this paper we have also included the concept of convexity relaxation, based on
the fact that small concavities in the environment can be easily overcome with most
local movement algorithms, and thus we state that for navigation meshes it is not
strictly necessary to be limited to interior vertices smaller than π. We have
experimentally observed that a τ-convexity of 5º is a conservative value which works
well in all the tested scenarios, however in the future we would like to further explore
this idea, so that the τ-convexity can be automatically calculated, and moreover,

12 R. Oliva, N. Pelechano

dependent not only on the interior angle of the vertex, but also on other factors such
as the length of the adjacent edges, or the type of vertices at either end of the adjacent
edges. Adjusting the τ-convexity per vertex, will allow us to have even larger values
for the threshold τ which will lead to an even smaller number of cells generated.

Acknowledgments. We would like to acknowledge the Spanish Ministry grant
TIN2010-20590-C02-01.

References

1. Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent
navigation. In: ICRA’08: Proceedings of the International Conference on Robotics and
Automation, pp: 1928--1935 (2008)

2. Bullet Physics Library, http://bulletphysics.org
3. Haumont, D., Debeir, O., Sillion, F.: Volumetric cell-and-portal generation. Computer

Graphics Forum, vol. 22(3). pp. 303--312. (2003)
4. Fernandez, J., Toth, B., Canovas, L., Pelegrin, B.: A practical algorithm for decomposing

polygonal domains into convex polygons by diagonals. TOP, vol. 16. pp. 367--387.
Springer (2008)

5. Hertel, S., Mehlhorn, K.: Fast triangulation of simple polygons. In: Proc 4th International
conference on Foundations of Computation Theory. Lecture LNCS, vol 158. Springer, New
York, pp 207—218. (1983)

6. Kallman, M.: Navigation Queries from Triangular Meshes, In proceedings of the Third
International Conference on Motion in Games (MIG), (2010)

7. Lamarche, F.: TopoPlan: a topological path planner for real time human navigation under
floor and ceiling constraints. Computer Graphics Forum. vol. 28 (2), pp. 649--658. (2009)

8. Lerner, A., Chrysanthou, Y., Cohen-Or, D.: Efficient Cells-and-portals Partitioning.
Computer Animation and Virtual Worlds, vol. 17(1), pp. 21--40, (2006)

9. Lien, J.-M., Amato, N.M.: Approximate convex decomposition of polygons. In:
Computational Geometry, vol. 35(1-2), ACM Symposium on Computational Geometry, pp.
100--123, (2006)

10. Mekni, M. : Hierarchical path planning for situated agents in informed virtual geographic
environments. In: Proc. of the 3rd International ICST Conference on Simulation Tools and
Techniques. pp. 1-10, (2010)

11. Pelechano, N. and Allbeck, J. M. and Badler, N. I.: Controlling individual agents in high-
density crowd simulation, In: Proc. of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pp. 99--108 (2007)

12. Recast Toolkit, http://code.google.com/p/recastnavigation
13. Reynolds, C. W.: Steering Behaviors For Autonomous Characters. In: Game Developers

Conference. San Jose. pp. 763--782. (1999)
14. Snook, G.: Simplified 3D Movement and Pathfinding Using Navigation Meshes, Game

Programming Gems, Ed. Mark DeLoura, Charles River Media, (2000)
15. Sud, A., Andersen, E., Curtis, S., Lin, M.C., Manocha, D.: Real-time path planning in

dynamic virtual environments using multiagent navigation graphs. In: IEEE Transactions
on Visualization and Computer Graphics vol. 14, pp 526--538 (2008)

16. Unreal Engine’s NavMesh Generation Method.
 http://udn.epicgames.com/Three/NavigationMeshReference.html

17. Valve’s NavMesh Generation Method
http://developer.valvesoftware.com/wiki/Navigation_Meshes

