Skip to main content

Walk This Way: A Lightweight, Data-Driven Walking Synthesis Algorithm

  • Conference paper
Motion in Games (MIG 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7060))

Included in the following conference series:

Abstract

We present a novel, biomechanically-inspired, kinematic- based, example-driven walking synthesis model. Our model is ideally suited towards interactive applications such as games. It synthesizes motion interactively without a priori knowledge of the trajectory. The model is very efficient, producing foot-skate free, smooth motion over a large, continuous range of speeds and while turning, in as little as 5 μs. We’ve formulated our model so that an artist has extensive control over how the walking gait manifests itself at all speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gleicher, M.: More Motion Capture in Games — Can We Make Example-Based Approaches Scale? In: Egges, A., Kamphuis, A., Overmars, M. (eds.) MIG 2008. LNCS, vol. 5277, pp. 82–93. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Multon, F., France, L., Cani, M.-P., Debunne, G.: Computer Animation of Human Walking: a Survey. J. Vis. Comput. Animat. 1, 39–54 (1999)

    Article  Google Scholar 

  3. Bruderlin, A., Calvert, T.W.: Goal-directed, dynamic animation of human walking. In: Proc. of ACM SIGGRAPH, pp. 233–242 (1989)

    Google Scholar 

  4. Bruderlin, A., Williams, L.: Motion signal processing. In: Proc. of ACM SIGGRAPH, pp. 97–104 (1995)

    Google Scholar 

  5. Boulic, R., Magnenat-Thalmann, N., Thalmann, D.: A global human walking model with real-time kinematic personification. The Visual Computer 6, 344–358 (1990)

    Article  Google Scholar 

  6. Ko, H., Badler, N.I.: Straight Line Walking Animation Based on Kinematic Generalization that Preserves the Original Characteristics. In: Proceedings Graphics Interface, pp. 9–16 (1993)

    Google Scholar 

  7. Sun, H.C., Metaxas, D.N.: Automating gait generation. In: Proc. SIGGRAPH 2001, pp. 261–270 (2001)

    Google Scholar 

  8. Park, S.I., Shin, H.J., Kim, T.H., Shin, S.Y.: On-line motion blending for real-time locomotion generation: Research Articles. Comput. Animat. Virtual Worlds 3(4), 125–138 (2004)

    Article  Google Scholar 

  9. Pelechano, N., Spanlang, B., Beacco, A.: Avatar Locomotion in Crowd Simulation. In: Proc. CASA (2011)

    Google Scholar 

  10. Menardais, S., Kulpa, R., Multon, F., Arnaldi, B.: Synchronization for dynamic blending of motions. In: Symposium on Computer Animation, pp. 325–336 (2004)

    Google Scholar 

  11. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Trans. Graph. 3, 473–482 (2002)

    Google Scholar 

  12. Gleicher, M.: Graph-based motion synthesis: an annotated bibliography. In: ACM SIGGRAPH 2008 Classes, pp. 1–11 (2008)

    Google Scholar 

  13. Heck, R., Gleicher, M.: Parametric Motion Graphs. In: Proc. I3D 2007 (2007)

    Google Scholar 

  14. Lau, M., Bar-Joseph, Z., Kuffner, J.: Modeling spatial and temporal variation in motion data. ACM Trans. Graph., 1–10 (2009)

    Google Scholar 

  15. Treuille, A., Lee, Y., Popović, Z.: Near-optimal Character Animation with Continuous Control. ACM Trans. Graph. 3 (2007)

    Google Scholar 

  16. Johansen, R.S.: Automated Semi-Procedural Animation for Character Locmotion. Aarhus University (2009)

    Google Scholar 

  17. van Basten, B.J.H., Stuvel, S.A., Egges, A.: A hybrid interpolation scheme for footprint-driven walking synthesis. Graphics Interface, 9–16 (2011)

    Google Scholar 

  18. Shapiro, A., Cao, Y., Faloutsos, Y.: Style Components. In: Proc. of Graphics Interfaces (2006)

    Google Scholar 

  19. Neff, M., Kim, Y.: Interactive Editing of Motion Style Using Drives and Correlations. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2009)

    Google Scholar 

  20. Whittle, M.W.: Gait Analysis: An Introduction. Elsevier (2007)

    Google Scholar 

  21. Inman, V.T., Ralston, H.J., Todd, F., Lieberman, J.C.: Human Walking. Williams & Wilkins (1981)

    Google Scholar 

  22. Dean, G.A.: An Analysis of the Energy Expenditure in Level and Grade Walking. Ergonomics 1, 31–47 (1965)

    Article  Google Scholar 

  23. Murray, M.P.: Gait as a total pattern of movement. Am. J. Phys. Med. 1, 290–333 (1967)

    Google Scholar 

  24. Witkin, A., Popović, Z.: Motion Warping. In: Proc. SIGGRAPH, pp. 105–108 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Curtis, S., Lin, M., Manocha, D. (2011). Walk This Way: A Lightweight, Data-Driven Walking Synthesis Algorithm. In: Allbeck, J.M., Faloutsos, P. (eds) Motion in Games. MIG 2011. Lecture Notes in Computer Science, vol 7060. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25090-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25090-3_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25089-7

  • Online ISBN: 978-3-642-25090-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics