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Abstract. We introduce a new method that greatly improves the iterative edge
length constraint enforcement frequently used in real-time cloth simulation sys-
tems for preventing overstretching. Our method is based on the directional en-
forcement of constraints and on the simultaneous progressive scanning of the
cloth edges, starting from fixed vertices and propagating on the direction of grav-
ity. The proposed method successfully detects the meaningful springs to be cor-
rected and ignores the ones that do not have any significance on the overall visual
result. The proposed approach is simple and robust and is able to achieve realis-
tic cloth simulations without overstretching, without causing any visual artifacts,
and dramatically decreasing the computational cost of the constraint enforcement
process. 1
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1 Introduction

Cloth simulation is widely used in computer graphics and many systems are able to
simulate in real time moderately complex cloth models. Among the several possible
approaches for achieving deformable surfaces, particle-based systems remain the most
popular model for achieving interactive, real-time results. One common undesired be-
havior in particle-based cloth models is the effect of overstretching, and specific geo-
metric edge length enforcement procedures are commonly employed.

Iterative enforcement of constraints coupled with explicit integration methods is
well suited for cloth simulation systems with modest particle numbers. This combina-
tion successfully avoids the requirement of solving systems of equations and therefore
leads to computationally fast and visually satisfying simulations, suitable for computer
games. Although research has been developed to the problem of constraint enforcement
in general, the useful iterative geometric edge length enforcement method has not been
improved since its introduction by Provot [15]. We present in this paper a new approach
that greatly improves this method. Our method is simple to be implemented, robust, and
is able to achieve realistic stiff cloth behavior without any visual artifacts and improving
the computation time of the regular iterative constraint enforcement by up to 80%.

1 Accompanying video at http://graphics.ucmerced.edu/projects/11-mig-edgcorr/
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The proposed method is based on computing a meaningful one-pass ordering of
edge corrections by considering the direction in which stretching occurs most. First, we
experimentally determine the correction priorities over the different types of considered
springs in order to minimize the stretch effect of the gravitational pull. Then, we employ
corrections starting from all the fixed vertices in a given simulation and synchronously
expanding towards the bottom of the cloth. We also limit the correction number of each
vertex. By prioritizing the correction order of different types of springs and limiting the
correction number of all vertices to a small number, our method successfully detects the
important springs to be corrected and ignores the ones that do not have any significance
on the overall visual result. Our final method is able to dramatically decrease the cost of
the iterative constraint enforcement process and at the same time successfully eliminates
undesired overstretching effects.

2 Related Work

Cloth simulation is a central topic in computer graphics and there is a rich literature
available [5, 4, 15, 8, 21, 3, 10, 6, 19, 18]. We focus our review on how constraint en-
forcement has been used in previous works.

A common approach for the iterative constraint enforcement procedure is proposed
by Provot [15]. In this method, the cloth is scanned in an iterative way and all springs
that are disturbed more than a given threshold in respect to their rest lengths are iden-
tified. These springs are then restored to their rest length by moving the two particles
connected to a spring along the spring axis, bringing them closer if the spring is over
stretched; or further away from each other if the spring is over compressed (see Fig. 1).

The result of the described procedure is that a stiffer cloth behavior is produced.
Note however that not all springs can be perfectly corrected since one spring correction
can alter a previously corrected spring. There are a number of additional limitations
inherent to this kind of brute-force correction approach. One corrective iteration over
the cloth does not always guarantee a visually satisfying result, and in addition, the
cloth might exhibit an oscillatory behavior in several areas. To overcome these limi-
tations, a common approach is to apply the corrective procedure several times until a
visually satisfying result can be obtained. Obviously, increasing the number of con-
straint enforcement iterations will decrease the performance of the simulation and there
is no reliable way to determine how many iterations would be necessary to achieve
the desired results. In [15] it is mentioned that the order of correction of springs de-
pends entirely on their used data structure and in cases where constraints are globally
extending to the whole cloth object, the order of springs would probably have more
importance and should be studied. This observation is the primary motivation for our
proposed directional constraint enforcement method.

Aside from iterative approaches, it is also possible to address the problem by solv-
ing a system of non-linear constraint equations. Terzopoulos et al [19] used the Gauss-
Seidel method to approximate the solution with a linear system of equations [19]. An-
other popular method is called the Reduced Coordinate Formulation. In this formula-
tion, an unconstrained system with a given number of degrees of freedom is subject
to a set of constraints that remove some of the degrees of freedom and parameterizes



Directional Constraint Enforcement for Fast Cloth Simulation 3

Fig. 1: Direction of correction for two particles connected by a spring.

the rest; thus leading to generalized coordinates [11]. Lagrange multiplier formulations
are also widely used and have the advantage of defining the velocity and other types of
constraints which cannot be formulated using the Reduced Coordinates method [1, 2].

Among these several approaches, our proposed method is most suitable for applica-
tions where speed of computation and simplicity of implementation are most important,
such as in computer games and real-time simulations.

3 Cloth Model

The mesh structure of our cloth model is based on the scheme presented by [6]. The
cloth is represented as a quadrilateral mesh of particles. Particles are connected to each
other by massless springs. There are three types of spring elements, which are respon-
sible for the stretch, shear and bend forces. The connectivity of the springs is described
in the following way: a particle indexed by p(i, j) is connected by stretch springs to its
neighbor particles indexed by p(i±1, j), p(i, j±1). The shear springs connect the par-
ticle to p(i±1, j±1), and the bend springs connect the particle to p(i±2, j), p(i, j±2)
and p(i± 2, j ± 2).

3.1 Forces

The dynamics of the system is governed by Newton’s second law of motion F = ma,
where m is the mass and a is the acceleration of a particle. The acceleration is computed
at every time step based on the total force F applied to the particle, and which accounts
for all external and internal forces.

The gravitational force is given by F g = m g and it is the only external force in our
system. The internal forces acting on a particle are the forces which originate from the
stretch, bend and shear springs connected to each particle. The spring force F s between
two particles is given by Hooke’s law:

F s = −ks(|l| − r)
l

|l|
(1)

where l = xi − xj is the difference between the positions of the two particles, r is
the rest length of the spring and ks is the linear spring constant.
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3.2 Verlet Integration

Although it is possible to couple the constraint enforcement process with various in-
tegration methods, we use the verlet integration method in this work. The Verlet in-
tegration is a numerical method that originated from the field of molecular dynamics.
Thanks to its simplicity, performance and stability, it has become popular for real-time
cloth simulation, in particular in computer games.

The Verlet method stores the current and previous positions of each particle as the
state of the system. The velocity is thus implicitly represented by positions. The position
update step for each particle is computed with:

xt+1 = 2xt − xt−1 + ah2, (2)

where xt+1, xt and xt−1 are the positions of a particle at the next, current and
previous timesteps, a is the current acceleration influencing the particle and h is the
integration timestep. The acceleration influencing the particle is calculated based on the
total force acting on it. The damping of the system might be fine-tuned by changing the
constant multiplier (of value 2) in the equation. Decreasing the value to less than 2 will
increase the damping; whereas increasing to more than 2 will decrease the damping.

Because the velocity is implicitly calculated, the method tends to stay stable even
when relatively large timesteps are used. However, although the simulation remains
fast and stable, the use of large timesteps will lead to overshooting of positions and
result in a super-elastic cloth. Therefore, simulations relying on Verlet integration are
often coupled with an iterative constraint enforcement process that attempts to restore
the original distances between each pair of particles connected by a spring in the cloth
model.

4 Directional Constraint Enforcement

Our directional constraint enforcement method achieves improved results with a mean-
ingful traversal order of spring corrections. Our method minimizes the number of total
corrections needed by preventing redundant repetition of corrections and avoiding the
oscillation behavior that often results from a simple iterative constraint enforcement
traversal.

Our method is based on the observation that the most stretched springs tend to be
the ones on the regions most influenced by the contact forces in a given simulation
scenario. Therefore, the most stretched regions on the surface of the cloth are expected
to be the regions close to fixed vertices of the cloth, which are vertices that tend not to
move relative to their respective colliding object. By defining a traversal order that first
corrects the springs around the fixed vertices of the cloth, and expanding the corrections
on the direction of the gravity, it is possible to ensure that corrections will be effective
and without redundancy.

Our algorithm assumes that the cloth stretches under gravity and has a set of fixed
vertices. These fixed vertices correspond to vertices that attach the cloth to a character’s
body, a flag to a flag pole or a table cloth to the table, etc. Since there may possibly be
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Fig. 2: Correction patterns and their respective deformation results obtained from choosing dif-
ferent correction orders among the different types of springs.

more than one fixed vertex to start the correction expansion, it is important to synchro-
nize the corrections originating from different fixed vertices. Our experiments showed
that failing to synchronize the expansions are causing serious visual artifacts; and the
simultaneous expansion remains an important aspect of the algorithm.

It is also crucial to analyze the overall visual look of the cloth according to the order
chosen on the different types of springs. If we categorize the different types of springs
along with their elongation directions, we can come up with three major categories:
1) stretch springs elongating towards left or right (horizontal stretch springs), 2) stretch
springs elongating towards the bottom of the cloth (vertical stretch springs) and 3) shear
springs elongating towards the bottom of the cloth. Note that we do not take into account
springs elongating upwards, to make sure that the correction will be expanded towards
the gravity direction.

It is not straightforward to determine which type of spring should be given cor-
rection priority over other types. We have experimented with different orderings for
the three different types of springs, leading to six different combinations. Two of these
combinations produced similar correction orders as others; so, we ended up having four
different correction orders possible. The correction maps of these four different order-
ings and their associated deformation results are shown in Fig. 2. The experiment of
switching among the different orderings to observe the resulting cloth postures can be
found on the accompanying video of this paper. This experiment showed that the best-
looking deformations are obtained with the following order of correction: 1) Horizontal
stretch springs, 2) Vertical stretch springs, 3) Shear springs.

With the ordering for processing the different types of springs determined, an edge
traversal process respecing this ordering can then be devised. Algorithm 1 summarizes
our final edge correction ordering generation process. Details of the algorithm are given
in the next paragraphs.
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Algorithm 1 receives as input the set of fixed vertices Vf . At the beginning of the
algorithm, we use an empty queue Q to maintain the synchronous order of correction
expansions. When the algorithm terminates, list L will be filled with the right order of
edges to be corrected during run time.

The overall algorithm proceeds as follows: first, all the fixed vertices are pushed
into the expansion queue Q. Then, until there is no vertex left in the queue, the vertices
are popped and expanded one by one. Procedure Get Horizontal Stretch Springs (vs)
returns the horizontal stretch springs connected to the vertex vs. Similarly, Get Vertical
Stretch Springs (vs) returns the vertical stretch springs connected to the vertex vs, and
Get Shear Springs (vs) returns the shear springs connected to the vertex vs. Finally,
procedure Get Goal Vertex (vs, s) returns the vertex that is connected to the vertex vs
by the spring s.

Algorithm 1 Ordered Edge Correction
Compute Correction List ( Vf )
1. L← null
2. for all v such that v ∈ Vf do
3. Q.push(v)
4. end for
5. while Q is not empty do
6. vS ← Q.pop()
7. Sh ← Get Horizontal Stretch Springs (vs)
8. for all s such that s ∈ Sh do
9. vg ← Get Goal Vertex (vs, s)

10. Expand (L, vs, vg)
11. end for
12. Sv ← Get Vertical Stretch Springs (vs)
13. for all s such that s ∈ Vs do
14. vg ← Get Goal Vertex (vs, s)
15. Expand (L, vs, vg)
16. end for
17. Ss ← Get Shear Springs (vs)
18. for all s such that s ∈ Ss do
19. vg ← Get Goal Vertex (vs, s)
20. Expand (L, vs, vg)
21. end for
22. end while
23. return L

For each vertex expanded we first find all the horizontal stretch springs connected to
it. Then, we find the goal vertices that the vertex is connected to through these springs.
Finally, we try to expand the correction map towards those vertices. When the Expand
procedure is called, the expansion to the goal vertex is not guaranteed. The algorithm
first checks how many times the goal vertex has been visited. If it already reached
the visit limit number then we do not expand. If the visit limit is not reached yet, the
algorithm expands to the goal vertex and adds the edge from the current vertex to the
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Fig. 3: Left: step-by-step order of correction starting from an upper right fixed vertex of the cloth.
Right: correction map created for a cloth fixed from the two top corners.

goal vertex to the ordered correction list L. The visit count of the goal vertex will
be incremented and the goal vertex will be added to the expansion queue Q. These
procedures will be repeated for vertical stretch springs and shear springs as well. The
algorithm will stop when there is no vertex left in the queue. At the end of the algorithm,
we will have the ordered correction list L completed.

List L is precomputed in advance for each set of fixed vertices to be considered
during the real-time simulation. Then, after each integration step in the simulation, the
iterative constraint enforcement step will traverse the edges in L, correcting only the
position of the second vertices in each edge, satisfying the desired length of each edge.
Example results obtained with the algorithm are shown in Figure 3.

4.1 Using multiple correction maps

Our method relies on precomputed fixed orderings (encoded in list L) in order to maxi-
mize computation performance in real time. Since the set of fixed vertices may change
during a simulation, the validity of the precomputed list L may be reduced depending
on how irregular and unpredictable the deformation events are. We tested our method
on various scenes such as a planar cloth interacting with a solid ball and a complex
cloth model interacting with a women model performing a “catwalk”. At both sim-
ple and complex scenarios, the obtained varied cloth-object collisions and cloth-cloth
collisions did not seem to cause any significant degradation in the obtained quality of
results.

It is also possible to precompute several correction maps to further increase the
performance and the accuracy of the animation. Precomputed maps corresponding to
different collision states that repeatedly occur in the animation can be used by switch-
ing between them according to events in the simulation. For example, in the animation
of the walking character wearing a long skirt, the character’s knees are interchangeably
colliding with the skirt generating a visible event with impact on the edge correction list.
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Fig. 4: Three alternating correction maps used for the long skirt simulation during walking:
map with right knee collision (left), map with no knee collision (center), and map with left knee
collision (right).

Everytime a knee collides with the skirt, the colliding vertices are going to be corrected
by the collision detection module; we can as well treat them as fixed vertices in addi-
tional correction lists. We have obtained improved results with three correction maps
for the cases where 1) the knees do not touch the skirt, 2) only the right knee touches the
skirt and 3) only the left knee touches the skirt. As shown in Figure 4, everytime we de-
tect a knee collision (or obsence of collision) we switch to its corresponding correction
map. If the deformation is specific for one given walking animation, such events can be
encoded in the time-parameterization of the animation, eliminating decisions based on
collision detection events. The use of multiple correction maps is therefore suitable for
simulations dependable on cyclic animations such as walking.

5 Results and Discussion

In order to test the applicability of our method to different cloth simulation scenarios
we have tested our directional correction algorithm with clothes with different number
of fixed vertices and at different places. Figure 5 shows the different correction maps
produced for different initial sets of fixed vertices. Although the order of the corrections
change, the number of springs to be corrected stays practically the same. The only
exception is the scenario with the falling cloth on the table. In that scenario, a large
circular set of fixed vertices is naturally marked as fixed, and the number of springs to
be corrected is much less.

We have also tested our method on a more complex long skirt cloth model interact-
ing with a walking character. Our method proved to be efficient and did not cause any
undesired visual artifacts. Additional examples of edge correction orders obtained for
the skirt cloth model are shown in Figure 6 and rendered results are shown in Figure 7.

Our correction methodology is dependent on the set of fixed vertices on the surface
of the cloth. In most of the cloth simulation scenarios, such as hanging clothes, capes,
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Fig. 5: The figure shows the correction maps generated by our algorithm and their associated
cloth simulation scenarios.

flags, table clothes, or dressed characters, the set of fixed vertices stay the same during
the whole animation. Therefore, in this cases the correction map would only be pre-
computed once and in a very small amount of time. The precomputation time of the
correction map is about 0.52 seconds for a cloth of 1681 particles on a 2.4 GHz Intel
Core 2 Duo computer.

In terms of visual quality our model achieves visually satisfying results from a single
correction pass over the list of edges. This is a major improvement in respect to the
original (non-ordered) constraint enforcement procedure that relies on several passes
to achieve good results. One aditional important advantage of our method is that the
directional correction completely eliminates the shaky cloth behavior that is frequently
seen in multiple pass procedures.

5.1 Limitations

As previously stated, our correction methodology is dependent on how predictable the
set of fixed vertices is. In cloth simulation scenarios where the set of fixed points change
very frequently, our method would need to update the correction map after each signif-
icant change. In such situations an automatic procedure for detecting the validity of
correction list L and triggering an ordering update everytime the set of fixed vertices
significantly changes from the original set can be integrated in the simulation system.
However, this would still maintain the negative effect of penalizing the overall perfor-
mance of the simulation. On the other hand, if the change on the set of fixed vertices is
not frequent, this will not represent a major slow down in the overall computation time.

We are also assuming that the cloth stretches under one single major constant ex-
ternal force (gravity). Although this assumption addresses the vast majority of cloth
simulation scenarios, more complex situations where the stretch direction would be af-
fected by multiple varying external forces have not been tested.
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Fig. 6: Top row: Order of correction obtained with fixed vertices selected at the shoulder and belt
regions. Bottom row: A small number of vertices (shown by the circle on the bottom-left image)
is added to the set of fixed vertices. Notice how the new correction order obtained is different and
how the correction map visually corresponds to the expected buckling of the cloth.

6 Conclusion

We have introduced a new methodology for determining an efficient and effective traver-
sal order for the iterative edge length enforcement in cloth simulations. Our method is
robust, simple to be implemented and is able to achieve realistic stiff cloth behavior
without causing overstretching or visual artifacts (like shaky effects). Furthermore, our
method improves the computation time by 80 % in respect to the regular iterative con-
straint enforcement procedure. We believe that our directional constraint enforcement
approach will prove itself useful to a number of scenarios employing particle-based
deformable models, and in particular in real-time applications such as computer games.

Acknowledgments: We would like to thank Robert Backman for the valuable help
with the scene rendering and with the preparation of the accompanying video.
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Fig. 7: Example of a long skirt that would significantly overstretch if no constraint enforcement
is made. Our method eliminates the overstreching in an efficient manner.
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