Segmenting and Labeling Query Sequences in a
Multidatabase Environment

Aybar C. Acar! and Amihai Motro?

! Bilkent University, Department of Computer Engineering,
Ankara 06800, Turkey
aacar@cs.bilkent.edu.tr
2 George Mason University, Department of Computer Science,
Fairfax, VA 22030 USA
ami@gmu.edu

Abstract. When gathering information from multiple independent data
sources, users will generally pose a sequence of queries to each source,
combine (union) or cross-reference (join) the results in order to obtain
the information they need. Furthermore, when gathering information,
there is a fair bit of trial and error involved, where queries are recursively
refined according to the results of a previous query in the sequence. From
the point of view of an outside observer, the aim of such a sequence of
queries may not be immediately obvious.

We investigate the problem of isolating and characterizing subse-
quences representing coherent information retrieval goals out of a se-
quence of queries sent by a user to different data sources over a period of
time. The problem has two sub-problems: segmenting the sequence into
subsequences, each representing a discrete goal; and labeling each query
in these subsequences according to how they contribute to the goal. We
propose a method in which a discriminative probabilistic model (a Con-
ditional Random Field) is trained with pre-labeled sequences. We have
tested the accuracy with which such a model can infer labels and seg-
mentation on novel sequences. Results show that the approach is very
accurate (> 95% accuracy) when there are no spurious queries in the se-
quence and moderately accurate even in the presence of substantial noise
(~70% accuracy when 15% of queries in the sequence are spurious).

Keywords: Data Management, Information Integration, Query Pro-
cessing.

1 Introduction

In many database applications users perform complex tasks by breaking them
down to a series of smaller, simpler queries the results of which then become
terms in a larger expression. While the user interface may be presenting this to
the user as a simple button click, multiple queries are usually being evaluated at
the DBMS level to satisfy the request. In some cases this is consciously done by
the users themselves, usually when their user interface does not allow complex

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 367 2011.
© Springer-Verlag Berlin Heidelberg 2011

368 A.C. Acar and A. Motro

queries or if they are experimenting with the data in order to find the correct
query.

Particularly in the area of virtual databases (multidatabases), this decom-
position of queries into smaller components is a necessary part of the process.
In a multidatabase the actual data resides in a multitude of data sources, each
possibly with different schemas and access methods. Therefore a query posed to
the multidatabase is broken into multiple components, each designed to retrieve
a piece of the required information from the relevant local data source. For the
purposes of this paper, we call the party posing the queries the ‘user’. However,
this user may just as well be an automated application integrating data from
different sources (e.g. a mash-up).

Query consolidation [I] is the reversal of this query decomposition process. A
consolidator attempts to predict the global query that produced a set of smaller
component queries as a result of decomposition. Although it is not possible to
uniquely identify a global query that produces a given set of component queries,
it is possible to estimate some of the likely global queries. The research on
consolidation so far assumes that the local queries are available as a sound and
complete set.

However, in the real world, queries from a given user arrive as a sequence over
time. There is no marker that indicates which queries in a sequence constitute a
meaningful set. In the absence of such information, all the consolidating system
has are logs of queries for local sources. The set of queries that are part of
a global query must therefore be extracted from the sequence in the logs or
collated in real time as these queries arrive. Furthermore it would be very useful
to the consolidation effort to individually label the queries in a segment with their
probable roles in the bigger picture. The purpose of this paper is the investigation
of this problem.

In Section 2, some of the relevant literature and basic methods are introduced.
Section 3 defines the exact problem, discusses relevant issues and the information
available in the solution of the problem. Section 4 details our approach to the
problem using conditional random fields. Section 5 presents experimental results
on two different scenarios. Finally Section 6 concludes the paper with a summary
of findings and future work.

2 Background

2.1 Session Identification

Most of the previous literature on session identification and analysis of query logs
is geared towards Web server access log mining. In access log mining, sequences
of document requests from a Web server are analyzed instead of database queries.
A second form of server log analysis is the analysis of keyword and parameter
queries sent to search engines and other information retrieval services (e.g., digi-
tal libraries, travel sites, &c.) This type of analysis is based on clustering queries
in order to find trends [2] and other clues as to the general information demands
of the users in order to better design services [10].

Segmenting and Labeling Query Sequences in a Multidatabase Environment 369

In terms of session identification, the most prevalent and simplest method of
isolating user sessions is the timeout method. In the timeout method, the user
is assumed to have started a new task after a given amount of time has passed
without activity. For Web information retrieval the threshold is reported [§] to
be 10 to 15 minutes, for optimal separation of subsequent user sessions. Another
method proposed in [6] is based on the fact that the users spend less time
on auxiliary pages (navigation pages &c.) than on content pages. The method
assumes that a session is finished when a user navigates to content page and
times out. The timeout method is applicable to the database query environment
as well, as a supportive addition to the method proposed in the following section.

Finally, a method is proposed in [5] called mazimal forward reference. In this
method the user is assumed to be in the same session as long as the next page
requested has a link from the current page. This approach is relevant to the
problem at hand as it uses a metric of relevance between two requests in order
to cluster them into the same session. A similar approach is used in the method
proposed in the following section, to cluster relevant queries together.

As far as query log analysis in database environments, there is one relevant
study [I8] that uses methods based on statistical language analysis in order to do
session identification. Their method is based on training a statistical model with
previous examples, predicting session boundaries where a sequence of queries
becomes improbable with respect to previous experience. The method differs
from the one proposed by this paper in that it requires an in-order arrival.
These concepts will be discussed further in the following section.

2.2 Conditional Random Fields

A common approach to segmenting sequence data and labeling the constituent
parts has been the use of probabilistic graphical models. Particularly, hidden
Markov models (HMMs) [16] have been used for sequence data such as natural
language text, speech, bio-sequence data and event streams. An HMM defines the
joint probability distribution p(X,Y), where X is a random variable over possible
sequences of observations and Y is a random variable over the possible sequences
of labels (i.e. the possible states of the process generating said observations) that
can be assigned to the same input. Because they define a joint probability, HMMs
are termed generative models.

A generative model can be used to generate new sequences obeying a certain
distribution defined by the parameters of the model. These parameters are either
coded directly or optimized by using training data. However, given a certain se-
quence of observations, finding the most likely sequence of labels involves using
Bayes’ Rule and knowledge of prior probabilities. Furthermore, defining a joint
probability requires enumerating all possible sequences, both for observations
and labels. Given that the number of possible sequences increases exponentially
with the sequence length, this is generally intractable unless strong assumptions
are made about the independence of sequence elements and long-range depen-
dencies thereof.

370 A.C. Acar and A. Motro

In contrast, a different class of graphical models, known as discriminative
models model the conditional distribution p(Y,x) for a particular sequence of
observations, and cannot generate the joint distributions. Since the problem
at hand when trying to label a sequence of queries is finding the most probable
sequence of labels given a sequence of observations (i.e. the observation sequence
is already fixed), discriminative models are better suited to the task.

() ONOaOn0
ORONO ‘0’

(a) Hidden Markov Model (b) Linear-chain Conditional Random Field

Fig. 1. Comparison of a first order hidden Markov model to a simple chain conditional
random field

Such a discriminative model is the Conditional Random Field [12]. A condi-
tional random field (CRF) can be regarded as an undirected graphical model,
or Markov network [IT], where each vertex represents a random variable. The
edges of the graph represent dependencies between the variables. In the simplest
case, the graph is a linear chain of state (label) variables Y; dependent on the
previous state and globally conditioned on the sequence of observations X (see
Fig.[Ib) but higher order and arbitrary graphs are possible. As long as each state
variable Y; obeys the Markov property (i.e., is conditionally dependent only on
its clique in the graph), the graph is a conditional random field.

Given this structure, it is therefore possible to factorize the joint distribution
of Y into potential functions, each one contained to a clique of vertices in the
CRF. For example, in the case of a linear chain CRF such as that given in Fig.
[the arguments of any such function will be Y;, Y;_;, and X. As long as the
feature functions are positive and real valued, the product will satisfy the axioms
of probability, provided that it is normalized by a factor. Therefore the definition
of any potential function fj for a clique consisting of a particular observation
sequence x and elements y; and y;—1 of a particular state sequence y would be:

feyi,vio1,x,4) =r €R,0<r <1

The values of these potential functions can then be aggregated over the complete
sequence to obtain the feature functions:

n

Fi(y,x) = > fr(yi,yio1,%,9)

i=1

Segmenting and Labeling Query Sequences in a Multidatabase Environment 371

In trying to segment and label a sequence of queries, we are interested only
in decoding a particular state sequence y. In other words, given a particular
sequence of observations we would like to find out the sequence y that would
maximize p(y|x). This conditional distribution associated with the CRF is:

K

Py N) = 5 e DM () (1)
where Z(z) is the aforementioned normalization factor, and A is the set of pa-
rameters (or weights) associated with each of the K feature functions. For any
given application, the training of a CRF involves estimating these parameters.
This parameter estimation is done using maximum likelihood training. Given
a set of training sequences consisting of an observation sequence and the asso-
ciated label sequence, {(x),y())} the product of Eqn.] over all the j pairs
of sequences is the likelihood. In maximum likelihood training the set A that
maximizes the log-likelihood function:

1 , ,
L) = Z log)+ zkj A (), %) (2)
is found. The log-likelihood function is concave and differentiable. However,
equating the differential to zero does not necessarily result in a closed-form in
terms of the parameters. Therefore the parameters that maximize the likelihood
cannot found analytically [I7]. However the problem is amenable to numerical
solution by iterative scaling [3[9] or quasi-Newtonian methods [14].

3 Methodology

3.1 Problem Overview and Assumptions

Throughout this paper, ‘goal’” will be used in the same sense as ‘session’. In
previous literature, the term ‘session’ is used in multiple meanings. Occasionally,
it is used to indicate the range of transactions between a login-logout cycle or
during a given timeframe. In the scope of our problem, however, a session is
generally meant to denote a single information retrieval task of the user, either
done in a single query or by combining multiple queries. In order to avoid this
ambiguity, the set of queries that make up a task of the user will be referred to
as a goal.

We start by assuming that we can identify users by some identification mech-
anism such as a cookie, through authentication, from their network address &c.
Therefore the query sequence we are observing is for a single user at a time.
However, the sequence is not necessarily of queries sent to the same data source.
This data can be collected in two ways. The user can be monitored directly,
either using the logs of the client she is using directly, or through the logs of
a proxy or gateway she uses to access the sources. In this case, the provenance
of the queries in the sequence is more certain (unless someone else is using the

372 A.C. Acar and A. Motro

terminal). Alternatively, given a common identifier (such as IP or a cookie) we
can monitor the logs of the data sources the subject uses. In this case, the queries
belonging to the same user are collected from the various data sources and are
compiled into a single sequence, in order of time stamps.

In either case we assume the existence of a list of queries in chronological
order, coming from the same user. The queries, for the rest of this paper, will
be labelled @; in a sequence Q = @;...Q0,, such that @); is chronologically earlier
than Qi+1~

For each query @;, we assume to have access to a set of intrinsic features.
These are given in Table Bl

Table 1. Intrinsic Features of Query Q;

Name Notation Description

Attributes II; The set of fields projected by the query.
Dependencies Fi The functional dependency closure of fields in the query.
Constraints C; The set of constraints associated with the query.
Source D; The unique identifier of the data source the query was sent to.
Answer Set R; The set of tuples returned in response to the query.
Timestamp ti The universal time at which the query was posed.

We assume that these pieces of information are available for every query in
the sequence. These intrinsic features will be used to generate more detailed
feature functions which will in turn be used to train and decode the CRF.

We only consider conjunctive queries. Hence, each query in the sequence is
represented by a Horn clause. For example, consider a query sent to an online
bookstore’s data service, asking the ISBN, title and year of books by Dickens:

Qex = {(ISBN, Title,Year)|3AuthorI D(Author(” Dickens” , AuthorID)
ABook(ISBN,Title,Year, AuthorID))}

This query might then have the following intrinsic features:

II., = {ISBN,Title,Year}
Fr, ={ISBN — Title,ISBN — Year,...}
C.. = {(Author.Name = “Dickens"), (Book.AuthorI D = Author.ID)}
D.,. = http://soap.mybooks.com/Search.wsdl
R.. = {(0679783415, “David Copperfield”, 1850), ...}
ter = 2011-04-24T20:39Z

Given a query sequence and the intrinsic features of each member of the sequence,
one needs to solve two distinct problems:

Segmenting and Labeling Query Sequences in a Multidatabase Environment 373

Segmenting. Otherwise known as boundary detection, this involves finding
when one goal in the sequence ends and the other begins.

Labeling. Within each segment (goal) we also seek to find the function of each
member query. This aids in reproducing the original goal exactly.

Both problems have analogues in natural language processing. The segmenting
problem is analogous to sentence boundary detection and the labeling is very
similar to part-of-speech tagging. In order to induce the most useful features for
the task, we now consider a model for the sequence structure.

3.2 Assembly of Goals

In the simplest case, the goal, G, is the conjunction of the queries @Q); in the se-
quence. In terms of relational algebra, this is essentially the joining of the answer
sets, R;, into a single universal relation. However, it may be the case that the
component queries do not offer a join path. Consider a sequence of two queries,
@1 and Q2 with attributes II; = {SSN, Name} and Iy = { Phone, Address}.
The straightforward conjunction (join) of these will result in a cartesian prod-
uct, which is meaningless. Therefore, perhaps it is better to consider these two
queries as two separate goals of one query each, rather than a goal of two queries.
However, the arrival of a third query Qs with attributes As = {SSN, Phone}
would change the conclusion. The three queries can now be joined into a goal
consisting of three queries.

The problem of isolating goals from a sequence of queries can be stated as
follows: Given a sequence of queries Q = @;...Q0,, coming from a user, find all
user goals within the sequence that are mazximal and coherent.

We define a goal, G, therefore, as the largest subsequence, G C Q, of the whole
query sequence Q, that is cohesive (i.e. that has a join path). We formalize this
idea of coherence by defining the following feature between any two queries Q;

and Q;:

1 f3XCILYCIL (X=Y)A (X = IL VY — II,))

0 otherwise

joinable(i, j) = { (3)

The joinable function is thus 1 only if there is the possibility of a lossless join
between the answer sets of the two queries. This lossless join property can be
checked using the closures, 7+, of the queries. Note that, in evaluating lossless-
ness we only check functional dependencies and not inclusion. Considering the
fact that constituent relations originate from independent sources, enforcing or
requiring inclusion would not be realistic.

So in this simple case, a goal goes on as long as the incoming queries are
joinable to the existing ones in the goal. We call these queries “subgoals”. Ulti-
mately, all subgoals are joined to assemble the goals. We now consider subgoals
that are composed of more than a single query.

374 A.C. Acar and A. Motro

3.3 Composite Subgoals

We define a composite subgoal as one that is created by the disjunction (union)
of its constituent queries.

In constructing a composite subgoal, a user posing a sequence of queries to
several sources is possibly collecting information from each of them in order to
create a more comprehensive view of the information. An example would be to
send a query selecting for the Italian restaurants in Washington D.C. to two
or more different dining registries. The answers obtained are more likely to be
unified rather than intersected since the aim here is to garner as many answers
as possible.

Another case which requires aggregation rather than cross-referencing is when
the complete answer cannot be obtained in a single query due to particular
limitations of the data source. The most common reason for this are the variable
binding limitations imposed by the query languages of the data sources.

As a simple example to this, consider an online telephone directory for some
large organization. Generally, the service will not have the option of listing all the
telephones at once. More likely, the directory will require the user to constrain
(bind) at least one variable, such as the last name, department, &c. A user
wanting the whole list will then be forced to ask for one department at a time,
or worse, a name at a time. Monitoring such a series of queries, it would be
wrong to label them as a conjunction when clearly the intention is to combine
the answers into a large list.

The previous example also hints at a another aspect of the problem: We
have to assume that the user knew or obtained the list of departments (a table
itself) from somewhere, then iteratively expanded each item with the associated
telephone listings. Which in turn means that some query sequences may involve
recursive queries. As a more elaborate example, consider a bibliography database
that limits binding by requiring that some information about a paper (e.g. title)
be given. The only way a user can get all papers, or at least as many papers
as possible, is to start with one paper he knows and to recursively expand the
citations until no new papers can be found.

Recursive plans may be used in case of poorly structured data services as
well. Consider an airline reservation system which only lists direct flights given
a source or destination airport. A user trying to get from Washington to Havana
will not be able to find a direct flight. Instead, the user will ask for flights out of
Washington and will ask followup queries asking for possible destinations from
those places, until he can recursively find a path to Havana with as few stopovers
as possible (e.g. Washington-Toronto-Havana). Again, the aim here is not to join
the answers to these queries, so they need to be treated differently.

Each of these examples illustrate a different form of recursion. In the case of
the bibliography example, a depth-first traversal is the best option. In the case of
the airline example, breadth-first or iterative deepening is needed as depth first
recursion will probably be unnecessarily expensive. A third form of traversal
is the case where the user recurses using some form of heuristic. Assume the
user wants to reach a certain person in a social network service. Similar to the

Segmenting and Labeling Query Sequences in a Multidatabase Environment 375

bibliography example, the only way she can accomplish this is to find a string
of friends that can connect them. If the user knows that the person lives in a
certain city, she may direct the recursion at each level to expand only people
living in that city, knowing that this will result in finding a path more rapidly.

Ultimately, there is one common property of recursive query plans that allows
and outside observer to identify them as such. Each query in such a sequence
will bind one of its attributes to a value obtained from the result of a previous
query in the sequence.We can formalize this using the intrinsic features of queries
previously defined. The feature indicating that two queries @); and @); may belong
to a recursive sequence is given as:

1 (i<j)A3Tw e (IL;NI); 3y € m(Ri) [(x = y) € Cy]

4
0 otherwise ()

recursive(i, j) = {

In creating composite subgoals, a requirement is that the results of the queries,
that are to be part of the subgoal, be union-compatible as defined in relational
algebra. In other words, it is not possible to unify two results unless they have
the same arity and indeed not meaningful unless they share the same attributes.
Therefore, we need a measure to indicate the overlap in attributes between two
queries. This can be simply stated as:

II; N H]‘

overlap(i,j) = IL UL (5)
i AL

The binary feature associated with overlap is the complete overlap:

1 if overlap(i,j) =1

(6)

completeoverlap(i, j) = {0 otherwise
An analogous and useful feature would compare the overlap in the set of con-
straints between two queries:
. L. C; N Cj

constraintoverlap(i, j) = CiuG, (7)
Thus far, the features we have considered have been totally about the queries
themselves. When working in a multidatabase environment, the provenance of
the queries is also very useful. In other words, the source to which the query has
been sent and from whence the answer originated might further help in defining
the role of the query. Particularly if two or more subsequent queries are sent
to the same source, there is a higher likelihood that the user is attempting a
unification or recursion. In terms of query optimization it is more efficient to ask
everything in one query per source. However, if for some reason (e.g. binding
limitations or a less expressive query language at that particular source) the
user is not able to accomplish their subgoal in one query, they will be required
to collect the data in pieces. For example, a complete overlap between two queries
sent to the same source is a good indicator that the user is combining subsets (e.g.

376 A.C. Acar and A. Motro

phone numbers in different departments) of the same information. We therefore
introduce the following feature:

1 if D;=D,
0 otherwise

(®)

samesource(i, j) = {

3.4 Application of Conditional Random Fields

Apart from the complexity of assigning relevance to goals there is some diffi-
culty associated with building the goals in the first place. Several aspects of the
sequence will give clues as to the generation of goals:

Do the goals arrive one at a time? The question here is whether the user is done
with one task before she starts another one. If this is not true, parts of different
goals may arrive interleaved with each other. Without interleaving, the problem
of goal identification is simply a problem of boundary detection, namely finding
the first query of each goal. Otherwise, goals have to be extracted explicitly.

Do goals evolve coherently? This is related to whether the queries within a goal
arrive in the correct order. For the goal to be coherent, each arriving query has
to be relevant to at least one other query that is already part of the goal. If
the queries arrive out of order in the worst case it is possible that there will
not exist a coherent goal until the last query of the goal arrives. As an example
consider the queries II; = {A,B,C}, I, = {K, L, M}, II3 = {X,Y,Z} and
IT, = {A, K, X}. A goal consisting of these queries will evolve coherently only
if @4 arrives first. Whether or not this is assumed to be true will determine the
solution method.

Are queries used by multiple goals? This factor determines the number of possible
goals that can be generated given a sequence of length N. If we assume that each
query can be part of multiple goals, the set of possible goals in the query sequence
Q will be the power set of 2Q. If it is assumed that each query in Q belongs to
just one goal, the set of possible goals becomes the partition of Q. The number
of parts in Q can be at most N, i.e. single-query goals.

In the simplest case, it can be assumed that queries arrive in order, in a non-
interleaved fashion and that each query is part of a single goal only. In this case,
the goal identification starts combining arriving queries into a goal. The first
query to violate the coherence of the goal will be deemed the beginning of the
next goal and the previous goal will be closed.

In the most complicated case, it is accepted that queries can arrive out of
order, interleaved with queries of other goals and certain queries might be used
by multiple goals. In this case the system will have to keep track of multiple
goals at once, evolving some or all of them as new queries are received.

For the purposes of this paper, a middle ground between these two extremes is
assumed. We assume that each query will be part of one goal only. Interleaving

Segmenting and Labeling Query Sequences in a Multidatabase Environment 377

will be neglected. The in-order arrival of queries is not a requirement to the
extent that the sequence can be kept in memory. As will be seen subsequently,
we work in a sliding window on the sequence starting from the last query going
back as far as the window size. A query arriving prematurely will still be added
into its goal as long as it is still within this window.

We start by defining a finite state machine which will take one query at a time
and transition from one state to another. The state to which the FSM transitions
to after the arrival of a new query will become the label of that query. The outline
of the state machine is given in Fig.

Recursive
Subgoal

Composite
Subgoal
(Union)

Fig. 2. Labeling Finite State Machine. Only relatively likely transitions are shown.

We now define this finite state machine as a probabilistic one, describing it
with a conditional random field. The probability distribution is thus calculated
as given in Eq. [l In our case, the sequence x is the query sequence Q (i.e. the
observations) and sequence y is the sequence of states, L the FSM traverses
(i.e. the labels). Each transition of the FSM to the Initial state denotes the
beginning of a new goal. After each arrival of a new query (observation) the
CRF is decoded in order to find the state (label) sequence L that results in the
highest conditional probability P(L|Q). Hence, each time a new query arrives,
the conditional probability is recalculated and may therefore change the labels
on earlier queries as well.

Figure [3] shows an example sequence. Also provided in the figure are the
operations performed on the queries by the user. The latter information is
naturally not available to the party monitoring the queries but serve to illus-
trate the example. Table [2] illustrates the labeling for the incoming queries
incrementally as each one arrives. The first two queries are joinable, there-
fore they are labeled as the initial query and a conjunctive subgoal. The third

378 A.C. Acar and A. Motro

query initially has no relationship to the preceding two. It is therefore labelled
as the beginning of a new goal. The next few are found to be queries most likely
to be combined (i.e. union-ed) with the third query and are thus labelled. The
sixth query is again found to be unrelated to the existing goals and labelled as
the beginning of a new goal. Query 7 happens to be the “keystone” query in
that it has join paths to both query 6 and the previous goals. Therefore when
query 7 arrives, the labels on the previous queries are changed, coalescing the
three goals into one. This is possible since with each new query, the labels of all
the previous queries are reexamined and a new Viterbi path] is calculated for
the probabilistic FSM. Subsequently, query 8 arrives and is first deemed to be a
single subgoal. However, as more evidence arrives, i.e. queries 9 and 10, it now
becomes more probable that the three constitute a recursive subgoal and thus
the labels are rearranged.

—— Time —»

Qr |l o 19 Q Qs fl o5 fl @; |9 Q Qp
Init SubGoal Union SubGoal | SubGoal Recursion

-

Fig. 3. Consolidation of Example Sequence

3.5 Features of the Conditional Random Field

In order to complete the definition of the CRF that represents this probabilistic
FSM, the set of features Fj(L, Q) have to be defined. There are two forms of
features, namely state and transition features. The state features are defined
in terms of identity functions. There is an identity function for each label type
and each position in the sequence. For example the identity function defining
whether the label L; is the initial state would be:

1 ifL,=INITIAL
0 otherwise

initial (i) = { 9)

! The sequence of transitions with highest probability.

Segmenting and Labeling Query Sequences in a Multidatabase Environment 379

Table 2. Evolution of Example Sequence

Time Q1 Q2 Q3 Q1 Qs Qs Q7 Qs Q9 Q10

© 00~ O Uk W N
e e e
N N

cacgHH~m™H
U2 U -

R R
R R R

I: Init, S: Subgoal, U: Union, R: Recursion
New or updated labels are shown in boldface

acacacacdc
acacacacac

S
S S
S
S

—_
o
—
w2
w2

There will be one such identity function for each label per query. For example,
given a sequence of 10 queries and the 4 labels defined in the FSM (i.e. Initial,
Subgoal, Union, and Recursion), there will be 40 identity functions. Rather, we
say that there are 4 state features per clique in the CRF.

The basic transition features have already been given in equations [B] through
Rl Since conditional random fields are log-linear models, in order to capture the
query model correctly we need to use conjunctions of the basic features (eqns. B
R). For example, a compound feature particularly useful in determining recursion
is (completeoverlap Arecursive A samesource). Up to this point, for each clique
in the CRF, we have 9 basic features (those given in Eqns. and two features
for absolute and relative timeout) and 4 state identity features. Along with the
possible conjunctions (i.e. the powerset of the 13 features) we may consider up
to 4095 features in evaluating the CRF.

We also need to define the scope of each of the features. Recall that a feature
function is fx(L;, Li—1, Q,%). However, the functions we have defined so far take
two arguments (queries) to be compared according to some criterion (e.g., join-
ability, recursive nature &c.). For each clique, one of these queries is the current
one (i.e., @;). What this query is being compared to in the sequence is depen-
dent on the scope. We propose two different scopes, namely local and global.
The global scope effectively compares all the queries in the range to @Q; and
succeeds if there is at least one successful comparison. For example the feature
fotobal @ o(LiyLi—1,Q, i) would succeed if there is at least one other query in
the sequence that has the same source as @Q;. Therefore given a basic feature
9:(Qi, Q;) a global feature is then:

f]_;;lobal(Li7 L4, (Q7 7,) = I\van(gk(in QJ))
JF#i

In contrast, a local feature only checks the queries proximal in the sequence to
Q;. Hence, for example for a window of 5, the local feature would be:

380 A.C. Acar and A. Motro

¥ Loy L1, Qo) = max(max (ge(i, 7)), max _(ge(i, 7))

Note, however, that the state features previously mentioned and any conjunc-
tions containing them can only be local within a window of 2. Otherwise, the
probability of a given label would not be independent of previous states except
the neighboring one, violating the Markov property.

The final enrichment to the feature space involves the time-shifting of features,
such that clique potentials can be affected by previous and future observations.
A time shifted feature ffj ~ would be defined as:

£77 = f(Qivy) (10)
So, a feature fi<_2> would be the said feature for the observation two queries
before @; used to evaluate the potential for the i-th clique in the CRF. Again this
is limited to the transition features since the potential of a given clique cannot be
a function of the label of state not neighboring it. Therefore, features containing
any of the state identity functions can only be shifted by -1. According to these
restrictions and assuming we use time shifts of -2, -1, 0, 1, 2, global and local
forms for all the possible features, we may have up to 12278 features per clique.

3.6 Gain-Based Feature Selection

Note that the previous estimate is the combinatorial maximum of features ob-
tained in the model we have thus far built. Some of these features will not be
predictive at all and we thus need to prune those that have little utility in order
to keep the model manageable and more importantly to avoid over-fitting the
training data.

In order to do this, we use gain based feature selection. Recall that the training
of a CRF involves optimizing the weight parameter vector A in the log-likelihood
function (Eqn.[2) in order to obtain the maximum likelihood. This is done in su-
pervised way by iteratively maximizing for a set of training data. Each training
sequence of queries has an associated sequence of correct labels. Thus we are able
to optimize the parameters, A, to obtain the weights that will have the least train-
ing error. Since some of our features are expected to be less discerning, the changes
in the associated weights will have less impact on the training error. We can there-
fore use the method described in [I5]. The gain of a feature f is defined as:

Ga(f) = max(Laspu — L£a)

where L445, and L4 are the log-likelihoods of the CRF with or without the
feature f, given the training data. If done naively, this gain calculation will be
very time consuming, given the large number of features. Fortunately, there are
several optimizations including mean field approximation and limiting the gain
calculation only to mislabeled outputs (cf. [I5] for details). Using this gain-based
pruning we show in the next section that we are able to use approximately a
tenth of the features while gaining better accuracy and better generalization.

Segmenting and Labeling Query Sequences in a Multidatabase Environment 381

4 Experimentation

We performed some simple experiments on the approach thus far explained in
order to validate its accuracy and examine its behaviour. Two publicly available
benchmark databases,TPC—HE and Mondiaﬁ7 were used. Of these, TPC-H is the
simulated database of a business including supplier and customer information,
invoices, orders and so forth. It has 8 tables. These 8 tables, for the purposes of
our experiment, are treated as different data sources. Furthermore, the larger ta-
bles have been vertically sliced into smaller parts, each one as a different source.
This allows us to simulate vertically distributed data in a multidatabase envi-
ronment. Therefore, with the subdivisions our TPC-H test scenario simulates 17
different sources in a simulated global virtual database (multidatabase) schema.

The Mondial database has a larger schema and is populated with real-world
geopolitical data from several resources (e.g. the CIA World Fact Book). Origi-
nally it has 23 tables, the larger of which were likewise vertically divided in order
to obtain 30 simulated data sources.

Some parts of the divided tables were given binding limitations (e.g., the
Countries table in Mondial can only be searched by setting name of the country).

In order to create training and test data for the CRF, we then automatically
generate 500 query sequences for each. This was done by first creating a universal
relation for each test scenario. Random views of these universal relations were
then set as targets and a query plan (i.e., a query sequence) was generated for
each target, along with the labels for each of the components. Due to the differ-
ences of the schemas and the random nature of the target selection, the lengths
of the query sequences are distributed over a range of values. For Mondial, the
sequences were between 1 and 36 queries long, with a median of 10. For TPC-H
the sequences were betweem 1 and 23 queries long, with a median of 7.

The 500 sequences where randomly concatenated into groups of 10, each group
becoming a simulated query log for one user. The CRF was trained and tested
using leave-one-out cross-validation. Each database scenario was run 50 different
times with different training and test cases.

Three different CRF scenarios were experimented with. The CRF experiment
is the basic approach with all the possible features. The PrunedCRF experi-
ment is the CRF scenario trained with gain-based pruning of attributes during
training. The training and testing programs were implemented in Java and the
experiments were run on a 2.2 MHz Athlon 64 system with 1 GB of memory
operating under FreeBSD 6. Each cross-validation experiment (i.e. 50 runs) was
completed in times on the order of 1-2 hours, on this platform, depending on
the number of features. The inference (labeling) of the average test group took
around 1.5 seconds. The unpruned method (CRF) has exactly 12,768 features
for both data sets, the pruned CRF had 1,065 and 983 features for Mondial and
TPC-H, respectively.

2 http://www.tpc.org/tpch/
3 http://www.dbis.informatik.uni-goettingen.de/Mondial /

382 A.C. Acar and A. Motro

The training was done using gradient ascent, particularly the L-BFGS [14]
method. To avoid overfitting, the likelihood function was regularized with a
Gaussian prior with variance 5. After each round of training with 49 groups
the remaining test group was labelled and the labels were compared to the true
labels which were decided during the generation of the query sequences. The
accuracy of a test is defined as the percentage of labels that are the same with
the true labels. Table [3] presents the average accuracy of each cross-validation
run, one per scenario.

Table 3. Labeling Accuracy Results

Test Accuracy Test Accuracy
Noise Level Method TPC-H Mondial Noise Level Method TPC-H Mondial
0% CRF 94.6% 91.2% 10 % CRF 73.2% 70.6%
PrunedCRF 96.3% 95.4% PrunedCRF 82.8% 79.5%
5 % CRF 86.3% 88.1% 15 % CRF 60.3% 65.1%
PrunedCRF 95.2% 92.3% PrunedCRF 68.6% 69.3%

The robustness of the CRF method to noise was also tested during these
experiments. For each cross-validation run, after the training of the CRF, the test
sequence was tested for accuracy initially as it was. Subsequently the test cases
were each “corrupted” by inverting the values of random observation features
in the test sequence. For example, if the one query was actually joinable with
another, the noise induction might flip the value showing the queries as non-
joinable. With this method, we aim to simulate user and observation errors.
The tests were run at noise levels of 5, 10, and 15%, relating to that fraction of
observation features being corrupted. Table [3 shows the results.

The results are encouraging in that even at relatively high noise levels the
feature pruned CRF and the content enriched CRF are still reasonably accurate
(on average above 95% accuracy at 1-in-20 error in observation). The basic CRF
seems to suffer immediately from the noise, probably due to the tendency of the
unpruned features to over-fit the training data. Therefore, we see that pruned
feature spaces have the additional benefit of lower generalization errors, even in
the case of noisy input.

As a subset of the preceeding analysis, we have also investigated the bound-
ary detection capabilities of each model. This purely to test whether the system
segments the sequences correctly, regardless of the correct labeling of these seg-
ments.

The F1 scores of the boundary detection are given in Table @ The segmen-
tation behavior of the CRF is much better than the more complicated task of
labeling, with very high accuracies up to very high noise levels. As with the
labeling task, the basic, unpruned CRF suffers as noise increases, for the same
reasons.

Segmenting and Labeling Query Sequences in a Multidatabase Environment 383

Table 4. Segmenting Accuracy Results

Accuracy (F-1) Accuracy (F-1)

Noise Level Method TPC-H Mondial Noise Level Method TPC-H Mondial
0% CRF .992 .997 10 % CRF 971 971
PrunedCRF .999 .999 PrunedCRF .982 .988
5 9% CRF .984 973 15 % CRF 912 .903
PrunedCRF .987 .982 PrunedCRF .938 .962

5 Conclusion

This paper investigates the problem of isolating sets of queries denoting inde-
pendent user goals from a continuous sequence, either in real time or from a log.
The complexities involved can be classified into two categories. The first cate-
gory of difficulties is defining the boundaries of a goal. The second difficulty is
the determination of the individual parts within a goal, regarding their function
in forming the goal.

Even if one has a totally objective way of evaluating a given set of queries as
to whether they contain an interesting goal, there are still ‘technical’ difficulties.
Given a sequence of queries the set denoting a goal is not necessarily an uninter-
rupted sub-sequence. Two or more goals may be interleaved with each other or
with noise. Some queries in the sequence may be replacements or refinements of
older queries. Furthermore, it is possible that the queries needed to build a goal
do not arrive in the order they are used. This defeats machine learning methods
(e.g. [18]) which are sensitive to the sequence in which queries arrive. Another
question is whether the user being monitored is using the same query for mul-
tiple goals or one. This distinction affects the number of goals to be evaluated
greatlyH.

A probabilistic and noise-tolerant method of handling the problem has been
introduced. The method can accept realtime streams, constantly evolving a work-
ing scenario as new queries arrive. Scenarios that have stopped evolving are
dropped for fresh ones as new evidence arrive. Furthermore, the method proposed
here leverages the evidence available exclusively in a virtual database environ-
ment, namely the source information, to guide its decisions.

A future direction is the addition of semantic feature based on the data. Such
a method will require semantic information about the application domain either
in a latent fashion or explicitly using the constraints of the schema along with
a logical inference engine. Such an approach has met with some success in the
area of semantic query caching [7] and optimization [4JI3]. The same principle
can be applied to the present problem as well.

4 If the component queries are assumed to be re-used, the number of possible goals
increases exponentially, as opposed to a linear growth otherwise.

384 A.C. Acar and A. Motro
References
1. Acar, A.C., Motro, A.: Inferring user goals from sets of independent queries in a

10.

11.

12.

13.

14.

15.

16.

17.

18.

multidatabase environment. In: Ras, Z., Tsay, L.-S. (eds.) Advances in Intelligent
Information Systems. SCI, vol. 265, pp. 225-243. Springer, Heidelberg (2010)

. Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log.

In: Proceedings of Knowledge Discovery and Data Mining, pp. 407-416 (2000)

. Bilmes, J.: A gentle tutorial on the em algorithm and its application to parame-

ter estimation for gaussian mixture and hidden markov models. Technical Report
ICSI-TR~97-021, University of Berkeley (1997)

. Cardiff, J., Catarci, T., Santucci, G.: Semantic query processing in a heteroge-

neous database environment. Journal of Intelligent and Cooperative Information
Systems 6(2), 151-192 (1997)

. Chen, M.-S., Park, J.S., Yu, P.S.: Efficient data mining for path traversal patterns.

Knowledge and Data Engineering 10(2), 209-221 (1998)

. Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for mining world wide

web browsing patterns. Knowledge and Information Systems 1(1), 5-32 (1999)

. Godfrey, P., Gryz, J.: Semantic query caching for heterogeneous databases. In:

Proceedings of Knowledge Representation Meets Databases, pp. 6.1-6.6 (1997)

. He, D., Goker, A.: Detecting session boundaries from web user logs. In: Proceedings

of the BCS-IRSG 22nd Annual Colloquium on Information Retrieval (2000)

. Jin, R.; Yan, R., Zhang, J., Hauptmann, A.: A Faster Iterative Scaling Algorithm

for Conditional Exponential Model. In: Proceedings of the 20th Int. Conf. on Ma-
chine Learning, pp. 282-289 (2003)

Joachims, T.: Unbiased evaluation of retrieval quality using clickthrough data.
Technical report, Cornell University, Department of Computer Science (2002)
Kindermann, R., Snell, J.: Markov random fields and their applications. American
Mathematical Society, Providence (1980)

Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: Proceedings of the 18th Int.
Conf. on Machine Learning, pp. 282-289 (2001)

Levy, A.Y., Sagiv, Y.: Semantic query optimization in datalog programs. In: Pro-
ceedings of Principles of Database Systems, pp. 163-173 (1992)

Liu, D., Nocedal, J.: On the Limited Memory BFGS Method for Large Scale Op-
timization. Mathematical Programming 45(1), 503-528 (1989)

McCallum, A.: Efficiently inducing features of conditional random fields. In: Pro-
ceedings of the 19th Annual Conference on Uncertainty in Artificial Intelligence
(UAI 2003), pp. 403-411 (2003)

Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE 77(2), 257286 (1989)

Wallach, H.: Efficient Training of Conditional Random Fields. Master’s thesis,
University of Edinburgh (2002)

Yao, Q., Huang, X., An, A.: A Machine Learning Approach to Identifying Database
Sessions Using Unlabeled Data. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2005.
LNCS, vol. 3589, pp. 254-264. Springer, Heidelberg (2005)

	Segmenting and Labeling Query Sequences in a
Multidatabase Environment
	Introduction
	Background
	Session Identification
	Conditional Random Fields

	Methodology
	Problem Overview and Assumptions
	Assembly of Goals
	Composite Subgoals
	Application of Conditional Random Fields
	Features of the Conditional Random Field
	Gain-Based Feature Selection

	Experimentation
	Conclusion
	References

