
KD2R : a Key Discovery method for semantic Reference
Reconcilation

Danai Symeonidou1, Nathalie Pernelle1, and Fatiha Saïs1

LRI (CNRS & Paris-Sud XI University)/INRIA Saclay,
LRI, Bât 650 UniversitéParis-Sud 11, 91405 Orsay Cedex France

Danai.Symeonidou@inria.fr,
{Nathalie.Pernelle, Fatiha.Sais}@lri.fr

Abstract. The reference reconciliation problem consists of deciding whether
different identifiers refer to the same world entity. Some existing reference recon-
ciliation approaches use key constraints to infer reconciliation decisions. In the
context of the Linked Open Data, this knowledge is not available. We propose
KD2R, a method which allows automatic discovery of key constraints associated
to OWL2 classes. These keys are discovered from RDF data which can be in-
complete. The proposed algorithm allows this discovery without having to scan
all the data. KD2R has been tested on data sets of the international contest OAEI
and obtains promising results.

1 Introduction

The reference reconciliation problem tries to find whether different references refer
to the same entity (e.g. the same restaurant, the same gene, etc.). There are a lot of
approaches (see [3] or [10] for a survey) that aim to reconcile data. Recent global ap-
proaches exploit the existing dependencies between reference reconciliation decisions
[7, 2, 1]. In such approaches, the reconciliation of one reference pair may entail the rec-
onciliation of another reference pair. A knowledge based approach is an approach in
which an expert is required to declare knowledge that will be used by the reference
reconciliation system [5, 2]. Some approaches such as [5] use reconciliation rules that
are given by an expert, while other approaches such as [7] use the (inverse) functional
properties (or the keys) that are declared in the ontology. Nevertheless, when the ontol-
ogy represents many concepts and when data are numerous, such keys are not easy to
model for the ontology expert.

The problems of key discovery in OWL ontologies and key discovery or Functional
Dependency discovery in relational databases are very similar. In the relational context,
key discovery is a sub-problem of extracting functional dependencies (FDs) from the
data. [9] proposes a way of retrieving probabilistic FDs from a set of data sources.
Two strategies have been proposed: the first one merges the data before discovering
FDs while the second one merges the FDs obtained from each data source. This paper
focuses on the problem of finding probabilistic FDs with only a single attribute in each
side.In order to find the FDs, TANE [4] partitions the tuples into groups based on their
attribute values. The goal is to find approximate functional dependencies: functional

dependencies that almost hold. In the context of Open Likned Data, [6] have proposed
a supervised approach to learn functional dependencies on a set of reconciled data.

There are a lot of works that deal with the discovery of FDs in relational databases,
however only a few of them focus on the specific problem of retrieving keys. The Gor-
dian method [8] allows discovering composite keys in relational databases. In order to
avoid to checking all the possible combinations of candidate keys, the method proposes
the discovery of the non-keys in a dataset and then using them to find the keys. In this
method a prefix tree is built and explored (using a merge step) in order to find the maxi-
mal non keys. To optimize the tree exploration, they exploit the anti-monotone property
of a non key. Nevertheless, it is assumed that the data are completely described (without
null values). Furthermore, multivalued attributes are not taken into account.

In this paper, we present KD2R which is an automatic approach for key discovery
in RDF data sources which conform to the same (or aligned) OWL2 ontology (the on-
tology can be represented in RDFS or in OWL). These keys are discovered from data
sources where the UNA (Unique Name Assumption) is fulfilled and the information
can be incomplete and multi-valued. To avoid scanning the whole data source, KD2R
discovers first maximal non keys before inferring the keys. KD2R exploits key inheri-
tance between classes in order to prune the non key search space. KD2R approach has
been implemented and evaluated on two different data sources.

The paper is organized as follows: in section 2, we describe the data and the on-
tology model. In section 3, we present the KD2R and then we present first experiment
results in section 4. Finally, in section 5 we conclude and give some future work plans.

2 Reference Reconciliation based on key constraints

2.1 Ontology and Data Model

Data are represented in RDF–Resource Description Framework– (www.w3.org/
RDF). For example, the RDF source S1 contains the RDF descriptions of four museums
in the form of a set of class facts and property facts (relational notation):

Source S1:
ArchaeologicalMuseum(S1_m1), museumName(S1_m1, Archaeological Museum),
located(S1_m1, S1_c1), museumAddress(S1_m1, 44 Patission Street),
inCountry(S1_m1, Greece), Museum(S1_m2), museumName(S1_m2,
Centre Pompidou), contains(S1_m2, S1p4), contains(S1_m1, S1_p5),
museumAddress(S1_m2, 19 rue Beaubourg), inCountry(S1_m2, France),
Museum(S1_m3), museumName(S1_m3, Musee d′orsay),
museumAddress(S1_m3, 62 rue de Lille), inCountry(S1_m3, France)
WaxMuseum(S1_m4), museumName(S1_m4, Madame Tussauds), located(S1_m4,
S1_c4), museumAddress(S1_m4, Marylebone Road), inCountry(S1_m4, England)

The examined RDF data are in conformity with a domain Ontology represented in
OWL2 (http://www.w3.org/TR/owl2-overview). The OWL 2 Web Ontol-
ogy Language provides classes, (data or object) properties, individuals and data values.
In the Museum ontology (see Figure 1), the class Museum is described by its address
(owl:DataProperty museumAddress), its location (owl:ObjectProperty located),
its name (owl:DataProperty museumName) and its country (owl:DataProperty

Fig. 1. Museum Ontology

inCountry). The classes ArcheologicalMuseum and WaxMuseum are subsumed
by the class Museum.

In OWL2, it is possible to express key axioms for a given class: a key axiom
HasKey(CE (OPE1 ... OPEm) (DPE1 ... DPEn)) states that each (named) instance of
the class expression CE is uniquely identified by the object property expressions OPEi
and by the data property expressions DPEj. This means that no two distinct (named)
instances of CE can coincide on the values of all object property expressions OPEi and
all data property expressions DPEj. An ObjectPropertyExpression is either an Object-
Property or InverseObjectProperty. A data property expression is an owl:DataProperty.
For example, we can express that the object property located is a key for the class City
using HasKey(kd2r : City(inverse(kd2r : museumAddress))())

2.2 Constraint integration in Reference Reconciliation

LN2R [7] is a logical (L2R) and a numerical (N2R) method for reference reconciliation.
L2R and N2R use the knowledge given in a OWL (or OWL2) ontology to reconcile data.
L2R translates keys, disjunctions between classes and the Unique Name Assumption
(UNA) 1 into reconciliation rules. These rules infer both (non) reconciliations facts and
synonyms for literal values. For example, since located is a key for the City class (one
museum is located in only one city) the following rule is generated by L2R:

City(L1)∧City(L2)∧Reconcile(X, Y)∧Located(X, L1)∧Located(Y, L2) =⇒ Reconcile(L1, L2)

A logical reasoning based on the unit-resolution inference rule is used to infer all
the (non) reconciliations.

N2R exploits keys in order to generate a similarity function that computes similar-
ity scores for pairs of references. This numerical approach is based on equations that
model the influence between similarities. In the equations, each variable represents the
(unknown) similarity between two references while the similarities between values of
data properties are constants The functions modelling the influence between similari-
ties are a combination of the maximum and the average functions in order to take into

1 UNA declares that all the references that appear in a source cannot be reconciled.

account the keys declared in the OWL ontology in an appropriate way (see [7] for more
details).

2.3 Key discovery Problem Statement

When RDF data are numerous, heterogeneous and published in clouds of data, the keys
that are needed for the reconciliation step are not often available and cannot be eas-
ily specified by a human expert. Therefore, we need methods to discover them auto-
matically from data. The key discovery has to face several kinds of problems, due to
data heterogeneity: absence of UNA, syntactic variations in data, erroneous values and
incompleteness of information. When UNA is not fulfilled, we cannot distinguish be-
tween the two cases: (i) two equal property values describing two references which
refer to the same real world entity and (ii) two equal property values describing two
references which refer to two distinct real world entities. This ambiguity leads to miss-
ing keys that can be discovered. In RDF data each instance of a class can be described
by a subset of properties that are declared in the ontology. The incompleteness of data
entails the discovery of keys that may be incorrect.

In this paper we focus on the problem of key discovery in RDF data when UNA
assumption is declared for each data source and where there are no erroneous values.

3 KD2R: Key Discovery method for Reference Reconciliation

KD2R method aims to discover keys as exact as possible, with respect to a given dataset
in order to enrich a possible existing key set.

The most naive automatic way to discover the keys is to check all the possible com-
binations of properties that refer to a class. The keys should uniquely identify each
instance of a class. Let us assume that we have a class which is described by 15 proper-
ties in order to estimate the cost of this naive way. In this case the number of candidate
keys is 215 − 1. In order to minimize the number of computations as much as possible
we have proposed a method inspired from [8] which first retrieves the set of maximal
non keys and then computes the set of minimal keys, using this set of non keys. Indeed,
to make sure that a set of properties is a key we have to scan the whole set of instances
of a given class. On the contrary, finding two instances that share the same values for
the considered set of properties would suffice to be sure that this set of properties is a
non-key.

We present, first, how we have defined non keys, keys and undetermined keys for a
class in a given RDF data source and for a given set of RDF data sources. Then we will
present the KD2R-algorithm that is used to find keys for the ontology classes.

3.1 Keys, Non Keys and Undetermined Keys

Let S be a data source for which the UNA is declared, and Pc be the set of RDF prop-
erties defined for a class C of the ontology O.

Definition 1 (Non keys). A set of property expressions nkCSi = {pe1, . . . , pen} is a

non key for the class C in S if:

∃X ∈ S, ∃Y ∈ S s.t. (C(X)∧C(Y)∧pe1(X, a1))∧pe1(Y, a1)∧ . . .∧pen(X, an))∧
pen(Y, an)) ∧X 6= Y)

We denote NKCS the set of non keys {nkCS1, ..., nkCSm} of the class C w.r.t the data
source S.

Definition 2 (Keys). A set of property expressions kCSi = {pe1, . . . , pen} is a key for
the class C in S if:

∀X ∈ S,∀Y ∈ S (C(X)∧C(Y))→ (∃pej ∈ kCSi s.t. pej(X, a))∧pej(Y, b))∧a 6= b)

We denote KCS the key set {kCS1, ..., kCSm2} of the class C w.r.t the data source S.

Definition 3 (Undetermined Keys) A set of property expressions ukCSi =
{pe1, . . . , pen} is an undetermined key for the class C in S if: (i) ukCSi /∈ NKCS and
(ii) ∃X ∈ S,∃Y ∈ S s.t. ((C(X)∧C(Y)∧∀pej ∈ ukCSi(pej(X, a)∧ pej(Y, b) =⇒
a = b) ∧ ∃pew ∈ ukCSi s.t.(@pew(X, Z) ∨ @pew(Y, V))

For example, {InCountry, Located} is an undetermined key, since there are two
museums in the same country but one of the cities is unknown. Hence, we cannot decide
if it represents a key or a non-key.
We denote UKCS the set of keys {ukCS1, ..., ukCSm3} of the class C w.r.t the data
source S.

Keys for a given set of data sources. Let S = {S1, S2, . . . , Sm} be a set of m data
sources for which the UNA is declared. Let KCS1, . . . ,KCSm be the respective set of
keys of S1, S2, . . . , Sm, the set of keys KcS that is satisfied in all the sources is the set
of minimal keys that belong to the Cartesian product of KCS1, . . . ,KCSm.

3.2 KD2R Algorithm

Given a set of datasets and a domain ontology, KD2R-algorithm allows to find keys for
each instantiated class. It follows a top-down computation in the sense that the keys
that are discovered for a class are inherited by its sub-classes. KD2R uses a compact
representation of RDF data expressed in a prefix-tree in order to compute the complete
set of maximal undermined keys and maximal non keys and then the complete set of
minimal keys.

Prefix-Tree creation. In this section we will present the creation of the prefix-tree
which represents the RDF descriptions of a given class.

As it is illustrated in Figure 2, each level of the tree corresponds to an instantiated
property expression. Each node contains a variable number of cells. Each cell contains
the distinct data property values or the distinct URIs of the object property expression of
the considered level. Each cell contains the list of URIs referring to the corresponding
class instances. Each non-leaf cell has a pointer to a single child node. Each unique
prefix path represents the set of instances that share one value or one URI for all the
properties involved in the path.

For the sake of simplicity we will use the term value to either refer to basic values
of data properties or to URIs of object properties.

In order to represent the cases where property values are not given (i.e. null values
in relational databases) we create first an intermediate prefix-tree. In this intermediate
prefix-tree, an artificial null value is created for those properties. Then, the final prefix-
tree is generated by assigning the set of all the possible values to each artificial null
value, i.e. those existing in the dataset.

Intermediate Prefix-Tree creation.In order to create the intermediate prefix-tree we
use the set of all properties that appear at least in one instance of the considered class.
For each instance, for each property and for each value if there is no cell which al-
ready contains the property value a new cell is created. Otherwise, the cell is updated
by adding the instance URI to its associated list of URIs. When a property does not
appear in the source, we create or update, in the same way, a cell with an artificial null
value. Let it be noted that the intermediate prefix-tree creation is done by scanning the
data only once.

Final Prefix-Tree creation.The final prefix-tree is generated from the intermediate
prefix-tree by assigning the set of the possible values contained in the cells of this
node to each artificial null value of a given node, if it exists. More precisely, the null
cell is deleted and its URI list is added to all the other cells of the node. Then, for the
descendants of this node, we recursively apply the processing of artificial null values
and the node merge operation which is described in the following.

Node merge operation. This operation takes the list of nodes that need to be merged
as input and provides a merged node which contains one cell per distinct value that
exists in the input list of nodes as output. The new URI list of each cell contains all the
URI lists of the merged cells. This merge operation is performed recursively for all the
descendants of the considered nodes.

In figure 2, we give the final prefix-tree of the RDF data described in section 2.

Fig. 2. Final prefix-tree for the museum class instances

Subsumption-driven Key Retrieval. For each set of RDF sources, the method
ClassKeyRetrieval applies a depth-first retrieval of the keys by exploiting the sub-

sumption relation between classes declared in the ontology. ClassKeyRetrieval
method takes an instantiated class and a possible set of already known keys as input and
calculates its complete set of keys. After creating the final prefix-tree of the considered
class instances, the UnKeyFinder method is called for retrieving the undetermined
and the non keys. Then, the method is recursively called for the set of subclasses using
the updated known key set.

ClassKeyRetrieval
Input: C: class; KnownKeys :=set of known keys
Output: CKeys: the complete set of keys of the class C.
if class has declared properties then

tripleList.add(all triples of C)
if tripleList is not empty then

rootNode := Create-intermediate-prefix-tree(tripleList, C)
newRootNode :=Create-final-prefix-tree(rootNode)
propNo := 0
UNKeySet := UnKeyFinder(newRootNode,propNo, KnownKeys)
keys := ExtractKeysFromUNKeySet(UNKeySet, C)
CKeys := refine(KnownKeys.add(keys))

end if
end if
for all subClass Ci of C do

ClassKeyRetrieval(Ci, CKeys)
end for
return CKeys

UNK-Finder: Undermined Key and Non Key Finder. The UNKey is the set of unde-
termined keys and non-keys. The process of the algorithm begins from the root of the
prefix tree and makes a depth-first traversal of it. The input of the algorithm is the cur-
rent root of the tree, its attribute number and the known keys. This method searches the
longest path p from the root to a node having a URI list containing more than one URI.
p represents the maximal set of properties expressing either a non-key or an undermined
key.

To ensure the scalability of the key discovery, KD2R performs two kinds of pruning:
(i) the subsumption relation between classes is exploited to prune the key discovery
thanks to the set of inherited keys, (ii) the anti-monotonic characteristic of the non-
keys and undermined keys is also used to avoid computing the redundant non keys and
undermined keys, i.e. if {ABC} is a non key (resp. an undermined key) then all the
subsets of {ABC} are also non keys (resp. undetermined keys) and (iii) the monotonic
characteristic of keys is used to avoid exploring the descendants of a node representing
only one instance.

UNK-Finder
Input: root: node of the prefix tree; propNo: attribute Number; knownKeys: given keys.
Output: UNKeySet: the set of discovered undermined keys and non-keys.
add propNo to the curUNKey
if root is a leaf then

for all cells in the root do
if cell.PropertyList > 1 then

add curUNKey to the UNKeySet
break

end if
end for

remove propNo from curUNKey
if root has more that one cell AND at least one of the cells has PropertyList > 1 then

add curUNKey to the UNKeySet
end if

else
if there is only one URI then

return
end if
for all cells in the root do

if curUNKey is not contained in knownKeys Set then
UNK-Finder(cell.getChild,propNo+1)

end if
end for
remove propNo from curUNKey
if there is more that one cell in the root then

if curUNKey is already contained in the UNKeySet then
return

end if
childNodeList := all the children of the cells in the root node
mergedTree := mergeNodes(childNodeList)
if curUNKey is not contained in knownKeys Set then

UNK-Finder(mergedTree,propNo+1)
end if

end if
end if
return UNKeySet

Example of UNK-Finder. We illustrate the UNK-Finder algorithm on the final prefix-
tree shown in figure 2. The method begins with the first node and more specifically with
the cell containing the value “ Greece". The property number of the cell, 0, is added on
to curUNKey. Since the URIList of this cell has size one -thanks to the pruning step-
the algorithm will not examine its children. Now the property number is removed. The
algorithm moves to the next cell of the root node. The property number 0 is added in the
curUNKey. This cell contains a URIList with two elements in it. So recursively, we
go to node with cell “city3". Now the curUNKey is (0, 1). We call the UNK-Finder
for the child node of the “city3". Now the root node is the node with paintings P4 and
P5 and the property number of the node is added to the curUNKey (0, 1, 2). The
process continues with the child node of cell P4. In the curUNKey, attribute number
3 is added. Since the cell "Pompidou" has URIList of size one the UNK-Finder will
not continue with the child node of “Pompidou". The method will continue with the
second cell of the root node which is "Musee d’Orsay". Like “Pompidou", and since
“Musee d’Orsay" has URIList size one, the UNK-Finder will not be called for its
child node. The UNK-Finder has been called for each cell of the node. The property
number of the node is removed from the curUNKey which now is (0, 1, 2). In this
step the child nodes of this node are merged and the UNK-Finder is applied to the
mergedTree. The UNK-Finder is executed for the new merged node which consists of
two cells, “rue Beaubourg" and “rue de Lille". The attribute number of the merged node
is added in the curUNKey which is (0, 1, 2, 4). Since we are in the leaf and there is
a cell in the node with URIList bigger than one, the curUNKey (0,1,2) is added in
the UNKeySet. This means that there are more than two instances that have exactly
the same values for the properties in the curUNKey. The process of discovering the
UNKeySet continues in the same way. In this specific example the final UNKey set
consists of one composite UNKey, which is {contains, located, inCountry}.

Extraction of keys from UNKeys. In order to compute the set of minimal keys from

the UNKey set, we first compute for each UNKey the complement set. Then we apply
the Cartesian product on the obtained complement sets. Finally, we remove the non-
minimal keys from the obtained multi-set of keys.

In the museum example we have only one UNKey which is {contains, located,
inCountry}. The complement set of this UNKey is {{MuseumAddress}, {Museum-
Name}}. The process finishes by adding the two keys to the KeySet. The keys in the
KeySet are MuseumAddress and MuseumName.

4 First experiments

We have implemented and tested our method on two datasets that have been
used in the Ontology Alignment Evaluation Intitiative (OAEI, http://oaei.
ontologymatching.org/2010/). UNA is declared for each RDF file of the two
datasets. Since the two ontologies have been enriched by expert keys, we have com-
pared our results to the set of these existing keys.

Restaurant dataset. The first dataset D1 describes 1729 instances (classes
Restaurant and Address). In the provided Ontology, Restaurants are described us-
ing the following properties: name, phoneNumber, hasCategory, hasAddress. Ad-
dresses are described using: street, city, Inverse(hasAddress). The first RDF file f1
describes 113 Address instances and 113 Restaurant instances. The second RDF file
f2 describes 641 Restaurant instances and 752 Address instances.

Person dataset. The second dataset D2 consists of 3200 instances of Person
and Address. In the ontology, a person is described by the following proper-
ties: givenName, state, surname, dateOfBirth, socSecurityId, phoneNumber,
age and finally hasAddress. An Address is described by the properties: street,
houseNumber, postcode, isInSuburb and finally inverse(hasAddress). The first
and the second RDF files contain each of them 500 instances of the class Person
and 500 instances of Address. The third file contains 600 Person instances and 600
Address instances.

To examine the results of our method we compared the KD2R keys with the keys
given by an expert. 10% of found keys are equal to the expert keys and 10% are bigger
(i.e., contain more properties). The first case is the best we can come up with since
our results agree with the expert ones. The second case arises when an expert makes a
mistake and declares as keys properties that are not in fact real keys. This means that
we detect erroneous keys given by an expert. For instance, the expert has declared that
phoneNumber is a key. We are sure that the expert has made a mistake since in our
data we can find two different restaurants with the same phone number (managed by
the same organization). These two cases (20% of our found keys) represent the definite
minimal keys that we extract using the given datasets. Another 20% of KD2R keys
are keys that are smaller compared to the expert keys. It is possible to face this case
when the given data are not sufficient to find more specific keys. Finally the 60% of
the found keys are keys that are not declared by the expert. For example we find that
Inverse(hasAddress) can be a key for the address, a property that the expert did not
take into account and seems to be relevant (a museum has only one address).

Thus, KD2R may find keys that are not specific enough (the more the data are
numerous the more the discovered keys are accurate). However, this method can also
find keys that are equal to the expert ones or keys which are missed by the expert.

5 Conclusions and Future work

In this paper, we have described the method KD2R which aims to discover keys in
RDF data in order to use them in a reconciliation method. These data conform to the
same ontology and are described in RDF files for which the UNA is fulfilled. KD2R
takes into account the properties that the RDF files may have : incompleteness and
multi-valuation. Since the data may be numerous, the method discovers maximal unde-
termined/non keys that are used to compute keys and merge them if keys are discovered
using different datasets. Furthermore, the approach exploits key inheritance due to sub-
sumption relations between classes to prune the key search for a given class. The first
experiments have been conducted on two datasets exploited in the OAEI evaluation ini-
tiative. We have compared the retrieved keys with keys given by an expert. Some of
the found keys are less specific than the expert ones but errors of the expert can also
be detected. We plan to test our approach on more heterogeneous data and extend our
method in order to be able to work even when the UNA is not fulfilled.

References

1. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. ACM Trans.
Knowl. Discov. Data 1 (March 2007)

2. Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex information spaces.
In: Proceedings of the 2005 ACM SIGMOD. pp. 85–96. SIGMOD ’05, NY, USA (2005)

3. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey.
IEEE Transactions on Knowledge and Data Engineering 19, 1–16 (2007)

4. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: Tane: An efficient algorithm for dis-
covering functional and approximate dependencies. Comput. J. 42(2), 100–111 (1999)

5. Low, W.L., Lee, M.L., Ling, T.W.: A knowledge-based approach for duplicate elimination in
data cleaning. Information Systemes 26, 585–606 (December 2001)

6. Nikolov, A., Motta, E.: Data linking: Capturing and utilising implicit schema-level relations.
In: Proceedings of Linked Data on the Web workshop collocated with WWW’2010 (2010)

7. Saïs, F., Pernelle, N., Rousset, M.C.: Combining a logical and a numerical method for data
reconciliation. Journal on Data Semantics, vol 12 pp. 66–94 (2009)

8. Sismanis, Y., Brown, P., Haas, P.J., Reinwald, B.: Gordian: efficient and scalable discovery of
composite keys. In: Proceedings of the 32nd International conference VLDB. pp. 691–702.
VLDB ’06, VLDB Endowment (2006)

9. Wang, D.Z., Dong, X.L., Sarma, A.D., Franklin, M.J., Halevy, A.Y.: Functional dependency
generation and applications in pay-as-you-go data integration systems. In: 12th International
Workshop on the Web and Databases (2009)

10. Winkler, W.E.: Overview of record linkage and current research directions. Tech. rep., Bu-
reau of the Census (2006)

