
REASSURE: A Self-contained Mechanism for
Healing Software Using Rescue Points

Georgios Portokalidis and Angelos D. Keromytis

Network Security Lab, Department of Computer Science,
Columbia University, New York, NY, USA

{porto,angelos}@cs.columbia.edu

Abstract. Software errors are frequently responsible for the limited
availability of Internet Services, loss of data, and many security com-
promises. Self-healing using rescue points (RPs) is a mechanism that
can be used to recover software from unforeseen errors until a more
permanent remedy, like a patch or update, is available. We present RE-
ASSURE, a self-contained mechanism for recovering from such errors
using RPs. Essentially, RPs are existing code locations that handle cer-
tain anticipated errors in the target application, usually by returning
an error code. REASSURE enables the use of these locations to also
handle unexpected faults. This is achieved by rolling back execution to
a RP when a fault occurs, returning a valid error code, and enabling
the application to gracefully handle the unexpected error itself. REAS-
SURE can be applied on already running applications, while disabling
and removing it is equally facile. We tested REASSURE with various
applications, including the MySQL and Apache servers, and show that
it allows them to successfully recover from errors, while incurring mod-
erate overhead between 1% and 115%. We also show that even under
very adverse conditions, like their continuous bombardment with errors,
REASSURE protected applications remain operational.

1 Introduction

Program errors or bugs are ever-present in software, and specially in large and
highly complex code bases [20]. They manifest as application crashes or unex-
pected behavior and can cause significant problems, like limited availability of
Internet services [22], loss of user data [11], or lead to system compromise [24].
Many attempts have been made to increase the quality of software and reduce
the number of bugs. Companies enforce strict development strategies and edu-
cate their developers in proper development practices, while static and dynamic
analysis tools are used to assist in bug discovery [2,5]. However, it has been es-
tablished that it is extremely difficult to produce completely error-free software.

To alleviate some of the dangers that bugs like buffer overflows and dan-
gling pointers entail, various containment and runtime protection techniques
have been proposed [8,1,7,12,18]. These techniques can offer assurances that cer-
tain types of program vulnerabilities cannot be exploited to compromise security,



but they do not also offer high availability and reliability, as they frequently ter-
minate the compromised program to prevent the attacker from performing any
useful action.

In response, researchers have devised novel mechanisms for recovering ex-
ecution in the presence of errors [13]. ASSURE [26], in particular, presents a
powerful system that enables applications to automatically self-heal. Its oper-
ation revolves around the understanding that programs usually include code
for handling certain anticipated errors, and it introduces the concept of rescue
points (RPs), which are locations of error handling code that can be reused to
gracefully recover from unexpected errors. In ASSURE, RPs are the product of
offline analysis that is triggered when a new and unknown error occurs, but they
can also be the result of manual analysis. For example, RPs can by identified by
examining the memory dump produced when a program abnormally terminates.
Also, they serve a dual role, first they are the point where execution can be
rolled back after an error occurs, and second they are responsible for returning
a valid and meaningful error to the application (i.e., one that will allow it to
resume normal operation).

Regrettably, deploying RPs using ASSURE is not straightforward, but it
demands that various complex systems are present. For instance, to support ex-
ecution rollback, applications are placed inside the Zap [19,15] virtual execution
environment, while RP code is injected using Dyninst [4]. Zap is a considerably
complex component that is tightly coupled with the Linux kernel, and requires
maintenance along with the operating system (OS). In practice, RPs are a use-
ful but temporary solution for running critical software until a proper solution,
in the form of a dynamic patch or update, is available. It is our opinion that
RPs have not been widely used mainly because of the numerous requirements,
in terms of additional software and setup, of previous solutions like ASSURE.

We propose REASSURE, a self-contained mechanism for healing software us-
ing RPs. REASSURE assumes that a RP has already been identified, and needs
to be deployed quickly and in a straightforward manner. It builds on Intel’s PIN
dynamic binary instrumentation (DBI) framework to install the RP and pro-
vide the virtual execution environment for rolling back execution. As Pin itself
is simply an application, installation is simple and very little maintenance (or
none at all) is necessary. Furthermore, REASSURE does not need to be continu-
ously operating or even present, but it can be easily installed and attached only
when needed. Disabling it and removing it from a system is equally uncompli-
cated, since it can be detached from a running application without interrupting
its operation. Combined with a dynamic patching mechanism [4,9,17], applica-
tions protected with REASSURE can be run and eventually patched without
any interruption.

We have implemented REASSURE as a Pin tool for Linux1. Our evalua-
tion with popular servers, like Apache and MySQL, that suffer from well known
vulnerabilities shows that REASSURE successfully prevents the protected ap-
plications from terminating. When no faults occur, the performance overhead

1 Interested readers can contact the authors for a copy.



Recurring fault in application without self-healing 

Rescue-point 
analysis 

✔ ✔ 
Recurring fault in application with self-healing 

Recovery 

Crash 

Fig. 1. Software self-healing overview. A faulty application will crash and need to be
restarted every time a fault occurs. With self-healing, an analysis of the fault when it
first occurs, results in the definition of a rescue point for the application, which allows
it to gracefully recover from future occurrences of the same fault.

imposed by REASSURE varies between 1% and 115% depending on the ap-
plication, while in the presence of errors there is little effect on the protected
application until the frequency of faults surpasses five faults per second. We
should also note that Pin supports multiple platforms (e.g., Windows and Mac
OS), and REASSURE can be extended to support them with little effort.

This paper is organized as follows: Section 2 presents an overview of software
healing using RPs. We describe REASSURE in Sect. 3, and evaluate its effec-
tiveness and performance in Sect. 4. Section 5 discusses limitations and future
work, while related work is discussed in Sect. 6. We conclude in Sect. 7.

2 Software Self-healing Using Rescue Points

Software self-healing using RPs was first proposed in ASSURE [26], where the
authors describe an architecture that enables unmodified applications to auto-
matically heal themselves in the presence of unanticipated faults. An overview
of the idea behind this scheme is presented in Fig. 1. The architecture can be
decomposed into two parts. The first, is responsible for generating a RP when an
unexpected error occurs, while the second is in charge of applying the produced
RP on the application and recovering from future errors.

2.1 What Is a Rescue Point?

We define a rescue point as a function, preceding and encapsulating code suffer-
ing from an fault (i.e., the fault it aims to mend) that contains error handling
code, which can be reused to gracefully handle the unexpected error. For in-
stance, consider the function shown in Fig. 2. It calls three other functions,
namely f1(), f2(), and f3(). Let’s assume that f3() contains a bug, which if trig-
gered will terminate the application. We observe that f3() does not return any
value, which means that it either always succeeds or simply does not handle
certain conditions, such as the one causing the fault. On the other hand, the



FAULT 

r1 = f1() 

if (r1 != 0) 
 return err1; 

r2 = f2() 

if (r2 != 0) 
 return err2; 

f3() 

return OK; 

…[code]… 

…[code]… 

…[code]… 

function() { Rescue 
Point 

Rollback 
changes 

Commit 
changes 

} 

Fig. 2. Rescue point example. The function shown contains error handling code which
can be used to handle errors occurring in the faulty f3() function.

function encompassing it contains code that handles erroneous conditions, like
f1() and f2() returning an error. Therefore, we can use this function as a RP
that will enable the application to self-heal from an error in f3().

2.2 Rescue Point Discovery

ASSURE described a mechanism to automatically discover possible RPs and
select the best fit to deploy in terms of survivability after an error occurs. Briefly,
the procedure starts by profiling the application before it is deployed to discover
all possible RPs. This is achieved by monitoring the values returned by the
application’s functions, as it is provided with fuzzed and faulty inputs. Later,
when it is deployed and running normally, ASSURE takes periodic checkpoints
of the application state and maintains an execution log that includes network
traffic by running the application within Zap.

Concurrently, it monitors the application to detect failures and misbehavior.
The simplest way to achieve this is to intercept signals such as a segmentation
fault that indicates improper memory handling. Other approaches that detect
memory errors can also be employed [18,8,1,21]. When an error is detected AS-
SURE initiates offline rescue point analysis (see Fig. 1) in a replica, which returns
the application to the last checkpoint before the fault and attempts to reproduce
the fault by replaying the execution log. The aim of this analysis is to detect the
location of the error, thus enabling the selection of an appropriate RP. Interested
readers are referred to [26] for detailed information.

Alternatively, RPs can be discovered manually. For instance, an application
terminating due to a segmentation fault can be configured to dump core, a file
that describes the state of the application at the time of the fault. Processing
the dumped core can reveal the function containing the fault, which can be
frequently used as a RP itself or assist the user to find a nearby RP fit to handle
the error.



2.3 Rescue Point Deployment

In ASSURE, RPs are deployed using two systems. First, Dyninst [4] is employed
to inject special code in the beginning of the corresponding function that check-
points the application, and in case of an error returns a valid error code. Second,
the Zap-based virtual environment is used to actually perform the checkpoint, as
well as rollback the application when an error occurs. In the latter case, execution
returns in the RP, which returns an error.

Using Zap enabled ASSURE to keep overhead low and achieve fast recovery
times. Unfortunately, deploying RPs in this fashion is not very practical. Zap re-
quires extensive modifications to the OS and cannot be dynamically installed and
removed. Software self-healing targets systems that require temporary protection
against known bugs until an official patch is available that properly addresses
the error. As such, users are reluctant to install and maintain the additional
software required to deploy ASSURE.

We offer an attractive alternative that simplifies RP deployment in the form
of a self-contained mechanism built using Intel’s Pin dynamic instrumentation
framework. Our tool, REASSURE, only requires the Pin framework which oper-
ates on stock software and hardware. It can be dynamically applied for as long as
it is required. For example, until the application is updated, or until an ingress
filtering mechanism is used to block the inputs causing the fault. Afterward, it
can detach itself from the application and be removed from the system.

3 REASSURE Implementation

3.1 The Pin DBI Framework

Pin [16] enables the development of tools that can augment, modify, or simply
monitor a binary’s execution at the instruction level. It provides a rich API that
can be used by developers of tools (Pintools) to install callbacks to inspect a pro-
gram’s instructions and routines, as well as intercept system calls and signals.
In Pin’s terms, it allows the instrumentation of the application. Additionally, in-
strumentation routines can modify original code by removing instructions or by
more frequently adding new code, referred to as analysis code. The instrumented
application executes on top of Pin’s virtual machine (VM) runtime, which es-
sentially consists of a just-in-time (JIT) compiler that combines the original and
analysis instructions, and places the produced code blocks into a code cache,
where the application executes from.

The same block of application code can be instrumented in different ways
through versioning. Every application thread initially executes in version zero,
which corresponds to the default code cache. Instrumentation code can change
the version of a running thread by adding analysis code that will change the
version of the thread executing a particular instruction or block of code. When
a thread switches to a new version, execution continues from the code cache of
that version. If a block of code has not been instrumented for a certain version,



the instrumentation routine is called again and can install different analysis code
based on the version.

Pin is actively developed and supports multiple hardware architectures and
OSs. Pintools can be applied on any supported binary by either launching the
binary through Pin or by attaching on an already running binary. The latter be-
havior is highly desirable for REASSURE, as it allows us to deploy RPs without
interrupting an already executing application. We implemented REASSURE as
a Pintool on Linux, but it is by no means limited to the Linux OS.

3.2 Installing Rescue Points

RPs can be installed on any callable application function. Such a function can be
identified by its name or its address. The latter can be useful in cases where a bi-
nary has been entirely stripped of symbol information, and as such its functions
are only identifiable by their address. In systems where the targeted binary is
stripped and address space layout randomization (ASLR) [21] is used, specifying
a RP’s function may require additional analysis. That is because the function
cannot be located by name, and its address may change due to the executable or
library containing it being mapped to a different location because of ASLR. In
such cases, the application can be launched without REASSURE, so we can first
obtain the address where the object containing the RP’s function was actually
loaded. For instance, libfoo.so may be loaded at address 0xb6e7a000. In Linux,
such information can be obtained through the /proc pseudo-file system. Addi-
tionally, we can statically determine the offset of the RP’s function within the
object. For example, function foo() may be defined at offset 0x800 in libfoo.so.
By combining this information, we can calculate the address foo(), which in this
example would be 0xb6e7a800, and attach REASSURE on the process using the
calculated RP address.

Assuming we have the means to identify RP functions, installing them is
straightforward. If the function is defined by name, REASSURE first determines
the address it resides in. This is accomplished by scanning the application and all
its shared libraries as they are loaded. Concurrently, we scan each RP function we
encounter to find at least one exit point (i.e., a ret instruction) that will be used
to return a valid error when a fault occurs. Finally, we install an instrumentation
callback, which causes Pin to notify our tool whenever a new block of code is
encountered. The instrumentation routine performs the following operations:

1. If a RP’s entry point is encountered, analysis code is inserted to switch the
thread that enters the RP to checkpointing mode. Primarily, this causes the
thread entering the RP to switch to a different code cache version (discussed
in Sect. 3.1) and saves the thread’s CPU state. The checkpointing version
of the instrumentation inserts analysis code that logs all the writes being
performed by the application required for rolling back when an error occurs.

2. If a RP’s exit point is encountered, analysis code is inserted to switch the
thread returning from the function out of checkpoint mode and to normal



Table 1. Signals intercepted by REASSURE to identify and recover from program
errors.

Signal Description

SIGSEGV Invalid memory reference/segmentation fault
SIGILL Illegal instruction (e.g., because of an invalid control-flow transfer)
SIGABRT Abort signal sent by the abort system call
SIGFPE Floating point exception (e.g., divide by zero)

execution. Besides switching to the original code cache that does not log pro-
gram writes, the analysis code also discards the log of writes (i.e., commits
the changes).

3.3 Memory Writes Logging

A RP’s code, as well as all code called from it, is instrumented so as to log all
the writes being performed. This write log serves the purpose of keeping track of
all the modifications performed within a RP, so that it can be rolled back when
an error occurs (i.e., usually the same error that necessitated the introduction of
the RP). This is achieved by augmenting every memory write instruction within
a RP with analysis code that appends an entry in a dynamically expanding
array, which holds the address being written and the value being overwritten.
Because we are using Pin’s instrumentation versioning, only the instructions
being reached from within a RP are actually instrumented this way.

The analysis functions responsible for writes logging need to be carefully
written to avoid certain erroneous conditions. For instance, consider a program
performing an illegal memory write that causes a page fault within a RP. This
memory write is also instrumented, so that the value being overwritten is saved
in the log. Unfortunately, since the target address is invalid, the logging code
executing before the actual write will cause the page fault instead. We have
written these analysis routines in such a way that such a fault will not leave the
writes log in a corrupted state (e.g., with an erroneous number of entries).

3.4 Recovery from Faults

When terminal faults occur in Linux, the OS issues a synchronous signal, which
if not handled will cause a process to terminate. For instance, an invalid memory
reference will cause a SIGSEGV signal to be delivered by the OS. REASSURE
intercepts such signals to identify errors occurring within RPs and initiate re-
covery. Table 1 lists all the signals intercepted by REASSURE to recover from
program faults. Note that other OSs have similar mechanisms to synchronously
notify applications of such errors. For example, Windows uses exceptions.

When REASSURE receives one of the signals in Table 1, we first check that
the thread that received the signal is actually within a RP. If that is the case,
we proceed to restore the values that have been overwritten since the entry to
the RP and restore the saved CPU state. These actions effectively rollback the



CPU and memory modifications in single-threaded applications, and applications
where the function the RP was applied on does not access shared data or interact
with other threads. We discuss concurrency issues in multithreaded applications
separately in Sect. 3.5. We proceed by updating the program counter to point to
the ret instruction found during the RP’s installation and use Pin’s API to set
the function’s return value to the one specified by the RP as a valid error return
value. In x86 architectures the return value is simply placed in the eax register.
Recovery is completed by suppressing the delivery of the signal to the application
and resuming execution from the updated program counter. In opposition, if one
of these signals is received while the thread is not in a RP, we deliver it to the
application for processing.

3.5 Concurrency

Restoring the CPU state and undoing memory writes is sufficient for recovering
from faults in single-threaded applications, but this may not be the case in
multithreaded applications. In general, threads share a common address space
and, as such, updates made by one thread are immediately visible to all of
them. Let’s consider a multithreaded application with a buggy function that
makes updates that affect multiple threads. It is possible that memory updates
made by thread A within a RP are used by thread B to make further updates.
Consequently, if an error occurs in thread A, the recovery process may leave
residual data because of thread B having propagated the updates of thread A.

We address such concurrency issues by introducing blocking RPs that block
other threads for their duration. REASSURE provides two modes of operation
to accommodate blocking RPs. The first caters to applications that expect a
very high rate of faults, while the second offers faster operation as long as the
rate of faults is reasonable (evaluated in Sect. 4.3).

Always-on blocking mode operates by conditionally instrumenting every block
of instructions with an analysis routine that blocks the executing thread when a
certain flag, which is asserted by the blocking-RP upon entry, is set. Because this
mode introduces frequent checks of the “block” flag, it incurs high overheads,
but has low latency (i.e., we can quickly activate/deactivate blocking) and is
thus more appropriate for applications where faults occur very frequently.

On-demand blocking mode utilizes OS facilities to achieve better performance.
In particular, we use signals (i.e., the SIGUSR2 signal) to asynchronously in-
terrupt the remaining threads whenever a blocking-RP is entered. Similarly, to
fault-related signals, REASSURE intercepts the delivery of SIGUSR2 to install
temporary blocks in receiving threads. Since the code that the thread was exe-
cuting may have already been instrumented, we first remove the code currently
executing from the code cache. After suppressing the delivery of the signal, Pin
attempts to resume execution and since the block of code is no longer present
in the code cache, our instrumentation routine is invoked again. This allows us
to install an analysis routine that will block the thread. When a RP exits, we
remove the blocking analysis code by once again removing the corresponding



Table 2. Applications and benchmarks used for the evaluation of REASSURE. All of
applications contain exploitable bugs as described by their common vulnerability and
exposure (CVE) id.

Application Bug type Benchmark

MySQL v5.0.67 Input validation CVE-2009-4019
MySQL’s test-insert
and test-select

Apache v1.3.24 Memory corruption CVE-2002-0392 Apache’s ab utility
CoreHTTP v0.5.3a Stack overflow CVE-2007-4060 Apache’s ab utility
Samba v3.0.21 Heap overflow CVE-2007-2446 Linux’s dd utility

instructions from the code cache. This method has the advantage of the appli-
cation generally executing faster, since “blocking” code is not installed de facto
for every block of code. On the other hand, since it relies on the OS to issue
and deliver signals, it takes longer to block threads which may lead to decreased
performance when a high rate of errors is observed.

4 Evaluation

We evaluated REASSURE along two axes. First, we show that it is able to
correctly heal various applications that contain bugs that can cause them to ab-
normally terminate. Second, we evaluate the performance overhead imposed by
REASSURE on these applications. In both cases, we employed existing bench-
marks and tools to generate workloads. Table 2 lists the applications and bench-
marks used during the evaluation. We conducted the experiments presented in
this section on a DELL Precision T5500 workstation with dual 4-core Xeon CPUs
(with HyperThreading disabled) and 24GB of RAM running Linux 2.6.

4.1 Recovery from Errors

We tested REASSURE’s ability to heal software by triggering known bugs in
the applications listed in Table 2, while concurrently running the corresponding
benchmarks. When REASSURE is not employed, the applications terminate and
the benchmarks are interrupted in all cases. In contrast, when using REASSURE
to apply a RP that engulfs the function that causes the crash, the applications
recover from the error and the benchmarks conclude successfully.

Table 3 shows the RPs applied on the applications. All applications except
MySQL do not use multiple threads, but instead consist of either a single event-
driven process or multiple processes. For this reason, we used non-blocking RPs
for all applications besides MySQL. For the latter, even though its RP does not
access shared data and consequently does not require blocking, we tested it with
both RP types to demonstrate REASSURE’s correctness.



Table 3. The rescue points applied to recover from the bugs listed in Table 2.

Application Function name Return value Type

MySQL v5.0.67 Item func set user var::update() 1
Non-blocking
Blocking

Apache v1.3.24 ap bread() -1 Non-blocking
CoreHTTP v0.5.3a HttpSprockMake() 0 Non-blocking
Samba v3.0.21 switch message() -1 Non-blocking

4.2 Performance in the Absence of Errors

For each application in Table 2, we performed the corresponding benchmark,
first with the application executing natively, then running under the Pin DBI
framework, and last under REASSURE with the corresponding RP installed.
This allows us to quantify the overhead imposed by REASSURE compared with
native execution, as well as the relative overhead compared with the baseline,
which in our case is Pin. In the tests described in this section, we did not inject
any requests that would trigger the bugs each application suffers from, never-
theless the RPs listed in Table 3 were installed.

Figure 3 shows the results obtained after running 10 iterations of MySQL’s
test-insert and test-select benchmark tests over an 1Gb/s network link. The y-
axis lists the various server configurations tested, which from top to bottom are:
native execution, execution over Pin, REASSURE using a non-blocking RP, and
REASSURE using a blocking RP both in on-demand and always-on blocking
mode. The x-axis shows the average time (in seconds) needed to complete each
benchmark, while the errors bars represent standard deviation. Note that the
figure also includes standard deviation for test-select, but it is insignificant and
thus not visible. We observe that the test-insert and test-select benchmarks take
on average 24% and 53% more time to complete when running the server over
REASSURE and no blocking RPs, while a significant part of the overhead is
because of Pin (under Pin the tests take 18% and 46% more time). Using on-
demand blocking has little effect on performance, while using always-on blocking
increases the overhead to 42% and 115% respectively.

Figures 4(a) and 4(b) depict the results obtained after running 10 iterations
of Apache’s ab benchmark utility over an 1Gb/s network link for the Apache and
corehttp web servers respectively. The y-axis displays the average throughput in
requests per second as reported by ab, and the error bars represent standard
deviation. We performed the experiments requesting files of different size from
the web servers (listed in the x-axis), while we repeated each test with the
corresponding server running: natively, over Pin, and with REASSURE (the
RPs used are non-blocking). Corehttp is a single-process server and Apache
was configured to only spawn a single process for serving requests to obtain
comparable results.

In Fig. 4(a), we see that Apache performs approximately 4%-10% slower when
run with REASSURE and the greater part of the overhead is because of Pin.
We also notice that the overhead drops as the size of the requested file increases.



Total time (sec)

0 250 500 750 1000 1250 1500 1750

Native

Pin

REASSURE

(non−blocking RP)

REASSURE

(on−demand blocking RP)

REASSURE

(always−on blocking RP)

test−insert

test−select

Fig. 3. MySQL performance. Time needed to complete MySQL’s test-insert benchmark
over an 1Gb/s network link. We apply the rescue point in three different ways: as a
non-blocking RP, a blocking RP with on-demand thread blocking, and a blocking RP
with always-on blocking.

This is due to the workload becoming more I/O intensive (i.e., more data need
to be transferred per request) and the number of requests arriving at the server
shrinks. On the other hand, Fig. 4(b) shows that corehttp performs significantly
worse than Apache. When running under REASSURE its throughput is reduced
by approximately 40%-60%, while even when running under Pin we observe a
31%-54% reduction in throughput. There are two reasons corehttp performs so
poorly. First, it is the only application where the RP is actually in the critical
path of execution and it is entered for every performed request. Second, corehttp
consists of many and short lived function calls that require additional processing
by Pin, which be design receives control before performing any indirect control
transfer like a function return. Note that the performance of code running within
a RP greatly depends on parameters like the initial size of the writes log described
in Sect. 3.3. If the RP is in the critical path, as in the case of corehttp, and
contains many memory writes, the log will have to be frequently enlarged to
accommodate the application. In the experiments described in this section, the
initial size of the writes log, as well as the step used to enlarge it, is 50000 entries.

Finally, Fig. 5 shows the results of copying an 100MB file to a directory shared
through samba over an 1Gb/s network link. The y-axis shows the average transfer
rate (in MB/s) achieved by the dd utility. Once again, we performed 10 iterations
of each test and we display standard deviation using error bars. We observe that
when running the samba server over REASSURE there is a negligible drop in
the transfer rate (approximately 1%), even though the installed RP is entered
on every file transfer request.

4.3 Performance in the Presence of Errors

We complemented the experiments in the previous section by performing a set of
tests against the Apache web server and the MySQL DB server running over RE-



T
h
ro

u
g
h
p
u
t 
(R

e
q
/s

)

0

250

500

750

1000

1250

1500

Page size

16K 32K 64K 128K

Native

Pin

REASSURE

(a) Apache

T
h
ro

u
g
h
p
u
t 
(R

e
q
/s

)

0

250

500

750

1000

1250

1500

Page size

16K 32K 64K 128K

Native

Pin

REASSURE

(b) Corehttp

Fig. 4. Web server performance. We used Apache’s ab benchmark utility to measure the
throughput of the Apache and corehttp web servers when requesting files of different
size over an 1Gb/s network link.

Transfer rate (MB/s)

0 1 2 3 4 5 6 7

Native

Pin

REASSURE

Fig. 5. Samba performance. We used the dd utility to copy an 100MB file containing
randomly generated data to a directory shared using samba. The shared directory was
mounted on a remote host over an 1Gb/s network link.

ASSURE and in the presence of errors. For Apache, we measured its throughput
(in requests per second) using the ab utility to request a 16KB file, while con-
currently we issued requests with varying frequency that triggered the server’s
fault, which was protected by a non-blocking RP. Figure 6 shows the results
of this experiment. The x-axis is in logarithmic scale and corresponds to the
time interval (in seconds) used to submit a faulty request to the server (i.e., we
attempted to crash the server every x seconds). When there is an one second or
longer interval between the attacks to the server, it performs as well as when no
errors occur, while at the same time it “heals” from the occurring errors. As the
frequency of the attacks increases the attainable throughput drops. Finally, if er-
rors occur continuously (zero seconds injection interval) the server still survives,
even though throughput is greatly reduced.

In Fig. 7, we show the results obtained from running MySQL’s test-select,
while faults were injected as in the experiment described above. The y-axis



T
h
ro

u
g
h
p
u
t 
(R

e
q
/s

)

0

250

500

750

1000

1250

Fault injection interval (seconds elapsed between fault injection)

0

0
.2

0
.5 1

1
0

2
0

Average performance without faults

378.77

1019.851039.81 1044.82 1052.58 1052.76

Fig. 6. Throughput of Apache web server as the number of faulty requests changes.
Measured using Apache’s ab benchmark utility to request a 16KB file containing ran-
domly generated data. At the same time a non-blocking RP was employed to recover
from the injected errors.

shows the time needed to complete each test and the x-axis corresponds to
the time interval between fault injections. Both axes are in logarithmic scale.
We utilized a blocking RP to recover from the faults, both in on-demand and
always-on blocking mode, and in both cases we observe that if the time between
faults is one second or longer, there is only a minor decrease in performance.
As the frequency of the faults increases, so does the overhead in both blocking
modes. Predominantly, on-demand blocking outperforms always-on blocking, but
in high fault frequencies (approximately one fault per 0.1s or less) the situation is
reversed. Users of REASSURE that are able to anticipate the rate of faults, can
use this knowledge to select the better performing blocking mode. Alternatively,
REASSURE could also monitor the frequency of faults to automatically switch
from one mode to the other (discussed in Sect. 5).

5 Limitations and Future Work

There are various issues that should be considered before deploying a blocking-
RP. For instance, if the RP function attempts to acquire a lock that is already
held by another thread, the application may be deadlocked as REASSURE blocks
all other threads. One should also be aware of certain library calls that may ob-
tain locks (e.g., printf()). Therefore, blocking-RPs should be used with prudence
and only when necessary, specially considering their overhead. Some of the is-
sues with blocking-RPs can be addressed by extending REASSURE, so that RPs
can be installed just on certain parts of a function (fine-grained RPs). We could
then install a rescue point within the critical region of a function, after a lock
has already been obtained.



T
o
ta

l 
ti
m

e
 (

s
e
c
)

200

400

600

2000

3600

Fault injection interval (seconds elapsed between injections)

0

0
.2

0
.5 1

1
0

2
0

Average performance without faults (always−on)

Average performance without faults (on−demand)

3600.96

400

332.75
308 298 297.5

2010.36

567.5

458.667 433.8 415 412.333

Always−on blocking becomes

faster at approx. 0.12s

On−demand blocking

Always−on blocking

Fig. 7. Performance of MySQL DB server as the number of faulty requests changes.
We measured the time needed to complete MySQL’s test-select test in the presence of
faults, and used a blocking RP to recover from the errors in always-on and on-demand
blocking mode.

Some caution is also needed when setting up RPs in functions that perform
certain system calls, as the current implementation of REASSURE does not
rollback the effects of system calls. Frequently, this fact does not have any adverse
effect on the application. For instance, retrieving the system’s time, reading a
random number from /dev/urandom, and requiring more heap size do not affect
the application in case of a rollback. In fact, even operations such as writing an
entry in a log file or a network socket can be allowed from within a RP. While
the data are still written to the destination, a rollback will leave the system in
a valid state. However, this may not be the case for all applications, as RPs
containing writes on critical files (e.g., a DB’s data file) may lead to a corrupted
state. In practice, the cases where a RP should not be installed can be even more
uncommon, as the error a RP is guarding against may occur before any such
critical system calls, and as such the latter are inconsequential (i.e., they are
only executed when the error does not occur). In the future, we plan to extend
REASSURE to also rollback certain system calls, like mmap and munmap. Some
support for file and socket writes may also be incorporated by delaying/buffering
the writes until the RP has concluded.

Finally, RPs should be applied with caution, when the targeted function
updates data shared with other processes through shared memory. Since the up-
dates are immediately visible to other processes, a rollback in case of error cannot
guarantee that the new memory values have not been already read by another
process. A possible-yet-costly solution could involve committing the updates into
shadow memory, private to the thread in a RP, and upon completion copying
the updates from shadow to application memory. Fine-grained RPs could also
provide a workaround for applications with such issues.



In the future, we also plan to include certain optimizations that will improve
performance. For instance, the write log (Sect. 3.3) is dynamically expanding
and its expansion can be costly if it occurs frequently. We can “remember” the
write log size required by a RP to reduce this cost. We also saw in Sect. 4.3
that depending on the frequency of errors when using blocking-RPs, it may
be preferable to use always-on instead of on-demand blocking and vice versa.
Instead, REASSURE can automatically switch between versions based on the
observed fault rate.

6 Related Work

Software self-healing using RPs was first proposed in ASSURE [26]. The au-
thors described a mechanism that can automatically analyze an application er-
ror to identify and select the appropriate RP. The deployment of the RPs was
performed using a modified OS featuring the Zap [19] virtual execution envi-
ronment. REASSURE does not require any modifications to the OS, and can
be easily enabled and disabled. However, the RP identification component of
ASSURE can be used in combination with our work.

Selective transactional emulation (STEM) [27] is a speculative recovery tech-
nique that also identifies the function where an error occurs, and it could be also
used to assist in identifying RPs. Unlike REASSURE, STEM requires source
code to perform the error analysis, and does not work with multiprocess and mul-
tithreaded applications. Failure-oblivious computing [25] is another speculative
recovery technique that is based on the compiler inserting code to handle invalid
memory writes by virtually extending the target buffer. This approach offers
more robust fault response than simply crashing, but at significant performance
overhead, ranging from 80% up to 500% for a variety of different applications,
while it also requires recompilation of the target application.

Rebooting techniques [28,10,6] attempt to restore a system to a clean state
before or after a fault. Program restart takes significantly longer time, resulting
in substantial application down-time, while data loss may also occur. Micro-
rebooting can be faster by only restarting parts of the system, but requires
a complete rewrite of applications to compartmentalize failures. None of these
techniques effectively deal with deterministic bugs, since these may recur post-
restart.

Checkpoint-restart techniques [3,14] can be used in a similar fashion to re-
booting, but achieve better restart times since the application can start from a
checkpoint. While down time is reduced, compared with rebooting, these tech-
niques still do not handle deterministic bugs, or bugs maliciously triggered by an
attacker (e.g., a DoS attack). Checkpoint-restart has been also combined with
running N-versions of a program [3]. This method assumes that failures occur
independently in the various versions, but introduces prohibitive costs for most
applications, as multiple versions need to be maintained and run concurrently.

Automatically generating and applying patches has also been proposed, as a
way to heal software [23,17,29]. Unfortunately, automatically applying patches



has not been generally adopted, due to the possibility that additional errors are
introduced during the patching, or that the patched application stops behaving
as expected.

7 Conclusions

We presented REASSURE, a self-contained mechanism for healing software us-
ing rescue points. REASSURE is easy to use and does not require modifications
to the OS, making RPs an attractive and practical solution for temporary healing
software until a patch or update is made available. It enables the reuse of existing
error handling code to also handle unanticipated failures, such as the ones that
can lead to the abnormal termination of an application. We have tested REAS-
SURE with various applications including the Apache and MySQL servers, and
show that it successfully allows them to recover from otherwise terminal errors.
In the absence of errors REASSURE incurs an overhead between 1% and 115%
depending on whether a RP is encountered frequently, and whether the appli-
cation is I/O or CPU bound. We also show that when errors occur frequently,
REASSURE protected applications survive, even under very adverse conditions
like their continuous bombardment with errors.

Acknowledgements

This work was supported by the US Air Force and the National Science Founda-
tion through Contracts AFRL-FA8650-10-C-7024 and AFOSR-MURI-FA9550-
07-1-0527, and Grant CNS-09-14845, respectively. Any opinions, findings, con-
clusions or recommendations expressed herein are those of the authors, and do
not necessarily reflect those of the US Government, the Air Force, or the NSF.

References

1. Akritidis, P., Cadar, C., Raiciu, C., Costa, M., Castro, M.: Preventing memory
error exploits with WIT. In: Proc. of the Symposium on Security and Privacy. pp.
263–277 (May 2008)

2. Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C.,
Kamsky, A., McPeak, S., Engler, D.: A few billion lines of code later: using static
analysis to find bugs in the real world. Commun. ACM 53, 66–75 (February 2010)

3. Bressoud, T.C., Schneider, F.B.: Hypervisor-based fault tolerance. In: Proc. of the
15th ACM symposium on Operating systems principles (SOSP). pp. 1–11 (1995)

4. Buck, B., Hollingsworth, J.K.: An api for runtime code patching. Int. J. High
Perform. Comput. Appl. 14, 317–329 (November 2000)

5. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation of
high-coverage tests for complex systems programs. In: Proc. of the 8th OSDI. pp.
209–224 (2008)

6. Candea, G., Fox, A.: Crash-only software. In: Proc. of the 9th Workshop on Hot
Topics in Operating Systems (HotOS IX) (May 2003)



7. Cowan, C., Barringer, M., Beattie, S., Kroah-Hartman, G.: FormatGuard: Auto-
matic Protection From printf Format String Vulnerabilities. In: Proc. of the 10th
USENIX Security Symposium. pp. 191–199 (August 2001)

8. Etoh, J.: GCC extension for protecting applications from stack-smashing attacks.
http://www.trl.ibm.com/projects/security/ssp/

9. Hicks, M., Nettles, S.: Dynamic software updating. ACM Trans. Program. Lang.
Syst. 27, 1049–1096 (November 2005)

10. Huang, Y., Kintala, C., Kolettis, N., Fulton, N.: Software rejuvenation: Analysis,
module and applications. In: Proc. of the 25th International Symposium on Fault-
Tolerant Computing (FTCS). p. 381 (1995)

11. InformationWeek: Windows home server bug could lead to data loss. http:

//informationweek.com/news/205205974 (December 2007)
12. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with

instruction-set randomization. In: Proc. of the 10th CCS. pp. 272–280 (October
2003)

13. Keromytis, A.D.: Characterizing self-healing software systems. In: Proc. of the 4th

MMM-ACNS (September 2007)
14. King, S.T., Dunlap, G.W., Chen, P.M.: Debugging operating systems with time-

traveling virtual machines. In: Proc. of the USENIX Annual Technical Conference
(2005)

15. Laadan, O., Nieh, J.: Transparent checkpoint-restart of multiple processes on com-
modity operating systems. In: Proc. of the 2007 USENIX ATC. pp. 323–336 (2007)

16. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building customized program analysis tools with
dynamic instrumentation. In: Proc. of the 2005 PLDI. pp. 190–200 (June 2005)

17. Makris, K., Ryu, K.D.: Dynamic and adaptive updates of non-quiescent subsystems
in commodity operating system kernels. In: Proc. of the 2nd EuroSys. pp. 327–340
(March 2007)

18. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: Proc. of the 12th

NDSS (February 2005)
19. Osman, S., Subhraveti, D., Su, G., Nieh, J.: The design and implementation of

Zap: a system for migrating computing environments. In: Proc. of the 5th OSDI.
pp. 361–376 (December 2002)

20. Ostrand, T.J., Weyuker, E.J.: The distribution of faults in a large industrial soft-
ware system. In: Proc. of the 2002 ACM SIGSOFT ISSTA. pp. 55–64 (2002)

21. PaX Project: Address space layout randomization (Mar 2003), http://pageexec.
virtualave.net/docs/aslr.txt

22. PCWorld: Amazon EC2 outage shows risks of cloud. http://www.pcworld.com/
businesscenter/article/226199/amazon_ec2_outage_shows_risks_of_cloud.

html (April 2011)
23. Perkins, J.H., Kim, S., Larsen, S., Amarasinghe, S., Bachrach, J., Carbin, M.,

Pacheco, C., Sherwood, F., Sidiroglou, S., Sullivan, G., Wong, W.F., Zibin, Y.,
Ernst, M.D., Rinard, M.: Automatically patching errors in deployed software. In:
Proc. of the ACM SIGOPS 22nd symposium on Operating systems principles. pp.
87–102 (2009)

24. Porras, P., Saidi, H., Yegneswaran, V.: Conficker C analysis. Tech. rep., SRI Inter-
national (2009)

25. Rinard, M., Cadar, C., Dumitran, D., Roy, D., Leu, T., W Beebee, J.: Enhancing
server availability and security through failure-oblivious computing. In: Proc. of
the 6th OSDI (December 2004)

http://www.trl.ibm.com/projects/security/ssp/
http://informationweek.com/news/205205974
http://informationweek.com/news/205205974
http://pageexec.virtualave.net/docs/aslr.txt
http://pageexec.virtualave.net/docs/aslr.txt
http://www.pcworld.com/businesscenter/article/226199/amazon_ec2_outage_shows_risks_of_cloud.html
http://www.pcworld.com/businesscenter/article/226199/amazon_ec2_outage_shows_risks_of_cloud.html
http://www.pcworld.com/businesscenter/article/226199/amazon_ec2_outage_shows_risks_of_cloud.html


26. Sidiroglou, S., Laadan, O., Perez, C., Viennot, N., Nieh, J., Keromytis, A.D.: AS-
SURE: automatic software self-healing using rescue points. In: Proc. of the 14th

ASPLOS. pp. 37–48 (2009)
27. Sidiroglou, S., Locasto, M.E., Boyd, S.W., Keromytis, A.D.: Building a reactive

immune system for software services. In: Proc. of the 2005 USENIX ATC (April
2005)

28. Sullivan, M., Chillarege, R.: Software defects and their impact on system avail-
ability - A study of field failures in operating systems. In: Digest of Papers., 21st

International Symposium on Fault Tolerant Computing (FTCS-21). pp. 2–9 (1991)
29. Susskraut, M., Fetzer, C.: Automatically finding and patching bad error handling.

In: Proc. of the Sixth European Dependable Computing Conference. pp. 13–22
(2006)


	REASSURE: A Self-contained Mechanism for Healing Software Using Rescue Points
	Introduction
	Software Self-healing Using Rescue Points
	What Is a Rescue Point?
	Rescue Point Discovery
	Rescue Point Deployment

	REASSURE Implementation
	The Pin DBI Framework
	Installing Rescue Points
	Memory Writes Logging
	Recovery from Faults
	Concurrency

	Evaluation
	Recovery from Errors
	Performance in the Absence of Errors
	Performance in the Presence of Errors

	Limitations and Future Work
	Related Work
	Conclusions
	References


