
FIT for SOA? Introducing the F.I.T.-Metric to
Optimize the Availability of Service Oriented
Architectures

Sebastian Frischbier, Alejandro Buchmann, Dieter Pütz

Abstract The paradigm of service-oriented architectures (SOA) is by now accepted
for application integration and in widespread use. As an underlying key-technology
of cloud computing and because of unresolved issues during operation and mainte-
nance it remains a hot topic. SOA encapsulates business functionality in services,
combining aspects from both the business and infrastructure level. The reuse of
services results in hidden chains of dependencies that affect governance and opti-
mization of service-based systems. To guarantee the cost-effective availability of
the whole service-based application landscape, the real criticality of each depen-
dency has to be determined for IT Service Management (ITSM) to act accordingly.
We propose the FIT-metric as a tool to characterize the stability of existing service
configurations based on three components: functionality, integration and traffic. In
this paper we describe the design of FIT and apply it to configurations taken from
a production-strength SOA-landscape. A prototype of FIT is currently being imple-
mented at Deutsche Post MAIL.

1 Introduction

A company’s IT Service Management (ITSM) has to fulfill conflicting demands:
while minimizing costs, IT solutions have to support a wide range of functionality,
be highly reliable and flexible [22]. The paradigm of service-oriented architectures
(SOA) has been proposed to solve this conflict. SOA was intended to facilitate the
integration of inter-organizational IT-systems, thus becoming a key enabler of cloud
computing [12]. At present, it is used mostly for intra-organizational application

Sebastian Frischbier, Alejandro Buchmann
Databases and Distributed Systems Group, Technische Universität Darmstadt,
e-mail: lastname@dvs.tu-darmstadt.de

Dieter Pütz
Deutsche Post AG, Bonn, e-mail: d.puetz@deutschepost.de

1

lastname@dvs.tu-darmstadt.de
d.puetz@deutschepost.de


2 Frischbier et al.

integration. Especially large companies, such as Deutsche Post DHL, use SOA to
integrate and optimize their historically grown heterogeneous application landscape.

From an architectural point of view, the SOA paradigm reduces complexity and
redundancy as it restructures the application landscape according to functionality
and data-ownership. Basic entities within a SOA are services organized in domains
without overlap. Each service encapsulates a specific function with the correspond-
ing data and is only accessible through an implementation-independent interface.
Services are connected according to a given workflow based on a business pro-
cess [29].

From an infrastructure point of view, services are usually provided and consumed
by applications. With the term ’application’ we refer to large-scale complex systems,
themselves quite often consisting of multi-tier architectures running on server clus-
ters serving thousands of clients. These applications have to be available according
to their business criticality. The desired level of availability is specified in service
level agreements (SLA) in terms of service level targets (SLT). These differ accord-
ing to the characteristics of the individual application and the means necessary to
meet the desired level of availability [7]. Usually, the different service levels can
be grouped into three classes: high availability (gold), medium availability (silver)
and low availability (bronze). Effort and means needed for the operations provider
to guarantee a given level of availability are reflected in the costs.

Deciding on the proper level of availability and defining adequate service levels
is a difficult task, which becomes even more complex in service-based and dis-
tributed environments. The SOA paradigm drives the reuse of existing services by
enabling their transparent composition within new services. As functionality and
data are encapsulated, services have to rely on other services in order to run prop-
erly. This results in a network of hidden dependencies, since each service is only
aware of its own direct dependencies on the consumed services. These dependencies
affect the availability of applications directly as applications rely on other services
to communicate and access information in service-based environments. Chains of
interdependent services can lead to an application with higher availability becoming
dependent on an application with lower availability even if the applications have no
direct semantic relationship.

IT Service Management has to decide on the criticality of such a relationship
and act accordingly. Criticality in this context does not refer to the probability of a
breakdown actually taking place but to the impact on the application landscape once
it occurs. The following approaches are possible to cope with disparities in service
levels of depending applications: i) all participating applications are operated on the
highest level of availability present in a chain of dependencies; ii) the configuration
stays unchanged; iii) the SLA of single participants is changed to minimize the ex-
pected impact. As the ”methods used are almost always pure guesswork, frequently
resulting in drastic loss or penalties” [38, 43], the first approach is often favored.
Although it succeeds, it is surely inefficient and expensive. Even hosting services
alternatively in cloud environments rather than on-premise does not solve this prob-
lem. It rather shifts the risk of availability management to the cloud provider who
will charge for it.



FIT for SOA? 3

Due to the lack of proper decision support, both the second and third approach
are usually avoided as they may result in serious breakdowns and loss of revenue.
Therefore, ITSM requires methods and tools to: i) model all relevant dependencies;
ii) identify hotspots and; iii) decide on their criticality. In particular, deciding on the
criticality is important as this allows for ranking hotspots (e.g. as preparation for
closer inspection) and simulating changes.

We introduce the FIT-metric to aid ITSM in these tasks, especially in deciding on
the criticality of dependencies in existing service-oriented architectures and simulat-
ing changes. Our metric consists of the three components: functionality, integration
and traffic. The necessary data can be cost-effectively obtained from end-to-end
monitoring and existing documentation. FIT is the result of our analysis conducted
at Deutsche Post MAIL and is currently implemented there.

The contributions of this paper are: i) we identify the need for applications and
their dependencies to be ranked according to their criticality; ii) we propose a metric
taking into account functionality, integration and traffic of the services involved to
aid ITSM in assessing the appropriate service level in interdependent SOA-based
systems; iii) we evaluate our approach by applying it to actual service configurations
taken from a product-strength SOA-landscape.

The structure of this paper is as follows: we present a production-strength SOA
in Sect. 2 to point out the need for a criticality-metric for service-dependencies. In
Sect. 3 we present the design of our FIT-metric in detail. We use a case study to
evaluate our approach in Sect. 4. We conclude our paper by reviewing related work
on the topic of metrics for service-oriented architectures in Sect. 5 followed by a
summary of our findings and a short outlook on future work in Sect. 6.

2 A Production-Strength SOA Environment

Deutsche Post AG is the largest postal provider in Europe, with Deutsche Post
MAIL division alone delivering about 66 million letters and 2.6 million parcels to
39 million households in Germany each working day. Furthermore, Deutsche Post
MAIL increases the level of digitalization in its product-portfolio (e.g. online and
mobile based value-added services) since 2009 [8]. In 2010 Deutsche Post MAIL
started to offer the E-Postbrief product to provide consumers and business users
with a secure and legally compliant form of electronic communication [9].

The application landscape supporting these processes and products was trans-
formed to apply the SOA-paradigm in 2001 [14]. Today, applications communi-
cate across a distributed enterprise service bus (ESB) by consuming and providing
SOA-services that are grouped in mutually exclusive domains. The initially used
SOA-framework has been a proprietary development by Deutsche Post MAIL called



4 Frischbier et al.

Service-oriented Platform (SOP). Today, SOP’s open-source successor SOPERA is
at the heart of both Eclipse SOA1 and Eclipse Swordfish2.

The results discussed here are based on our analysis of the Deutsche Post MAIL
SOP/SOPERA application landscape using a Six Sigma-based [11] approach. This
included conducting interviews, reviewing documentation as well as assessing mon-
itoring capabilities to identify dependencies and business criticalities. All data pre-
sented in this paper is anonymized due to confidentiality requirements.

The main findings of our analysis are: i) long chains of dependencies between
services affect the availability of applications in matured production-strength SOA-
landscapes as the SOA-paradigm itself fosters the reuse of services; ii) SOA-
dependencies are hard to uncover for ITSM at runtime as they are hidden in the
SOA-layer itself; iii) the data necessary to identify and analyze them at runtime
may be already existing but is often not available at first as it is spread across differ-
ent heterogeneous applications; iv) to the best of our knowledge, there is no metric
available for ITSM to decide on the criticality of service-relationships based on the
data usually available at runtime. Based on these findings: i) we initiated a special-
ized but extensive end-to-end monitoring of the SOA-application landscape to allow
for dependencies and their usage to be quantified automatically in the future; ii) we
defined a cost-effective criticality-metric based on the available data; iii) we built a
prototypic software tool named FIT-Calculator to allow for automated graph-based
analysis and simulation based on the monitored data.

The availability-’heat map’ of the SOA-landscape as illustrated in Fig. 1 is auto-
matically generated based on the monitoring data currently available to us. It gives
an overview of 31 participating applications and their 69 service-relationships. Each
node represents an application providing and consuming SOA-services. The desired
level of availability for each node x is expressed by the node’s color as well as by
an abbreviation in brackets ([g]old, [s]ilver and [b]ronze). Edges denote service-
relationships between two applications with an edge pointing from the consum-
ing application to the application providing the service (direction of request). Edge
weights refer to the number of requests processed over this dependency within a
given period. Dependencies of consuming SOA-services on providing SOA-services
within an application are modeled as an overlay for each application (not shown).

This visualization allows ITSM to identify hotspots easily. Hotspots, in this con-
text, refer to applications that cause potentially critical relationships by providing
SOA-services to applications with higher levels of availability. In the given exam-
ple, 8 hotspots (A1, A5, A10, A11, A16, A18, A20, A23) cause 11 potentially criti-
cal relationships. On the heat map in Fig. 1, these relationships are marked bold red
with the hotspots being drawn as rectangles.

1 http://www.eclipse.org/eclipsesoa/
2 http://www.eclipse.org/swordfish/

 http://www.eclipse.org/eclipsesoa/
http://www.eclipse.org/swordfish/


FIT for SOA? 5

Fig. 1: Graph representing applications and their direct SOA-relationships.

3 Introducing the F.I.T.-Metric

The criticality of a single hotspot a depends on the criticality of each relationship
between a and the depending applications with higher SLA. To us, the criticality
of a single relationship e(a,x) in general is primarily influenced by: i) the business
relevance Fx of the application x directly depending on a via e(a,x); ii) the impact
of e(a,x) on other applications in the SOA-landscape due to the integration Ia,x of x
(i.e. x serving as a proxy); iii) the actual usage Ta,x of the relationship e(a,x) by the
depending application x.

Fx and Ia,x refer to independent aspects of x’s importance to the system landscape
and the business users. An application’s core function alone can be highly relevant to
business users (e.g. business intelligence systems) while it may be unimportant for
other applications from an integration point of view. In turn, an application serving
mainly as a proxy for other applications can be relatively unimportant to business by
its own. As these two aspects of a relationship are rather static (i.e. an application’s
core functionality is seldom altered completely over short time and dependencies
between applications change only infrequently), they have to be weighted by an
indicator for the actual usage of this relationship.

Therefore, we define the criticality eFITe(a,x) of the relationship e(a,x) as the
sum of Fx and Ia,x, weighted by Ta,x in Eq. (1).

eFITe(a,x) = (Fx + Ia,x) ·Ta,x (1)



6 Frischbier et al.

In turn, the sum of these relationship-criticalities for all relationships to a defines
the criticality FITa of hotspot a as defined in Eq. (2).

FITa = ∑
∀e(a,x)

eFITe(a,x) (2)

In this setting, uncritical relationships and applications have a FIT-score of 0
while critical hotspots are ranked ascending by their criticality with FIT-scores > 0.

3.1 Component I: Functionality

Functionality refers to quantifying an application’s relevance to business. As the
business impact of IT systems is hard to determine and even harder to quantify from
the IT point of view [38], these categorizations are often based on subjective expert
knowledge and individual perception. Although this makes an unbiased compari-
son between applications difficult, we suggest reusing already existing information
as an approximation. For example, we turn to data regarding business continuity
management (BCM). In this context, applications have to be categorized accord-
ing to their recovery time objective (RTO) in case of disaster [7]. The RTO-class
RTOCx = 1, . . . ,n increases with the duration allowed for x to be unavailable. The
economic RTOCx (econRTOCx) is the RTOC the users are willing to pay and is
inversely proportional to the quality level of the SLA. Therefore we define the as-
sumed business relevance Fx of application x as:

Fx =
1

econRTOCx
(3)

3.2 Component II: Integration

Integration quantifies the impact of an inoperative application on all other applica-
tions based on dependencies between SOA-services. Information about these de-
pendencies can be drawn at runtime from workflow-documentation (e.g. BPEL-
workflows or service descriptions) or service monitoring.

We define the dependency tree DTa for each application a as the first step. The
tree’s root node is the initial application a itself. All direct consumers tSC1,1, . . . ,
tSC1,m of this application’s services are added as the root’s children. On the fol-
lowing levels i = 2, . . . ,h only applications that are indirectly dependent on services
provided by a are added as tSCi,1, . . . , tSCi,n. Thus, DTa is not identical to the simple
graph of a’s predecessors in Fig. 1 as the nodes on level i depend on the internal
dependencies inside applications (services depending on services).

Figures 2a- 2f show the dependency trees for the applications A1, A2, A5, A13,
A18 and A20 based on the relationship graph shown in Fig. 1 and the overlay mod-



FIT for SOA? 7

eling internal dependencies of services inside applications. Edge weights denote the
number of requests processed over a service-dependency alone as well as bold red
edges representing possibly critical relationships. Here, edges point from service
provider to service consumer (direction of response).

The weighted dependency tree wDT x
a quantifies the direct and indirect dependen-

cies on a over e(a,x) by weighting the sub-tree of DTa with application x as root.
For DTA2 (cf. Fig.2d), the corresponding wDT A7

A2 would consist of A7 (root), A26,
A25, A6, A24, A5 and A11.

Deep dependency trees containing long chains of indirect dependencies have a
far-reaching impact on the landscape once the root node breaks down. They have to
be emphasized as they are far less obvious to ITSM than a huge number of direct
dependencies on an application. Therefore, wDT x

a takes into account the assumed
business relevance of each node tSCi, j in DTa as well as the length of the dependency
chain to tSCi, j. The occurrence of each node tSCi, j is weighted with its functionality
FtSCi, j and its level of occurrence in the dependency tree. We define the integration
of x as depending on a as:

Ia,x = wDT x
a =

h

∑
i=2

i ·
m

∑
j=1

FtSCi, j (4)

(a) DTA1 (b) DTA5 (c) DTA18

(d) DTA2 (e) DTA13 (f) DTA20

Fig. 2: Dependency trees DT of selected nodes (c.f. Fig. 1).



8 Frischbier et al.

3.3 Component III: Traffic

Traffic quantifies the real usage of a given relationship between two applications a
and x. As both Fx and Ia,x refer to the worst-case impact of a breaking down, we need
to balance this with an approximation for the current utilization of the relationship
Ta,x. In order to get such an approximation from the data available to us, we relate
the number of requests by x to a over a given critical edge e(x,a) to the total number
of requests by x:

T(a,x) =
cREQe(x,a)

∑∀e(x,i) REQe(x,i)
(5)

4 Case Study: Applying FIT to a Real Application Landscape

We test our approach with data taken from the SOA environment presented in
Sect. 2. We discuss the criticality of the initial 8 hotspots identified on the heat map
in Fig. 1 (rectangular nodes). We simulate two alternative SLA-structures (scenario
1 and scenario 2) aimed at eliminating the two most critical hotspots and discuss the
effects. The FIT-scores of the 8 initial hotspots are listed in Table 1 in descending
order. The detailed values to retrace how the initial FIT-scores for A1, A5, A18 and
A20 were obtained are also shown in Table 1. We discuss selected applications.

A18 (silver) is deemed the most critical hotspot as it causes a relationship with
criticality eFITe(A18,A19) = 3 to A19 (gold). As can be seen in Fig. 2c and Table 1,
the link e(A18,A19) carries 100% of the requests of service that A19 makes to A18.
In contrast only 0.00008% or 953/11,332,472 requests of service of A2 on A18
occur along e(A18,A2). Therefore, even though both A19 and A2 have SLA gold
and depend on A18 with SLA silver, only e(A18,A19) is critical and will require
adjustment of the SLA of A18 or A19.

A1 (bronze) is ranked the second critical hotspot mainly because two of its three
critical relationships to applications with higher SLAs are in heavy use (cf. Fig. 2a).
A10 (silver) relies fully (100%) on A1 while A0 (gold) processes 10% of its total
traffic over the critical relationship e(A1,A0). As the most impacted application has
only SLA silver, this relationship is ranked lower than the relationship e(A18,A19)
discussed before where A19 has gold level.

A20 (bronze) is ranked relatively uncritical in spite of the large body of important
applications depending indirectly on it (c.f. Fig. 2f). This is mainly due to the low
usage of its relationship to A2, accounting for only 0.1% of the total traffic produced
by A2. Nevertheless, the heavy dependency tree of A2 weights this relationship
e(A20,A2) more critical than the relationship e(A18,A2) as discussed earlier.

A5 (bronze) is ranked with criticality 0, putting it on the same level as an uncrit-
ical configuration (e.g. application A2, c.f. Fig. 2d and Table 1). Although there is
a potentially critical relationship to an application with high availability, there is no
traffic across this relationship within the measured period (c.f. Fig. 2b). Therefore,



FIT for SOA? 9

Initial Scenario 1 Scenario 2 FIT-score components for A1, A2, A18, A20
h FITh h FITh h FITh a x eFITe(a,x) Fx Ia,x Ta,x cREQe(x,a) ∑REQe(x,y)
A18 3 A18 0 A18 0 A1 A0 0.307 3 0 0.102 42,931 420,028
A1 2.307 A1 2.307 A1 0 A1 A8 0 1 0 0 0 0
A10 0.118 A10 0.118 A13 18.083 A1 A10 2 2 0 1 224,637 224,637
A23 0.063 A23 0.063 A23 0.06 A1 A13 0 3 0 0 0 0
A20 0.027 A20 0.027 A20 0.026 A1 A27 0 1 0 0 0 31,739
A11 0.021 A11 0.021 A11 0.02 A2 A0 0 3 0 0 0 420,028
A16 0.005 A16 0.005 A16 0.005 A2 A7 0 3 19 0 0 346,735
A5 0 A5 0 A5 0 A2 A21 0 3 0 0 0 583,490

A18 A2 0 3 0 0 953 11,332,472
A18 A17 0 1 0 0 0 3,456,770
A18 A19 3 3 0 1 75,726 75,726
A20 A2 0.027 3 40 0.001 7,075 11,332,472

Table 1: FIT-scores for hotspots h and component values for selected applications.

the importance of this relationship can be discarded as it seems to be unlikely that
the relationship should be used exactly in the time of a downtime of A5. In addi-
tion, no other applications are indirectly depending on A5 over this relationship.
Therefore, A5 can be assumed to be non-critical.

In scenario 1 we now try to cost-effectively eliminate the hotspots top-down. We
start with A18 by lowering the depending application A19’s SLA to silver. Simu-
lating the resulting SLA-structure shows that A18’s criticality drops to 0 with no
further negative impact on the surrounding applications. Based on this setting, we
try to also eliminate hotspot A1 in scenario 2 by leveling the SLAs of A0, A1, A10
and A13 to silver. Nevertheless, simulating this structure shows that A13 becomes
a new hotspot with criticality FITA13 = 18, beating A1 in its criticality. Therefore
leveling all four applications should be discarded for being ineffective and other
structures have to be simulated instead.

The examples discussed here in detail show the importance of assessing the po-
tential hotspots identified on the heat map in Fig.1. Especially to balance static infor-
mation (i.e. business-criticality of applications and their relationships) with factual
usage is crucial to focus on the really critical hotspots. Simulating different struc-
tures based on this approach aids ITSM optimizing the availability of service-based
application landscapes.

5 Related Work

Related work published over the past years deals with several types of metrics for
SOA. To categorize these contributions we mapped them to the phases of the ap-
plication management lifecycle: requirements specification, design, build, deploy,
operate and optimize [7]. Most of the reviewed work deals with aspects and metrics
to support the first four phases based on design-time data: Metrics to measure busi-



10 Frischbier et al.

ness alignment of SOA implementations [1, 30], procedures to model [6, 16] and
implement SOA [3], including the prediction of development effort and implemen-
tation complexity early in the design phase [37]. Metrics to measure granularity,
complexity and reuse [15, 35, 36], performance [5, 13] and QoS [28, 31] of SOA-
based services also rely on design-time data. Most work on operation and optimiza-
tion has been done on how to handle service level agreements primarily based on
design-time data: how to formally describe them [19, 34, 39, 40], technically im-
plement, test and enforce them [4, 10, 15, 17, 18, 23, 25, 26, 32, 33, 42, 44, 45] or
how to monitor them [2, 20, 21]. Contributions available on SLA design deal with
isolated approaches: Sauvé et al. [38] and Marques et al. [27] are in favor of deriv-
ing the service level targets directly from the business impact of the given service
(i.e. taking into account the risk of causing revenue loss on the business layer). Li et
al. [24] and Smit et al. [41] focus on infrastructure aspects of specific applications.

Most of these contributions require customized frameworks or rely massively on
design-time data and services being designed as glass-boxes. None of these contri-
butions propose a solution how to characterize the criticality of an existing service
configuration in historically grown heterogeneous application landscapes based on
runtime data provided by end-to-end monitoring. Nevertheless, this is crucial for
ITSM to decide on changes in the SLA-structure cost-effectively.

6 Conclusion and Outlook

SOA reduces the complexity of system integration. However, it increases the prob-
lems of governance and availability management on the infrastructure level because
of hidden dependencies among services. As services are transparently reused, appli-
cations with higher SLAs can become dependent on applications with lower SLAs,
thus creating hotspots in the SLA structure. To guarantee overall cost-effective avail-
ability in such a setting, ITSM has to identify these hotspots and decide on their
criticality.

In this paper, we proposed the FIT-metric based on the three components: func-
tion, integration and traffic. Our metric allows ranking hotspots and their relation-
ships according to their criticality for ITSM. Based on this ranking, different alterna-
tive SLA-structures and their impact can be simulated. Therefore, the contributions
of this paper are threefold: i) we showed the need for a criticality metric in a histori-
cally grown production-strength SOA-landscape; ii) we presented the cost-effective
FIT-metric to rank hotspots and their relationships according to their criticality for
ITSM to optimize SLA levels; iii) we demonstrated our approach by applying it to
actual service configurations.

We are about to conclude the implementation of our prototype at Deutsche Post
MAIL. This includes finishing the rollout of our service monitoring and reporting
to allow for more extensive analysis in the future (e.g. include data about laten-
cies in FIT). As part of our future work we want to apply our findings to other
loosely coupled systems such as event-based systems (EBS). Today, SOA is mostly



FIT for SOA? 11

used intra-organizationally to implement given workflows within a single organiza-
tion. Thus, critical knowledge about participants, their interdependencies and cor-
responding business impact are available in principle. Tomorrow’s systems tend to
become even more federated, distributed and loosely coupled. In those service-based
inter-organizational systems availability management is even more difficult.

Acknowledgements We would like to thank Irene Buchmann, Jacqueline Pranke, Achim Stegmeier,
Alexander Nachtigall and the two anonymous reviewers for their valuable input and discussions
on this work. Part of this work is funded by German Federal Ministry of Education and Research
(BMBF) under research grants ADiWa (01IA08006) and Software-Cluster project EMERGENT
(01IC10S01), and by Deutsche Post MAIL. The authors assume responsibility for the content.

References

1. Aier, S., Ahrens, M., Stutz, M., Bub, U.: Deriving SOA evaluation metrics in an enterprise
architecture context. In: ICSOC 2007 Workshops, pp. 224–233 (2009)

2. Ameller, D., Franch, X.: Service level agreement monitor (SALMon). In: ICCBSS 2008, pp.
224–227 (2008)

3. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, K.: SOMA: a method
for developing service-oriented solutions. IBM Systems Journal 47(3), 377–396 (2010)

4. Bause, F., Buchholz, P., Kriege, J., Vastag, S.: Simulation based validation of quantitative
requirements in service oriented architectures. In: WSC 2009, pp. 1015–1026 (2009)

5. Brebner, P.C.: Performance modeling for service oriented architectures. In: ICSE Companion
’08, pp. 953–954 (2008)

6. Broy, M., Leuxner, C., Fernndez, D.M., Heinemann, L., Spanfelner, B., Mai, W., Schlör,
R.: Towards a Formal Engineering Approach for SOA. Techreport, Technische Universität
München (2010). Available online at http://www4.informatik.tu-muenchen.
de/publ/papers/TUM-I1024.pdf. Accessed on 21.06.2011.

7. Cannon, D.: ITIL Service Operation: Office of Government Commerce. The Stationery Office
Ltd (2007)

8. Deutsche Post DHL: Deutsche Post CEO Frank Appel presents Strategy 2015.
http://www.dp-dhl.com/en/investors/investor_news/news/2009/
dpwn_strategie_2015.html (2010). Accessed on 18.03.2011.

9. Deutsche Post DHL: MAIL Division. http://www.dp-dhl.com/en/about_us/
corporate_divisions/mail.html (2011). Accessed on 18.03.2011.

10. Di Modica, G., Regalbuto, V., Tomarchio, O., Vita, L.: Dynamic re-negotiations of SLA in
service composition scenarios. In: EUROMICRO 2007, pp. 359–366 (2007)

11. Eckes, G.: Six SIGMA for Everyone, 1 edn. Wiley & Sons (2003)
12. Frischbier, S., Petrov, I.: Aspects of data-intensive cloud computing. In: From Active Data

Management to Event-Based Systems and More, pp. 57–77. Springer (2010)
13. Her, J.S., Choi, S.W., Oh, S.H., Kim, S.D.: A framework for measuring performance in

Service-Oriented architecture. In: NWeSP’07, pp. 55–60 (2007)
14. Herr, M., Bath, U., Koschel, A.: Implementation of a service oriented architecture at deutsche

post MAIL. Web Services pp. 227–238 (2004)
15. Hirzalla, M., Cleland-Huang, J., Arsanjani, A.: A metrics suite for evaluating flexibility and

complexity in service oriented architectures. In: ICSOC 2008, pp. 41–52 (2009)
16. Hofmeister, H., Wirtz, G.: Supporting Service-Oriented design with metrics. In: EDOC 2008,

pp. 191–200 (2008)
17. Hsu, C., Liao, Y., Kuo, C.: Disassembling SLAs for follow-up processes in an SOA system.

In: ICCIT 2008, pp. 37–42 (2008)

http://www4.informatik.tu-muenchen.de/publ/papers/TUM-I1024.pdf
http://www4.informatik.tu-muenchen.de/publ/papers/TUM-I1024.pdf
http://www.dp-dhl.com/en/investors/investor_news/news/2009/dpwn_strategie_2015.html
http://www.dp-dhl.com/en/investors/investor_news/news/2009/dpwn_strategie_2015.html
http://www.dp-dhl.com/en/about_us/corporate_divisions/mail.html
http://www.dp-dhl.com/en/about_us/corporate_divisions/mail.html


12 Frischbier et al.

18. Kotsokalis, C., Winkler, U.: Translation of service level agreements: A generic problem defi-
nition. In: ICSOC/ServiceWave 2009, pp. 248–257. Springer (2010)

19. Kotsokalis, C., Yahyapour, R., Gonzalez, M.R.: Modeling service level agreements with bi-
nary decision diagrams. Service-Oriented Computing pp. 190–204 (2009)

20. Kunz, M., Schmietendorf, A., Dumke, R., Rud, D.: SOA-capability of software measurement
tools. ENSUR A p. 216 (2006)

21. Kunz, M., Schmietendorf, A., Dumke, R., Wille, C.: Towards a service-oriented measurement
infrastructure. In: SMEF 2006, pp. 10–12 (2006)

22. Kütz, M.: Kennzahlen in der IT. Werkzeuge für Controlling und Management, 2nd edn.
Dpunkt Verlag (2007)

23. Lam, T., Minsky, N.: Enforcement of server commitments and system global constraints in
SOA-based systems. In: APSCC 2009, pp. 126–133 (2009)

24. Li, H., Casale, G., Ellahi, T.: SLA-driven planning and optimization of enterprise applications.
In: WOSP/SIPEW ’10, pp. 117–128 (2010)

25. Liu, L., Schmeck, H.: Enabling Self-Organising service level management with automated
negotiation. In: IEEE/WIC/ACM 2010, pp. 42–45 (2010)

26. Liu, L., Zhou, W.: A novel SOA-Oriented federate SLA management architecture. In: IEEC
2009, pp. 630–634 (2009)

27. Marques, F., Sauvé, J., Moura, A.: Service level agreement design and service provisioning
for outsourced services. In: LANOMS 2007, pp. 106–113 (2007)

28. Mayerl, C., Huner, K.M., Gaspar, J., Momm, C., Abeck, S.: Definition of metric dependencies
for monitoring the impact of quality of services on quality of processes. In: IEEE/IFIP 2007,
pp. 1–10 (2007). DOI 10.1109/BDIM.2007.375006

29. McGovern, J., Sims, O., Jain, A.: Enterprise service oriented architectures: concepts, chal-
lenges, recommendations. Kluwer Academic Pub (2006)

30. O’Brien, L., Brebner, P., Gray, J.: Business transformation to SOA. In: SDSOA ’08, pp. 35–40
(2008)

31. O’Brien, L., Merson, P., Bass, L.: Quality attributes for service-oriented architectures (2007)
32. Palacios, M., Garcia-Fanjul, J., Tuya, J., de la Riva, C.: A proactive approach to test service

level agreements. In: ICSEA 2010, pp. 453–458 (2010)
33. Parejo, J.A., Fernandez, P., Ruiz-Corts, A., Garca, J.M.: SLAWs: towards a conceptual archi-

tecture for SLA enforcement. In: SERVICES-1 2008, pp. 322–328 (2008)
34. Raibulet, C., Massarelli, M.: Managing non-functional aspects in SOA through SLA. In:

DEXA 2008, pp. 701–705 (2008)
35. Rud, D., Schmietendorf, A., Dumke, R.: Product metrics for service-oriented infrastructures.

In proceedings of IWSM/MetriKon 2006 pp. 161–174 (2006)
36. Rud, D., Schmietendorf, A., Dumke, R.: Resource metrics for service-oriented infrastructures.

SEMSOA 2007 pp. 90–98 (2007)
37. Salman, N., Dogru, A.: Complexity and development effort prediction models using compo-

nent oriented metrics. ENSUR A (2006)
38. Sauvé, J., Marques, F., Moura, A., Sampaio, M., Jornada, J., Radziuk, E.: SLA design from a

business perspective. DSOM 2005 pp. 73–84 (2005)
39. Schulz, F.: Towards measuring the degree of fulfillment of service level agreements. In: ICIC

2010, pp. 273–276 (2010)
40. Skene, J., Lamanna, D.D., Emmerich, W.: Precise service level agreements. In: ICSE 2004,

pp. 179–188 (2004)
41. Smit, M., Nisbet, A., Stroulia, E., Edgar, A., Iszlai, G., Litoiu, M.: Capacity planning for

service-oriented architectures. In: CASCON 2008, pp. 144–156 (2008)
42. Strunk, A.: An algorithm to predict the QoS-Reliability of service compositions. In: SER-

VICES 2010, pp. 205–212 (2010)
43. Taylor, R., Tofts, C.: Death by a thousand SLAs: a short study of commercial suicide pacts.

Hewlett-Packard Labs (2005)
44. Thanheiser, S., Liu, L., Schmeck, H.: SimSOA: an approach for agent-based simulation and

design-time assessment of SOC-based IT systems. In: SAC 2009, pp. 2162–2169 (2009)
45. Theilmann, W., Winkler, U., Happe, J., de Abril, I.: Managing On-Demand business applica-

tions with hierarchical service level agreements. In: FIS 2010, p. 97 (2010)


	FIT for SOA? Introducing the F.I.T.-Metric to Optimize the Availability of Service Oriented Architectures
	Sebastian Frischbier, Alejandro Buchmann, Dieter Pütz
	Introduction
	A Production-Strength SOA Environment
	Introducing the F.I.T.-Metric
	Component I: Functionality
	Component II: Integration
	Component III: Traffic

	Case Study: Applying FIT to a Real Application Landscape
	Related Work
	Conclusion and Outlook
	References



