
A Topological Study of Chaotic Iterations
Application to Hash Functions

Christophe Guyeux Jacques M. Bahi

September 3, 2018

Abstract

Chaotic iterations, a tool formerly used in distributed computing, has recently
revealed various interesting properties of disorder leading to its use in the com-
puter science security field. In this paper, a comprehensive study of its topological
behavior is proposed. It is stated that, in addition to being chaotic as defined in
the Devaney’s formulation, this tool possesses the property of topological mixing.
Additionally, its level of sensibility, expansivity, and topological entropy are eval-
uated. All of these properties lead to a complete unpredictable behavior for the
chaotic iterations. As it only manipulates binary digits or integers, we show that
it is possible to use it to produce truly chaotic computer programs. As an appli-
cation example, a truly chaotic hash function is proposed in two versions. In the
second version, an artificial neural network is used, which can be stated as chaotic
according to Devaney.

1 INTRODUCTION
Chaotic iterations (CIs) were formerly a way to formalize distributed algorithms
through mathematical tools [9]. By using these CIs, it was thus possible to study
the convergence of synchronous or asynchronous programs over parallel, distributed,
P2P, grid, or GPU platforms, in a view to solve linear and non-linear systems. We
have proven at the IEEE World Congress on Computational Intelligence (WCCI’10)
that CIs can behave chaotically, as it is defined by Devaney [5]. These proofs have
been improved and more detailed in [4]. In this paper, which is an extension of
[5, 4], we notably enlarge the theoretical study of CIs, among other things by com-
puting its topological entropy, to obtain a comprehensive evaluation of its topolog-
ical behavior. This study leads us to the conclusion that the chaos of CIs is very
intense and constitutes a useful tool to be used in the computer science security
field.

Chaos in information security fields as digital watermarking [10, 11], hash
functions [24, 26], or pseudo-random number generators, is often disputed. This
is due to the fact that this use is almost always based on the conception of algo-
rithms that only include “somewhere” some well-known chaotic real functions like
logistic, tent, or Arnold’s cat maps, to obtain a program supposed to express these
chaotic properties [14, 25, 22]. However, using such functions with other “obvi-
ous” parameters does not guarantee that the whole algorithm still remains chaotic.

1

ar
X

iv
:1

60
8.

05
92

0v
1

 [
nl

in
.C

D
]

 2
1

A
ug

 2
01

6

Such an assumption should at least be discussed. Moreover, even if the algorithm
obtained by the inclusion of chaotic maps is itself proven to be chaotic, its imple-
mentation on a machine can lead to the fact that this chaotic nature is lost. This is
due to the finite cardinality of the machine numbers set.

In this paper, as in [5, 4], we do not simply integrate chaotic maps into algo-
rithms hoping that the result remains chaotic. We conceive algorithms for com-
puter security that we have mathematically proven to be chaotic, as it is defined
in the Devaney’s theory. We raise the question of their implementation, proving
in doing so that it is possible to design both a chaotic algorithm and its associated
chaotic computer program. The chaos theory we consider is taken from the math-
ematical topology. It encompasses the well-known Devaney’s definition of chaos
and the notions of expansivity, topological entropy, and topological mixing. These
notions of unpredictability are the most established ones into the mathematical the-
ory of chaos. Our fundamental study is motivated by the desire to produce chaotic
programs in the area of information security.

The paper begins by introducing the theoretical foundation of this approach.
On the one hand we recall the definition of Devaney’s topological chaos and on the
other hand the definition of discrete chaotic iterations. Although these definitions
are distinct from each other, we establish a link between them by giving conditions
under which chaotic discrete iterations generate a Devaney’s topological chaos.
This study is deepened by giving some qualitative and quantitative evaluations of
the disorder generated by chaotic iterations. These evaluations are not present
in [4, 5]. We will focus in this paper on the notions of expansivity, topological
mixing, and topological entropy. The proofs that the considered space is separated
and compact have never been published before. Furthermore, the evaluation of the
topological entropy is completely new. Then, because chaotic iterations are very
suited for computer programming, this link allows us to generate programs in the
computer science field that behave chaotically. This link was formerly presented
in [5, 4] with some errors that are corrected here.

After having studied the theoretical aspects of our approach we focus on the
practical ones. The important question is how to preserve the topological chaos
properties in a set of a finite number of states. This question is answered in Sec-
tion 5, by manipulating only integers and considering the use of new data at each
iteration. The general algorithm based on our approach, formerly presented in [5],
is now explained in detail in Section 6. It is rewritten in the next section as an
artificial neural network that can compute hash values while behaving chaotically.
This new application is completely new and has never been published before.

The remainder of this paper is organized in the following way. In Section 2,
the definitions of Devaney’s chaos and discrete chaotic iterations are recalled. A
link between these two notions is established and sufficient conditions to obtain
Devaney’s topological chaos from discrete chaotic iterations are given in Section
3. The chaotic behavior of CIs is deepened in Section 4, by studying some qual-
itative and quantitative properties of disorder. In Section 5, the question on how
to preserve these chaotic properties into computers is answered. Then in Section
6 the general hash function scheme is given and illustrated, whereas in Section 7
it is applied to produce an artificial neural network able to hash some values in a
chaotic manner. The paper ends by a conclusion section in which our contribution
is summarized and planned future work is discussed.

2

2 BASIC RECALLS
This section is devoted to basic definitions and terminologies in the field of topo-
logical chaos and in the one of chaotic iterations.

2.1 Devaney’s chaotic dynamical systems
In the sequel Sn denotes the nth term of a sequence S and Vi denotes the ith com-
ponent of a vector V . f k = f ◦ ...◦ f denotes the kth composition of a function f .
Finally, the following notation is used: ~1;N�= {1,2, . . . ,N}.

Consider a topological space (X ,τ) and a continuous function f : X →X .

Definition 1 f is said to be topologically transitive if, for any pair of open sets
U,V ⊂X , there exists k > 0 such that f k(U)∩V , ∅.

Definition 2 An element x is a periodic point for f of period n ∈N∗ if f n(x) = x.

Definition 3 f is said to be regular on (X ,τ) if the set of periodic points for f
is dense in X : for any point x in X , any neighborhood of x contains at least one
periodic point (without necessarily the same period).

Definition 4 f is said to be chaotic on (X ,τ) if f is regular and topologically
transitive.

The chaos property is strongly linked to the notion of “sensitivity”, defined on
a metric space (X ,d) by:

Definition 5 f has sensitive dependence on initial conditions if there exists δ > 0
such that, for any x ∈X and any neighborhood V of x, there exist y ∈V and n > 0
such that d (f n(x), f n(y))> δ .

δ is called the constant of sensitivity of f .

Indeed, Banks et al. have proven in [7] that when f is chaotic and (X ,d) is a
metric space, then f has the property of sensitive dependence on initial conditions
(this property was formerly an element of the definition of chaos). To sum up,
quoting Devaney in [13], a chaotic dynamical system “is unpredictable because of
the sensitive dependence on initial conditions. It cannot be broken down or simpli-
fied into two subsystems which do not interact because of topological transitivity.
And in the midst of this random behavior, we nevertheless have an element of reg-
ularity”. Fundamentally different behaviors are consequently possible and occur
in an unpredictable way.

2.2 Chaotic iterations
Let us consider a system with a finite number N∈N∗ of elements (or cells), so that
each cell has a Boolean state. Having N Boolean values for these cells leads to the
definition of a particular state of the system. A sequence which elements belong to
~1;N� is called a strategy. The set of all strategies is denoted by S.

Definition 6 The setB denoting {0,1}, let f :BN −→BN be a function and S∈ S
be a strategy. The so-called chaotic iterations are defined by x0 ∈BN and

∀n ∈N∗,∀i ∈ ~1;N�,xn
i =

{
xn−1

i if Sn , i(
f (xn−1)

)
Sn if Sn = i.

3

In other words, at the nth iteration, only the Sn−th cell is “iterated”. Note that
in a more general formulation, Sn can be a subset of components and

(
f (xn−1)

)
Sn

can be replaced by
(

f (xk)
)

Sn , where k < n, describing for example, delays trans-
mission [20, 15]. Finally, let us remark that the term “chaotic”, in the name of
these iterations, has a priori no link with the mathematical theory of chaos, re-
called above.

3 CHAOTIC ITERATIONS AS DEVANEY’S
CHAOS
In this section is proven that chaotic iterations are a particular case of topological
chaos, as it is defined in the Devaney’s formulation’.

3.1 The new topological space
In this section we define a suitable metric space where chaotic iterations are con-
tinuous.

3.1.1 Defining the iteration function and the phase space

Let δ be the discrete Boolean metric, δ (x,y) = 0⇔ x = y. Given a function f ,
define the function:

Ff : ~1;N�×BN −→ BN

(k,E) 7−→
(

E j.δ (k, j)+ f (E)k.δ (k, j)
)

j∈~1;N�
,

where + and . are the Boolean addition and product operations. Consider the phase
space:

X = ~1;N�N×BN,

and the map defined on X :

G f (S,E) =
(
σ(S),Ff (i(S),E)

)
, (1)

where σ is the shift function defined by σ(Sn)n∈N ∈ S −→ (Sn+1)n∈N ∈ S and i
is the initial function i : (Sn)n∈N ∈ S −→ S0 ∈ ~1;N�. Then the chaotic iterations
defined in (2.2) can be described by the following iterations:{

X0 ∈X
Xk+1 = G f (Xk).

With this formulation, a shift function appears as a component of chaotic itera-
tions. The shift function is a famous example of a chaotic map [13] but its presence
is not sufficient enough to claim G f as chaotic. In the rest of this section we rig-
orously prove that under some hypotheses, chaotic iterations generate topological
chaos. Furthermore, due to the suitability of chaotic iterations for computer pro-
gramming [3, 23, 2] we also have proven that this is true in the computer science
field.

4

3.1.2 Cardinality of X

By comparing S andR, we have the following result.

Theorem 1 The phase space X has, at least, the cardinality of the continuum.

PROOF Let ϕ be the map which transforms a strategy into the binary representa-
tion of an element in [0,1[, as follows. If the nth term of the strategy is 0, then the
nth associated digit is 0. If this nth term is not equal to 0, then the associated digit
is 1. With this construction, ϕ : ~1;N�N −→ [0,1] is onto. But]0,1[is isomorphic
to R (x ∈]0,1[7→ tan(π(x− 1

2)) is an isomorphism), so the cardinality of ~1;N�N

is greater or equal to the cardinality ofR. As a consequence, the cardinality of the
Cartesian product X = ~1;N�N×BN is greater or equal to the cardinality ofR.

Remark 1 This result is independent from the number of components of the sys-
tem.

3.1.3 A new distance

Let us define a new distance between two points X = (S,E),Y = (Š, Ě) ∈X by

d(X ,Y) = de(E, Ě)+ds(S, Š),

where
de(E, Ě) =

N

∑
k=1

δ (Ek, Ěk),

ds(S, Š) =
9
N

∞

∑
k=1

|Sk− Šk|
10k .

This new distance has been introduced in [5] to satisfy the following require-
ments.

• When the number of different cells between two systems is increasing, then
their distance should increase too.

• In addition, if two systems present the same cells and their respective strate-
gies start with the same terms, then the distance between these two points
must be small because the evolution of the two systems will be the same
for a while. Indeed, the two dynamical systems start with the same initial
condition, use the same update function, and as strategies are the same for a
while, then components that are updated are the same too.

The distance presented above follows these recommendations. Indeed, if the floor
value bd(X ,Y)c is equal to n, then the systems E, Ě differ in n cells. In addition,
d(X ,Y)−bd(X ,Y)c is a measure of the differences between strategies S and Š.
More precisely, this floating part is less than 10−k if and only if the first k terms
of the two strategies are equal. Moreover, if the kth digit is nonzero, then the kth

terms of the two strategies are different.

3.1.4 Continuity of the iteration function

To prove that chaotic iterations are an example of topological chaos in the sense of
Devaney [13], G f must be continuous in the metric space (X ,d).

Theorem 2 G f is a continuous function.

5

PROOF We use the sequential continuity. Let (Sn,En)n∈N be a sequence of the
phase space X , which converges to (S,E). We will prove that

(
G f (Sn,En)

)
n∈N

converges to
(
G f (S,E)

)
. Let us recall that for all n, Sn is a strategy, thus, we con-

sider a sequence of strategies (i.e., a sequence of sequences).
As d((Sn,En);(S,E)) converges to 0, each distance de(En,E) and ds(Sn,S) con-
verges to 0. But de(En,E) is an integer, so ∃n0 ∈N, de(En,E) = 0 for any n > n0.
In other words, there exists a threshold n0 ∈N after which no cell will change its
state: ∃n0 ∈N,n > n0⇒ En = E.

In addition, ds(Sn,S)−→ 0, so ∃n1 ∈N,ds(Sn,S)< 10−1 for all indexes greater
than or equal to n1. This means that for n > n1, all the Sn have the same first term,
which is S0: ∀n > n1,Sn

0 = S0.

Thus, after the max(n0,n1)
th term, states of En and E are identical and strate-

gies Sn and S start with the same first term.
Consequently, states of G f (Sn,En) and G f (S,E) are equal, so, after the max(n0,n1)

th

term, the distance d between these two points is strictly less than 1.
We now prove that the distance between

(
G f (Sn,En)

)
and

(
G f (S,E)

)
is conver-

gent to 0. Let ε > 0.

• If ε > 1, we see that distance between
(
G f (Sn,En)

)
and

(
G f (S,E)

)
is strictly

less than 1 after the max(n0,n1)
th term (same state).

• If ε < 1, then ∃k ∈N,10−k > ε > 10−(k+1). But ds(Sn,S) converges to 0, so

∃n2 ∈N,∀n > n2,ds(Sn,S)< 10−(k+2),

thus after n2, the k+2 first terms of Sn and S are equal.

As a consequence, the k+1 first entries of the strategies of G f (Sn,En) and G f (S,E)
are the same (G f is a shift of strategies) and due to the definition of ds, the floating
part of the distance between (Sn,En) and (S,E) is strictly less than 10−(k+1) 6 ε .

In conclusion,

∀ε > 0,∃N0 = max(n0,n1,n2) ∈N,∀n > N0,d
(
G f (Sn,En);G f (S,E)

)
6 ε.

G f is consequently continuous.

In this section, we proved that chaotic iterations can be modeled as a dynamical
system in a topological space. In the next section, we show that some chaotic
iterations behave chaotically, as defined by Devaney’s theory.

3.2 Discrete chaotic iterations as topological chaos
To prove that we are in the framework of Devaney’s topological chaos, we have
to find a Boolean function f such that G f satisfies the regularity, transitivity, and
sensitivity conditions. We will prove that the vectorial logical negation

f0(x1, . . . ,xN) = (x1, . . . ,xN) (2)

is a suitable function.

6

3.2.1 Regularity

Firstly, let us prove that,

Theorem 3 Periodic points of G f0 are dense in X .

PROOF Let (Š, Ě) ∈X and ε > 0. We are looking for a periodic point (S̃, Ẽ)
satisfying d((Š, Ě);(S̃, Ẽ))< ε . As ε can be strictly lesser than 1, we must choose
Ẽ = Ě. Let us define k0(ε) = blog10(ε)c+1 and consider the set

SŠ,k0(ε)
=
{

S ∈ S/Sk = Šk,∀k 6 k0(ε)
}
.

Then, ∀S ∈SŠ,k0(ε)
,d((S, Ě);(Š, Ě)) < ε . It remains to choose S̃ ∈SŠ,k0(ε)

such

that (S̃, Ẽ) = (S̃, Ě) is a periodic point for G f0 . Let

J =
{

i ∈ {1, ...,N}/Ei , Ěi, where (S,E) = Gk0
f0
(Š, Ě)

}
,

i0 = card(J), and j1 < j2 < ... < ji0 the elements of J . Then, S̃ ∈ SŠ,k0(ε)

defined by

• S̃k = Šk, if k 6 k0(ε),
• S̃k = jk−k0(ε), if k ∈ {k0(ε)+1,k0(ε)+2, ...,k0(ε)+ i0},

• and S̃k = S̃ j , where j 6 k0(ε)+ i0 is satisfying j ≡ k (mod k0(ε)+ i0), if
k > k0(ε)+ i0,

is such that (S̃, Ẽ) is a periodic point (of period k0(ε)+ i0), which is ε−close to
(Š, Ě).
As a conclusion, (X ,G f0) is regular.

3.2.2 Transitivity

Regarding the transitivity property of G f0 , we can show that,

Theorem 4 (X ,G f0) is topologically transitive.

PROOF Let us define E : X → BN, such that E (S,E) = E. Let BA = B(XA,rA)
and BB = B(XB,rB) be two open balls of X , with XA = (SA,EA) and XB =
(SB,EB). We are looking for X̃ = (S̃, Ẽ) in BA such that ∃n0 ∈ N,Gn0

f0
(X̃) ∈BB.

X̃ must be in BA and rA can be strictly lesser than 1, so Ẽ = EA. Let k0 =
blog10(rA)+1c. Then ∀S ∈ S, if Sk = Sk

A,∀k 6 k0, then (S, Ẽ) ∈BA. Let (Š, Ě) be
equal to Gk0

f0
(SA,EA) and c1, ...,ck1 denote the elements of the set {i ∈ ~1,N�/Ěi ,

E (XB)i}. So any point X of the set

{(S,EA) ∈X /∀k 6 k0,Sk = Sk
A and ∀k ∈ ~1,k1�,Sk0+k = ck}

is satisfying X ∈ BA and E
(

Gk0+k1
f0

(X)
)

= EB. Lastly, let k2 be

blog10(rB)c+1. Then X̃ = (S̃, Ẽ) ∈X defined by:

1. X̃ = EA,
2. ∀k 6 k0, S̃k = Sk

A,

3. ∀k ∈ ~1,k1�, S̃k0+k = ck,
4. ∀k ∈ N∗, S̃k0+k1+k = Sk

B,

is such that X̃ ∈BA and Gk0+k1
f0

(X̃) ∈BB. This fact concludes the proof of the
theorem.

7

3.2.3 Devaney’s Chaos

In conclusion, (X ,G f0) is topologically transitive and regular. Then we have the
following result:

Theorem 5 G f0 is a chaotic map on (X ,d) in the sense of Devaney.

We have proven that the set C of the iterate functions f so that (X ,G f) is
chaotic (according to the definition of Devaney), is a nonempty set. In future work,
we will deepen the study of C , among other things, by computing its cardinality
and characterizing this set.

4 TOPOLOGICAL PROPERTIES OF CHAOTIC
ITERATIONS
In this section, some qualitative and quantitative topological properties for chaotic
iterations with G f0 will be studied in detail. These properties reinforce the chaotic
behavior of the system.

4.1 Topological mixing
The topological mixing is a strong version of transitivity:

Definition 7 A discrete dynamical system is said to be topologically mixing if and
only if, for any couple of disjoint open set U,V , ∅, n0 ∈ N can be found so that
∀n > n0, f n(U)∩V , ∅.

We have the result [16],

Theorem 6 (X ,G f0) is topologically mixing.

This result is an immediate consequence of the lemma below.

Lemma 1 For any open ball B of X , an index n can be found such that Gn
f0
(B) =

X .

PROOF Let B = B((E,S),ε) be an open ball, which the radius can be considered
as strictly less than 1. The elements of B all have the same state E and are such
that an integer k (=− log10(ε)) satisfies:

• all the strategies of B have the same k first terms,

• after the index k, all values are possible.

Then, after k iterations, the new state of the system is Gk
f0
(E,S)1 and all the

strategies are possibles (any point of the form (Gk
f0
(E,S)1, Ŝ), with any Ŝ ∈ S, is

reachable from B).
Let (E ′,S′) ∈X . We will prove that any point of X is reachable from B.
Indeed, let si be the list of the different cells between Gk

f0
(E,S)1 and E ′, and

|s| its size. The point (Ě, Š) of B defined by:

• Ě = E,

8

• Ši = Si,∀i 6 k,

• Šk+i = si,∀i 6 |s|,
• ∀i ∈N,Sk+|s|+i = S′i.

is such that Gk+|s|
f0

(Ě, Š) = (E ′,S′). This conclude the proof of the lemma.

4.2 Quantitative measures
4.2.1 General definitions

In Section 3.2.3 we have proven that discrete chaotic iterations produce a topologi-
cal chaos by checking two qualitative properties, namely transitivity and regularity.
This mathematical framework offers tools to measure this chaos quantitatively.
The first of these measures is the constant of sensitivity defined in Definition 5.
Intuitively, a function f having a constant sensitivity equal to δ implies that there
exists points arbitrarily close to any point x, which eventually separate from x by
at least δ under some iterations of f . This induces that an arbitrarily small error
on an initial condition might be magnified upon iterations of f .

Another important tool is defined below.

Definition 8 A function f is said to have the property of expansivity if

∃ε > 0,∀x , y,∃n ∈ N,d(f n(x), f n(y)) > ε.

Then, ε is the constant of expansivity of f . We also say that f is ε-expansive.

A function f has a constant of expansivity equal to ε if an arbitrarily small
error on any initial condition is always magnified until ε .

4.2.2 Sensitivity

The sensitive dependence on the initial conditions has been shown as a conse-
quence of the regularity and the transitivity of chaotic iterations. However, in the
set of machine numbers, we have shown in [5] that the notion of regularity must be
redefined. This is the reason why this sensitivity should be proven without using
the result of Banks [7], to be sure that this dependence is preserved in practical use
of chaotic iterations.

In addition, the constant of sensitivity will be obtained during this proof.

Theorem 7 (X ,G f0) has sensitive dependence on initial conditions and its con-
stant of sensitivity is equal to N−1.

PROOF Let X̌ = (Š, Ě) ∈ X . We are looking for X̃ = (S̃, Ẽ) ∈ X such that

d(X̌ , X̃) 6 δ and ∃n0 ∈ N, d
(

Gn0
f0
(X̌);Gn0

f0
(X̃)
)
> N−1. Let k0 be blog10(δ)c+1.

So, if S ∈ {S ∈ S/∀k 6 k0,Sk = Šk}, then d
(
(S, Ě),(Š, Ě)

)
6 δ .

Let J =
{

i ∈ ~1,N�/ E
(

Gk0
f0
(Š, Ě)

)
i
= E

(
Gk0+N

f0
(Š, Ě)

)
i

}
and p= card (J).

If p = N, then (S̃, Ẽ) ∈X defined by:

1. Ẽ = Ě,

2. ∀k 6 k0, S̃k = Šk,

9

3. ∀k ∈ ~1,N�, S̃k0+k = k,

4. ∀k > k0 +N, S̃k = 1.

satisfies d((S̃, Ẽ);(Š, Ě))< δ and ∀i∈ ~1,N�,E
(

Gk0+N
f0

(S̃; Ẽ)
)

i
,E

(
Gk0+N

f0
(Š; Ě)

)
i
,

so the result is obtained.
Else, let j1 < j2 < ... < jp be the elements of J and j0 <J . Then X̃ = (Ẽ, S̃) ∈
X defined by

1. Ẽ = Ě,

2. ∀k 6 k0, S̃k = Šk,

3. ∀k ∈ ~1, p�, S̃k0+k = jk,

4. ∀k ∈ N∗, S̃k0+p+k = j0.

is such that d(X̌ , X̃)< δ . In addition, ∀i∈ ~1, p�,E
(

Gk0+N
f0

(X̌)
)

ji
,E

(
Gk0+N

f0
(X̃)
)

ji
,

because:

• ∀i ∈ ~1,N�,E
(

Gk0
f0
(X̌)
)

i
= E

(
Gk0

f0
(X̃)
)

i
, due to the definition of k0.

• ∀i ∈ ~1, p�, ji ∈J ⇒ E
(

Gk0+N
f0

(X̌)
)

ji
= E

(
Gk0

f0
(X̌)
)

ji
, according to the

definition of J .

• ∀i ∈ ~1, p�, ji appears exactly one time in S̃k0 , S̃k0+1, ..., S̃k0+N, so

E
(

Gk0+N
f0

(X̃)
)

ji
, E

(
Gk0

f0
(X̃)
)

ji
.

Lastly, ∀i ∈ ~1,N�\{ j0, j1, ..., jp},E
(

Gk0+N
f0

(X̃)
)

i
, E

(
Gk0+N

f0
(X̌)
)

i
, because:

• ∀i ∈ ~1,N�,E
(

Gk0
f0
(X̌)
)

i
= E

(
Gk0

f0
(X̃)
)

i
,

• i <J ⇒ E
(

Gk0+N
f0

(X̌)
)

i
, E

(
Gk0

f0
(X̌)
)

i
,

• i < {S̃k0 , S̃k0+1, ..., S̃k0+N}⇒ E
(

Gk0+N
f0

(X̃)
)

i
= E

(
Gk0

f0
(X̃)
)

i
.

So, in this case, ∀i ∈ ~1,N�\{ j0},E
(

Gk0+N
f0

(S̃; Ẽ)
)

i
, E

(
Gk0+N

f0
(Š; Ě)

)
i

and the
result of sensitivity is still obtained.

4.2.3 Expansivity

In this section we offer the proof that chaotic iterations are expansive [16] when f0
is the update function:

Theorem 8 (X ,G f0) is an expansive chaotic system. Its constant of expansivity
is equal to 1.

PROOF If (S,E) , (Š; Ě), then:

• Either E , Ě and so at least one cell is not in the same state in E and Ě.
Consequently the distance between (S,E) and (Š; Ě) is greater or equal to 1.

10

• Or E = Ě. So the strategies S and Š are not equal. Let n0 be the first index
such that the terms S and Š differ. Then ∀k < n0,G

n0
f0
(S,E) = Gk

f0
(Š, Ě), and

Gn0
f0
(S,E) , Gn0

f0
(Š, Ě).

As E = Ě, the cell that has changed in E at the n0-th iterate is not the same
than the cell that has changed in Ě, so the distance between Gn0

f0
(S,E) and

Gn0
f0
(Š, Ě) is greater or equal to 2.

So the expansivity property is established.

Remark 2 Expansivity is a kind of avalanche effect: any initial error is always
magnified when iterating the system.

Remark 3 (X ,G f0) is not A-expansive, for any A > 1: let us consider two points
X = (E,S) and X ′ = (E ′,S′) with the same strategy (S = S′) and only one different

cell (de(E,E ′) = 1). So, ∀n ∈N,de

(
E
(

Gn
f0
(X)
)
,E
(

Gn
f0
(X ′)

))
= 1.

4.3 Topological Entropy
Another important tool to measure the chaotic behavior of a dynamical system is
the topological entropy, which is defined for compact topological spaces. Before
studying the entropy of CIs, we must then check that (X ,d) is compact.

4.3.1 Compacity Study

In this section, we will prove that (X ,d) is a compact topological space, in order
to study its topological entropy later. Firstly, as (X ,d) is a metric space, it is
separated. It is however possible to give a direct proof of this result:

Theorem 9 (X ,d) is a separated space.

PROOF Let (E,S) , (Ê, Ŝ) two points of X .

1. If E , Ê, then the intersection between the two balls B
(
(E,S), 1

2
)

and B
(
(Ê, Ŝ), 1

2
)

in empty.

2. Else, it exists k ∈N such that Sk , Ŝk, then the balls B
(
(E,S),10−(k+1)

)
and B

(
(Ê, Ŝ),10−(k+1)

)
can be chosen.

The sequential characterization of the compacity for metric spaces can now be
used to obtain the following result.

Theorem 10 (X ,d) is a compact metric space.

PROOF Let (En,Sn)n∈N be a sequence of X .

1. A state E ñ which appears an infinite number of time in this sequence can be
found. Let

I = {(En,Sn)
/

En = E ñ}.
For all (E,S) ∈ I, Sn

0 ∈ ~1,N�, and I is an infinite set. Then k̃ ∈ ~1,N� can
be found such that an infinite number of strategies of I starts with k̃.
Let n0 be the smallest integer such that En = E ñ and Sn

0 = k̃.

11

2. The set
I′ = {(En,Sn)

/
En = En0 and Sn

0 = Sn0
0 }

is infinite, then one of the elements of ~1,N� will appear an infinite number
of times in the Sn

1 of I′: let us call it l̃.
Let n1 be the smallest n such that (En,Sn) ∈ I′ and Sn

1 = l̃.

3. The set

I′′ = {(En,Sn)|En = En0 and Sn
0 = Sn0

0 and Sn
1 = Sn1

1 }

is infinite, etc.

Let l =
(

En0 ,
(
Snk

k

)
k∈N

)
, then the subsequence (Enk ,Snk) converges to l.

4.3.2 Topological entropy

Let (X ,d) be a compact metric space and f : X → X be a continuous map. For
each natural number n, a new metric dn is defined on X by

dn(x,y) = max{d(f i(x), f i(y)) : 0≤ i < n}.
Given any ε > 0 and n > 1, two points of X are ε-close with respect to this

metric if their first n iterates are ε-close.
This metric allows one to distinguish in a neighborhood of an orbit the points

that move away from each other during the iteration from the points that travel
together. A subset E of X is said to be (n,ε)-separated if each pair of distinct
points of E is at least ε apart in the metric dn. Denote by H(n,ε) the maximum
cardinality of an (n,ε)-separated set,

Definition 9 The topological entropy of the map f is defined by (see e.g. [1] or [8])

h(f) = lim
ε→0

(
limsup

n→∞

1
n

logH(n,ε)
)
.

We have the result,

Theorem 11 Entropy of (X ,G f) is infinite.

PROOF Let E, Ě ∈ BN such that ∃i0 ∈ ~1,N�,Ei0 , Ěi0 . Then, ∀S, Š ∈S ,

d((E,S);(Ě, Š)) > 1

But the cardinal c of S is infinite, then ∀n ∈ N,c > en2
.

Then for all n ∈ N, the maximal number H(n,1) of (n,1)−separated points is
greater than or equal to en2

, so

htop(G f ,1) = lim
1
n

log(H(n,1))> lim
1
n

log
(

en2
)
= lim (n) = +∞.

But htop(G f ,ε) is an increasing function when ε is decreasing, then

htop
(
G f
)
= lim

ε→0
htop(G f ,ε)> htop(G f ,1) = +∞,

which concludes the evaluation of the topological entropy of G f .

12

We have proven that it is possible to find f , such that chaotic iterations gener-
ated by f can be described by a chaotic and entropic map on a topological space in
the sense of Devaney. We have considered a finite set of states BN and a set S of
strategies composed by an infinite number of infinite sequences. In the following
section we will discuss the impact of these assumptions in the context of the finite
set of machine numbers.

5 CHAOS IN A FINITE STATE MACHINE
Let us now explain how it is possible to have a true chaos in a finite state machine.

5.1 A program with a chaotic behavior
In the Section 3 we have proven that discrete chaotic iterations can be put in the
field of discrete dynamical systems:{

x0 ∈X
xn+1 = G f (xn),

where (X ,d) is a metric space and G f is a continuous function. Thus, it becomes
possible to study the topological behavior of those chaotic iterations. Precisely, it
has been proven that if the iterate function is based on the vectorial logical nega-
tion f0, then chaotic iterations generate chaos according to Devaney. Therefore
chaotic iterations, as Devaney’s topological chaos, satisfy: sensitive dependence
on the initial conditions, unpredictability, indecomposability, and uniform reparti-
tion. Additionally, G f0 has been proven to be expansive and topologically mixing,
and its topological entropy has been computed. Our intention is now to use these
chaotic iterations that are highly unpredictable, to build programs in the computer
science security field. Furthermore, we will give in Section 7 a link between CIs
and artificial neural networks, thus it is possible to make them behave chaotically.

Up to now, most of computer programs presented as chaotic lose their chaotic
properties while computing in the finite set of machine numbers. The algorithms
that have been presented as chaotic usually act as follows. After having received
its initial state, the machine works alone with no interaction with the outside world.
Its outputs only depend on the different states of the machine. The main problem
which prevents speaking about chaos in this particular situation is that when a finite
state machine reaches a same internal state twice, the two future evolutions are
identical. Such a machine always finishes by entering into a cycle while iterating.
This highly predictable behavior cannot be set as chaotic, at least as expressed by
Devaney. Some attempts to define a discrete notion of chaos have been proposed,
but they are not completely satisfactory and are less recognized than the notions
exposed in this paper.

The stated problem can be solved in the following way. The computer must
generate an output O computed from its current state E and the current value of an
input S, which changes at each iteration (Fig. 1). Therefore, it is possible that the
machine presents the same state twice, but with two future evolutions completely
different, depending on the values of the input. By doing so, we thus obtain a
machine with a finite number of states, which can evolve in infinitely different

13

ways, due to the new values provided by the input at each iteration. Thus such a
machine can behave chaotically, as defined in the Devaney’s formulation.

Figure 1: A chaotic finite-state machine. At each iteration, a new value is taken from
the outside world (S). It is used by f as input together with the current state (E).

5.2 The practical case of finite strategies
It is worthwhile to notice that even if the set of machine numbers is finite, we deal
in practice with the infinite set of strategies that have finite but unbounded lengths.
Indeed, it is not necessary to store all of the terms of these strategies in the memory.
Only its nth term (an integer less than or equal to N) has to be stored at the nth step,
as it is illustrated in the following example. Let us suppose that a given text is
input from the outside world into the computer character by character and that the
current term of the strategy is computed from the ASCII code of the current stored
character. Since the set of all possible texts of the outside world is infinite and the
number of their characters is unbounded, we work with an infinite set of finite but
unbounded strategies.

In the computer science framework, we also have to deal with a finite set of
states of the form BN and as stated before an infinite set S of strategies. The sole
difference with the theoretical study is that instead of being infinite the sequences
of S are finite with unbounded length, as any reasonable program must obviously
finish one day.

The proofs of continuity and transitivity stated previously are independent of
the finiteness of the length of strategies (sequences of S). Sensitivity can be proven
too in this situation (see Section 4.2.2). So even in the case of finite machine num-
bers, we have the two fundamental properties of chaos: sensitivity and transitiv-
ity, which respectively implies unpredictability and indecomposability (see [13],
p.50). The regularity supposes that the sequences are of infinite lengths. To obtain
the analogous of regularity in the context of finite sets, we can for example define
a notion of periodic but finite sequences.

Definition 10 A strategy S ∈ S is said to be periodic but finite if S is a finite
sequence of length n and if there exists a divisor p of n, p , n, such that ∀i 6
n− p,Si = Si+p. A point (E,S) ∈X is said to be periodic but finite, if its strategy
S is periodic but finite.

14

In this situation, (1,2,1,2,1,2,1,2) (p=2) and (2,2,2) (p=1), are periodic but
finite. This definition can be interpreted as the analogous of periodicity definition
on finite strategies. Following the proof of regularity (Section 3.2.1), it can be
proven that the set of periodic but finite points is dense on X , hence obtaining a
desired element of regularity in finite sets, as quoted by Devaney ([13], p.50): “two
points arbitrary close to each other could have completely different behaviors, the
one could have a cyclic behavior as long as the system iterates while the trajectory
of the second could ‘visit’ the whole phase space”. It should be recalled that the
regularity was introduced by Devaney in order to counteract the effects of transi-
tivity: two points close to each other can have fundamentally different behaviors.

In the following we explain how to use chaotic iterations in the computer sci-
ence security field, by using an illustrative example. In this sense, we show two
different ways to compute chaotic hash functions, the second one using neural
networks.

6 HASH FUNCTIONS WITH TOPOLOGICAL
CHAOS PROPERTIES
In this section, a concrete example of a chaotic program is given in the computer
science security field.

6.1 Introduction
The use of chaotic maps to generate hash algorithms has seen several developments
in recent years. In [14] for example, a digital signature algorithm based on an
elliptic curve and chaotic mapping is proposed to strengthen the security of an
elliptic curve digital signature algorithm. Other examples of the generation of
a hash function using chaotic maps can be found in, e.g., [24, 26, 19]. Neural
networks that have learned a continuous chaotic map have been proposed too in
recent years [17], to achieve hash functions requirements.

Note that using any chaotic map does not guarantee that the resulting hash
function would behave chaotically too. To the best of our knowledge, this point
is not discussed in these referenced papers, however it should be considered as
important. We define in this section a new way to construct hash functions based
on chaotic iterations. As a consequence of the theory presented before, the gener-
ated hash functions satisfy various topological chaos properties. Thus, properties
required for hash functions are guaranteed by our approach. For example, the
avalanche criterion is deduced from the expansivity property.

6.2 A chaotic hash function
In this section, we explain a new way to obtain a digest of a digital medium de-
scribed by a binary sequence. It is based on chaotic iterations and satisfies various
topological chaos properties. The hash value will be the last state of some chaotic
iterations: the initial state X0, finite strategy S, and iterate function must then be
defined.

15

The initial condition X0 = (S,E) is composed by a N = 256 bits sequence E
and a chaotic strategy S. In the following section, we describe in detail how to
obtain this initial condition from the original medium.

6.2.1 How to obtain E

The first step of our algorithm is to transform the message in a normalized 256 bits
sequence E. To illustrate this step inspired by SHA-1, we state that our original
text is: “The original text”. Each character of this string is replaced by its ASCII
code (on 7 bits). Then, we add a 1 at the end of this string.

10101001 10100011 00101010 00001101 11111100 10110100
11100111 11010011 10111011 00001110 11000100 00011101
00110010 11111000 11101001

So, the binary value (1111000) of the length of this string (120) is added, with
another 1:

10101001 10100011 00101010 00001101 11111100 10110100
11100111 11010011 10111011 00001110 11000100 00011101
00110010 11111000 11101001 11110001

This string is inverted (the last bit is now the first one) and the two new substrings
are concatenated. This gives:

10101001 10100011 00101010 00001101 11111100 10110100
11100111 11010011 10111011 00001110 11000100 00011101
00110010 11111000 11101001 11110001 00011111 00101110
00111110 10011001 01110000 01000110 11100001 10111011
10010111 11001110 01011010 01111111 01100000 10101001
10001011 0010101

So, we obtain a multiple of 512, by duplicating this string enough and truncating at
the next multiple of 512. This string in which the whole original text is contained,
is denoted by D.

Finally, we split the new string into blocks of 256 bits and apply the exclusive-
or function, obtaining a 256 bits sequence in a manner inspired by the SHA-X
algorithms.

11111010 11100101 01111110 00010110 00000101 11011101
00101000 01110100 11001101 00010011 01001100 00100111
01010111 00001001 00111010 00010011 00100001 01110010
01000011 10101011 10010000 11001011 00100010 11001100
10111000 01010010 11101110 10000001 10100001 11111010
10011101 01111101

16

In the context of Subsection 6.2, N= 256, and E is the above obtained sequence
of 256 bits: the given message has been compressed into a 256 binary string.

We now have the definitive length of our digest. Note that a lot of texts have
the same normalized string. This is not a problem because the strategy we will
build depends on the whole text too, in such a way that two different texts lead to
two different strategies. Let us now build the strategy S.

6.2.2 How to choose S

To obtain the strategy S, an intermediate sequence (un) is constructed from D as
follows:

• D is split into blocks of 8 bits. Then un is the decimal value of the nth block.

• A circular rotation of one bit to the left is applied to D (the first bit of D is
put on the end of D). Then the new string is split into blocks of 8 bits another
time. The decimal values of those blocks are added to (un).

• This operation is repeated again 6 times.

It is now possible to build the strategy S:

S0 = u0, Sn = (un +2×Sn−1 +n) (mod 256).

S will be highly dependent to the changes of the original text, because θ 7−→
2θ (mod 1) is known to be chaotic as defined by Devaney’s theory [13].

6.2.3 How to construct the digest

To construct the digest, chaotic iterations are done with initial state X0,

f : ~1,256� −→ ~1,256�
(E1, . . . ,E256) 7−→ (E1, . . . ,E256),

as iterate function, and S for the chaotic strategy.

The result of those iterations is a 256 bits vector. Its components are taken 4 bits
at a time and translated into hexadecimal numbers, to obtain the hash value:

63A88CB6AF0B18E3BE828F9BDA4596A6A13DFE38440AB9557DA1C0C6B1EDBDBD

To compare, if instead of using the text “The original text” we took “the origi-
nal text”, the hash function returns:

33E0DFB5BB1D88C924D2AF80B14FF5A7B1A3DEF9D0E831194BD814C8A3B948B3

In this paper, the generation of hash value is done with the vectorial Boolean
negation f0 defined in eq. (2). Nevertheless, the procedure remains general and can
be applied with any function f such that G f is chaotic. In the following subsection,
a complete example of the procedure is given.

17

(a) Original image. (b) Modified image.

Figure 2: Hash of some black and white images.

6.3 Application example
Consider two black and white images of size 64×64 in Fig. 2, in which the pixel
in position (40,40) has been changed. In this case, the hash function returns:

34A5C1B3DFFCC8902F7B248C3ABEFE2C9C9538E5104D117B399C999F74CF1CAD

for the Fig. 2(a) and

5E67725CAA6B7B7434BE57F5F30F2D3D57056FA960B69052453CBC62D9267896

for the Fig. 2(b).

Consider two 256 graylevel images of Lena (256× 256 pixels) in figure 3, in
which the grayscale level of the pixel in position (50,50) has been transformed
from 93 (fig. 3(a)) to 94 (fig. 3(b)). In this case, the hash function returns:

(a) Original lena. (b) Modified lena.

Figure 3: Hash of some grayscale level images.

FA9F51EFA97808CE6BFF5F9F662DCD738C25101FE9F7F427CD4E2B8D40331B89

for the left Lena and

BABF2CE1455CA28F7BA20F52DFBD24B76042DC572FCCA4351D264ACF4C2E108B

18

n 0

−1

−1

−1

−1

−1

bias

Output

layer

bias

Hidden layers

−1

S(i)=S

1
0

2
0

1

2

x

x

x

x

1
+1

2
+1

x

x

n

n

n

n

Figure 4: Example of global recurrent neural network modeling function Ff such that
xn+1 =

(
xn+1

1 ,xn+1
2

)
= Ff (i(Sn),(xn

1,x
n
2))

for the right Lena.

These examples give an illustration of the avalanche effect obtained by this al-
gorithm. A more complete study of the properties possessed by the hash functions
and resistance under collisions will be studied in a future work.

7 A CHAOTIC NEURAL NETWORK AS HASH
FUNCTION
A hash function can be achieved in two stages: the compression of the message
(mapping a binary sequence of any length n ∈N into a message of a fixed length
belonging intoBN, for a given fixed length N∈N) and the hash of the compressed
message [17]. As several compression functions have yet been proposed to achieve
the first stage, we will only focus on the second stage and we will explain how to
build a neural network that realize it. This neural network that hashes compressed
messages will behave chaotically, as it is defined by the Devaney’s theory.

Let us firstly explain how it is possible to build a neural network that behaves
chaotically. Consider f :BN −→NN and a MLP which recognize Ff . That means,
for all (k,x) ∈ ~1;N�×BN, the response of the output layer to the input (k,x) is
Ff (k,x). We thus connect the output layer to the input one as it is depicted in
Figure 4, leading to a global recurrent artificial neural network (ANN) working as
follows [6]:

• At the initialization stage, the ANN receives a Boolean vector x0 ∈ BN as
input state, and S0 ∈ ~1;N� in its input integer channel i(). Thus, x1 =
Ff (S0,x0) ∈BN is computed by the neural network.

• This state x1 is published as an output. Additionally, x1 is sent back to the
input layer, to act as Boolean state in the next iteration.

19

• At iteration number n, the recurrent neural network receives the state xn ∈
BN from its output layer and i(Sn) ∈ ~1;N� from its input integer channel
i(). It can thus calculate xn+1 = Ff (i(Sn) ,xn) ∈BN, which will be the new
output of the network.

Obviously, this particular MLP produce exactly the same values than CIs with
update function f . That is, such MLPs are equivalent to CIs with f as update
function. However, the compression stage of the hash function presented in the
previous section can be resumed to making chaotic iterations over the compressed
message. As chaotic iterations can be obtained with a neural network, we can thus
realize this stage with a (chaotic) neural network. Finally, it is important to remark
that the proposed hash function can be implemented into a global neural network,
as various compression neural networks can be found in the literature [18, 21, 12]:
we just have to replace our compression stage, inspired by SHA-X, with one of
these compression ANN.

8 CONCLUSION
In this paper, a new approach to compute programs with a chaotic behavior is pro-
posed. This approach is based on the well-known Devaney’s topological chaos.
The algorithms which are of iterative nature are based on the so-called chaotic it-
erations. This is achieved by establishing a link between the notions of topological
chaos and chaotic iterations. Indeed, we are not interested in stable states of such
iterations as it has always been the case in the literature, but in their unpredictable
behavior. After a solid theoretical study, we consider the practical implementation
of the proposed algorithms by evaluating the case of finite sets. We study the be-
havior of the induced computer programs proving that it is possible to design true
chaotic computer programs.

An application is proposed in the area of information security: a new hash
function is presented, the security in this case is guaranteed by the unpredictability
of the behavior of the proposed algorithms. The algorithms derived from our ap-
proach satisfy important properties of topological chaos such as sensitivity to ini-
tial conditions, uniform repartition (as a result of the transitivity), unpredictability,
expansivity, and topological mixing. Moreover, its topological entropy is infinite.
The results expected in our study have been experimentally checked. The choices
made in this first study are simple: compression function inspired by SHA-1, nega-
tion function for the iteration function, etc. The aim was not to find the best hash
function, but to give simple illustrated examples to prove the feasibility in using the
new kind of chaotic algorithms in computer science. Finally, we have shown how
the mathematical framework of topological chaos offers interesting qualitative and
qualitative tools to study the algorithms based on our approach.

In future work, we will investigate other choices of iteration functions and
chaotic strategies. We will try to characterize transitive functions. Other properties
induced by topological chaos will be explored and their interest in the information
security framework will be deepened.

20

References
[1] R. L. Adler, A. G. Konheim, and M. H. McAndrew. Topological entropy.

Trans. Amer. Math. Soc., 114:309–319, 1965.

[2] Jacques Bahi and Christophe Guyeux. A new chaos-based watermarking
algorithm. In SECRYPT’10, Int. conf. on security and cryptography, pages
455–458, Athens, Greece, July 2010. SciTePress.

[3] Jacques Bahi, Christophe Guyeux, and Qianxue Wang. A novel pseudo-
random generator based on discrete chaotic iterations. In INTERNET’09,
1-st Int. Conf. on Evolving Internet, pages 71–76, Cannes, France, August
2009.

[4] Jacques M. Bahi and Christophe Guyeux. Hash functions using chaotic iter-
ations. Journal of Algorithms & Computational Technology, 4(2):167–181,
2010.

[5] Jacques M. Bahi and Christophe Guyeux. Topological chaos and chaotic
iterations, application to hash functions. In WCCI’10, IEEE World Congress
on Computational Intelligence, pages 1–7, Barcelona, Spain, July 2010. Best
paper award.

[6] Jacques M. Bahi, Christophe Guyeux, and Michel Salomon. Building a
chaotic proved neural network. CoRR, abs/1101.4351, 2011.

[7] J. Banks, J. Brooks, G. Cairns, and P. Stacey. On devaney’s definition of
chaos. Amer. Math. Monthly, 99:332–334, 1992.

[8] R. Bowen. Entropy for group endomorphisms and homogeneous spaces.
Trans. Amer. Math. Soc., 153:401–414, 1971.

[9] D. Chazan and W. Miranker. Chaotic relaxation. Linear algebra and its
applications, pages 199–222, 1969.

[10] Jin Cong, Yan Jiang, Zhiguo Qu, and Zhongmei Zhang. A wavelet packets
watermarking algorithm based on chaos encryption. In Marina L. Gavrilova,
Osvaldo Gervasi, Vipin Kumar, Chih Jeng Kenneth Tan, David Taniar, Anto-
nio Laganà, Youngsong Mun, and Hyunseung Choo, editors, ICCSA (1), vol-
ume 3980 of Lecture Notes in Computer Science, pages 921–928. Springer,
2006.

[11] Zhu Congxu, Liao Xuefeng, and Li Zhihua. Chaos-based multipurpose im-
age watermarking algorithm. Wuhan University Journal of Natural Sciences,
11:1675–1678, 2006. 10.1007/BF02831848.

[12] Christopher Cramer, Erol Gelenbe, and Hakan Bakircioglu. Video compres-
sion with random neural networks. Neural Networks for Identification, Con-
trol, and Robotics, International Workshop, 0:0476, 1996.

[13] Robert L. Devaney. An Introduction to Chaotic Dynamical Systems.
Addison-Wesley, Redwood City, CA, 2nd edition, 1989.

[14] Peng Fei, Qiu Shui-Sheng, and Long Min. A secure digital signature algo-
rithm based on elliptic curve and chaotic mappings. Circuits Systems Signal
Processing, 24, No. 5:585–597, 2005.

[15] Christophe Guyeux. Le désordre des itérations chaotiques et leur utilité en
sécurité informatique. PhD thesis, Université de Franche-Comté, 2010.

21

[16] Christophe Guyeux, Nicolas Friot, and Jacques Bahi. Chaotic iterations ver-
sus spread-spectrum: chaos and stego security. In IIH-MSP’10, 6-th Int.
Conf. on Intelligent Information Hiding and Multimedia Signal Processing,
pages 208–211, Darmstadt, Germany, October 2010.

[17] Yantao Li, Shaojiang Deng, and Di Xiao. A novel hash algorithm construc-
tion based on chaotic neural network. Neural Computing and Applications,
pages 1–9, 2010.

[18] Matthew V. Mahoney. Fast text compression with neural networks. In Pro-
ceedings of the Thirteenth International Florida Artificial Intelligence Re-
search Society Conference, pages 230–234. AAAI Press, 2000.

[19] F. Peng, S.-S. Qiu, and M. Long. One way hash function construction based
on two-dimensional hyperchaotic mappings. Acta Phys. Sinici., 54:98–104,
2005.

[20] F. Robert. Discrete Iterations: A Metric Study, volume 6 of Springer Series
in Computational Mathematics. 1986.

[21] O. Rudenko and M. Snytkin. Image compression based on the neural network
art. Cybernetics and Systems Analysis, 44:797–802, 2008.

[22] Chang song Zhou and Tian lun Chen. Extracting information masked by
chaos and contaminated with noise: Some considerations on the security of
communication approaches using chaos. Physics Letters A, 234(6):429 –
435, 1997.

[23] Qianxue Wang, Jacques Bahi, Christophe Guyeux, and Xiaole Fang. Ran-
domness quality of CI chaotic generators. application to internet security. In
INTERNET’2010. The 2nd Int. Conf. on Evolving Internet, pages 125–130,
Valencia, Spain, September 2010. IEEE Computer Society Press. Best Paper
award.

[24] X. M. Wang, J. S. Zhang, and W. F. Zhang. One-way hash function construc-
tion based on the extended chaotic maps switch. Acta Phys. Sinici., 52, No.
11:2737–2742, 2003.

[25] Xianyong Wu and Zhi-Hong Guan. A novel digital watermark algorithm
based on chaotic maps. Physics Letters A, 365(5-6):403 – 406, 2007.

[26] Di Xiao, Xiaofeng Liao, and Yong Wang. Improving the security of a parallel
keyed hash function based on chaotic maps. Physics Letters A, 373(47):4346
– 4353, 2009.

22

	1 INTRODUCTION
	2 BASIC RECALLS
	2.1 Devaney's chaotic dynamical systems
	2.2 Chaotic iterations

	3 CHAOTIC ITERATIONS AS DEVANEY'S CHAOS
	3.1 The new topological space
	3.1.1 Defining the iteration function and the phase space
	3.1.2 Cardinality of X
	3.1.3 A new distance
	3.1.4 Continuity of the iteration function

	3.2 Discrete chaotic iterations as topological chaos
	3.2.1 Regularity
	3.2.2 Transitivity
	3.2.3 Devaney's Chaos

	4 TOPOLOGICAL PROPERTIES OF CHAOTIC ITERATIONS
	4.1 Topological mixing
	4.2 Quantitative measures
	4.2.1 General definitions
	4.2.2 Sensitivity
	4.2.3 Expansivity

	4.3 Topological Entropy
	4.3.1 Compacity Study
	4.3.2 Topological entropy

	5 CHAOS IN A FINITE STATE MACHINE
	5.1 A program with a chaotic behavior
	5.2 The practical case of finite strategies

	6 HASH FUNCTIONS WITH TOPOLOGICAL CHAOS PROPERTIES
	6.1 Introduction
	6.2 A chaotic hash function
	6.2.1 How to obtain E
	6.2.2 How to choose S
	6.2.3 How to construct the digest

	6.3 Application example

	7 A CHAOTIC NEURAL NETWORK AS HASH FUNCTION
	8 CONCLUSION

