Skip to main content

Continuous-Time Moving Network Voronoi Diagram

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 6970))

Abstract

We study the problem of moving network Voronoi diagram: given a network with n nodes and E edges. Suppose there are m sites (cars, postmen, etc) moving along the network edges, we design the algorithms to compute the dynamic network Voronoi diagram as sites move such that we can answer the nearest neighbor query efficiently. Furthermore, we extend it to the k-order dynamic network Voronoi diagram such that we can answer the k nearest neighbor query efficiently. We also study the problem when the query point is allowed to move at a given speed. Moreover, we give the algorithm for the half-online version of moving network Voronoi diagram.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, K.P., Sharir, M.: Davenport–Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  2. Bae, S.W., Kim, J.-H., Chwa, K.-Y.: Optimal Construction of the City Voronoi Diagram. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 183–192. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput. 28(9), 643–647 (1979)

    Article  MATH  Google Scholar 

  4. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational geometry algorithms and applications. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  5. Devillers, O., Golin, M.J.: Dog Bites Postman: Point Location in the Moving Voronoi Diagram and Related Problems. In: Lengauer, T. (ed.) ESA 1993. LNCS, vol. 726, pp. 133–144. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  6. Erwig, M.: The graph voronoi diagram with application. Networks 36, 156–163 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear time algorithms for visibility and shortest path problems inside simple polygons. In: SCG 1986: Proceedings of the Second Annual Symposium on Computational Geometry, pp. 1–13. ACM, New York (1986)

    Chapter  Google Scholar 

  8. Hakimi, S., Labbe, M., Schmeiche, E.: The voronoi partition of a network and its implications in location theory. INFIRMS Journal on Computing 4, 412–417 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kolahdouzan, M.R., Shahabi, C.: Alternative solutions for continuous k nearest neighbor queries in spatial network databases. GeoInformatica 9(4), 321–341 (2005)

    Article  Google Scholar 

  10. Lee, D.T.: Two-dimensional voronoi diagrams in the lp-metric. J. ACM 27(4), 604–618 (1980)

    Article  MATH  Google Scholar 

  11. Okabe, A., Satoh, T., Furuta, T., Suzuki, A., Okano, K.: Generalized network voronoi diagrams: Concepts, computational methods, and applications. Int. J. Geogr. Inf. Sci. 22(9), 965–994 (2008)

    Article  Google Scholar 

  12. Pach, J., Sharir, M.: On vertical visibility in arrangements of segments and the queue size in the bentley-ottmann line sweeping algorithm. SIAM J. Comput. 20(3), 460–470 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ramalingam, G., Reps, T.: An incremental algorithm for a generalization of the shortest-path problem. J. Algorithms 21(2), 267–305 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fan, C., Luo, J., Zhu, B. (2011). Continuous-Time Moving Network Voronoi Diagram. In: Gavrilova, M.L., Tan, C.J.K., Mostafavi, M.A. (eds) Transactions on Computational Science XIV. Lecture Notes in Computer Science, vol 6970. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25249-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25249-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25248-8

  • Online ISBN: 978-3-642-25249-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics