Skip to main content

Using Model Trees and Their Ensembles for Imbalanced Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7023))

Abstract

Model trees are decision trees with linear regression functions at the leaves. Although originally proposed for regression, they have also been applied successfully in classification problems. This paper studies their performance for imbalanced problems. These trees give better results that standard decision trees (J48, based on C4.5) and decision trees specific for imbalanced data (CCPDT: Class Confidence Proportion Decision Trees). Moreover, different ensemble methods are considered using these trees as base classifiers: Bagging, Random Subspaces, AdaBoost, MultiBoost, LogitBoost and specific methods for imbalanced data: Random Undersampling and SMOTE. Ensembles of Model Trees also give better results than ensembles of the other considered trees.

This work was supported by the Project TIN2011-24046 of the Spanish Ministry of Science and Innovation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27, 861–874 (2006)

    Article  Google Scholar 

  2. Cieslak, D., Chawla, N.: Learning decision trees for unbalanced data. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 241–256. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Liu, W., Chawla, S., Cieslak, D.A., Chawla, N.V.: A Robust Decision Tree Algorithm for Imbalanced Data Sets. In: 10th SIAM International Conference on Data Mining, SDM 2010, pp. 766–777. SIAM (2010)

    Google Scholar 

  4. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley Interscience (2004)

    Google Scholar 

  5. Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: SMOTEBoost: Improving prediction of the minority class in boosting. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 107–119. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: RUSBoost: A hybrid approach to alleviating class imbalance. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 40, 185–197 (2010)

    Article  Google Scholar 

  7. Hoens, T., Chawla, N.: Generating Diverse Ensembles to Counter the Problem of Class Imbalance. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS, vol. 6119, pp. 488–499. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Quinlan, J.R.: C4.5: Programs for Machine Learning. Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  9. Quinlan, R.J.: Learning with continuous classes. In: 5th Australian Joint Conference on Artificial Intelligence, pp. 343–348. World Scientific, Singapore (1992)

    Google Scholar 

  10. Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous classes. In: van Someren, M., Widmer, G. (eds.) ECML 1997. LNCS, vol. 1224, Springer, Heidelberg (1997)

    Google Scholar 

  11. Frank, E., Wang, Y., Inglis, S., Holmes, G., Witten, I.H.: Using model trees for classification. Machine Learning 32, 63–76 (1998)

    Article  MATH  Google Scholar 

  12. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  Google Scholar 

  13. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 832–844 (1998)

    Article  Google Scholar 

  14. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55, 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Webb, G.I.: Multiboosting: A technique for combining boosting and wagging. Machine Learning 40(2), 159–196 (2000)

    Article  Google Scholar 

  16. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Annals of Statistics 95, 337–407 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory Undersampling for Class-Imbalance Learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39, 539–550 (2009)

    Article  Google Scholar 

  18. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)

    MATH  Google Scholar 

  19. Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml

  20. Olszewski, R.T.: Generalized Feature Extraction for Structural Pattern Recognition in Time-Series Data. PhD thesis, Computer Science Department, Carnegie Mellon University (2001)

    Google Scholar 

  21. Kuncheva, L.I., Hadjitodorov, S.T., Todorova, L.P.: Experimental comparison of cluster ensemble methods. In: FUSION 2006, Florence, Italy (2006)

    Google Scholar 

  22. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan University (2003)

    Google Scholar 

  23. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explorations 11 (2009)

    Google Scholar 

  24. Dietterich, T.G.: Approximate statistical test for comparing supervised classification learning algorithms. Neural Computation 10, 1895–1923 (1998)

    Article  Google Scholar 

  25. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  26. García, S., Herrera, F.: An extension on ”statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. Journal of Machine Learning Research 9, 2677–2694 (2008)

    MATH  Google Scholar 

  27. Hand, D.: Measuring classifier performance: a coherent alternative to the area under the ROC curve. Machine Learning 77, 103–123 (2009)

    Article  Google Scholar 

  28. Flach, P., Hernandez-Orallo, J., Ferri, C.: A coherent interpretation of auc as a measure of aggregated classification performance. In: 28th International Conference on Machine Learning (ICML 2011), pp. 657–664. ACM (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodríguez, J.J., Díez-Pastor, J.F., García-Osorio, C., Santos, P. (2011). Using Model Trees and Their Ensembles for Imbalanced Data. In: Lozano, J.A., Gámez, J.A., Moreno, J.A. (eds) Advances in Artificial Intelligence. CAEPIA 2011. Lecture Notes in Computer Science(), vol 7023. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25274-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25274-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25273-0

  • Online ISBN: 978-3-642-25274-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics