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ABSTRACT

Nash equilibrium is the most commonly-used notion of equi-
librium in game theory. However, it suffers from numer-
ous problems. Some are well known in the game theory
community; for example, the Nash equilibrium of repeated
prisoner’s dilemma is neither normatively nor descriptively
reasonable. However, new problems arise when considering
Nash equilibrium from a computer science perspective: for
example, Nash equilibrium is not robust (it does not tol-
erate “faulty” or “unexpected” behavior), it does not deal
with coalitions, it does not take computation cost into ac-
count, and it does not deal with cases where players are not
aware of all aspects of the game. Solution concepts that
try to address these shortcomings of Nash equilibrium are
discussed.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks|: Distributed

Systems; F.0 [[Theory of Computation]|: General; 1.2.11

[Artificial Intelligence|: Distributed Artificial Intelligence—

Multiagent systems; J.4 [Social and Behavioral Sciences|:
Fconomics.

General Terms

Eocnomics, Theory.

Keywords

Game theory, Nash equilibrium, solution concepts, aware-
ness, robustness, resilience.

1. INTRODUCTION

Nash equilibrium is the most commonly-used notion of
equilibrium in game theory. Intuitively, a Nash equilibrium
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is a strategy profile (a collection of strategies, one for each
player in the game) such that no player can do better by
deviating. The intuition behind Nash equilibrium is that
it represent a possible steady state of play. It is a fixed
point where each player holds correct beliefs about what
other players are doing, and plays a best response to those
beliefs. Part of what makes Nash equilibrium so attractive
is that in games where each player has only finitely many
possible deterministic strategies, and we allow mixed (i.e.,
randomized) strategies, there is guaranteed to be a Nash
equilibrium [46] (this was, in fact, the key result of Nash’s
thesis).

For quite a few games, thinking in terms of Nash equi-
librium gives insight into what people do (there is a reason
that game theory is taught in business schools!). However,
as is well known, Nash equilibrium suffers from numerous
problems. For example, the Nash equilibrium in games such
as repeated prisoner’s dilemma is to always defect (see Sec-
tion 3 for more discussion of repeated prisoner’s dilemma).
It is hard to make a case that rational players “should” play
the Nash equilibrium in this game when “irrational” players
who cooperate for a while do much better! Moreover, in a
game that is only played once, why should a Nash equilib-
rium arise when there are multiple Nash equilibria? Players
have no way of knowing which one will be played. And even
in games where there is a unique Nash equilibrium (like re-
peated prisoner’s dilemma), how do players obtain correct
beliefs about what other players are doing if the game is
played only once? (See [37] for a discussion of some of these
problems.)

Not surprisingly, there has been a great deal of work in
the economics community on developing alternative solu-
tion concepts. Various alternatives to and refinements of
Nash equilibrium have been introduced, including, among
many others, rationalizability, sequential equilibrium, (trem-
bling hand) perfect equilibrium, proper equilibrium, and it
erated deletion of weakly dominated strategies. (These no-
tions are discussed in standard game theory text, such as
[17, 48].) Despite some successes, none of these alternative
solution concepts address the following three problems with
Nash equilibrium, all inspired by computer science concerns.

e Although both computer science and distributed com-
puting are concerned with multiple agents interact-
ing, the focus in the game theory literature has been
on the strategic concerns of agents—rational players
choosing strategies that are best responses to strate-
gies chosen by other player, the focus in distributed
computing has been on problems such as fault toler-



ance and asynchrony, leading to, for example work on
Byzantine agreement [15, 51]. Nash equilibrium does
not deal with “faulty” or “unexpected” behavior, nor
does it deal with colluding agents. In large games, we
should expect both.

e Nash equilibrium does not take computational con-
cerns into account. We need solution concepts that
can deal with resource-bounded players, concerns that
are at the heart of cryptography.

e Nash equilibrium presumes that players have common
knowledge of the structure of the game, including all
the possible moves that can be made in every situa-
tion and all the players in game. This is not always
reasonable in, for example, the large auctions played
over the internet.

In the following sections, I discuss each of these issues in
more detail, and sketch solution concepts that can deal with
them, with pointers to the relevant literature.

2. ROBUST ANDRESILIENT EQUILIBRIUM

Nash equilibrium tolerates deviations by one player. It is
perfectly consistent with Nash equilibrium that two players
could do much better by deviating in a coordinated way. For
example, consider a game with n > 1 players where players
much play either 0 or 1. If everyone plays 0, everyone get a
payoft of 1; if exactly two players plays 1 and the rest play
0, then the two who play 1 get a payoff of 2, and the rest get
0; otherwise, everyone gets 0. Clearly everyone playing 0 is
a Nash equilibrium, but any pair of players can do better by
deviating and playing 1.

Say that a Nash equilibrium is k-resilient if it tolerates
deviations by coalitions of up to k players. The notion of
resilience is an old one in the game theory literature, going
back to Aumann [4]. Various extensions of Nash equilibrium
have been proposed in the game theory literature to deal
with coalitions [10, 45]. However, these notions do not deal
with players who act in unexpected ways.

There can be many reasons that players act in unex-
pected ways. One, of course, is that they are indeed ir-
rational. However, often seemingly irrational behavior can
be explained by players having unexpected utilities. For ex-
ample, in a peer-to-peer network like Kazaa or Gnutella,
it would seem that no rational agent should share files.
‘Whether or not you can get a file depends only on whether
other people share files. Moreover, there are disincentives
for sharing (the possibility of lawsuits, use of bandwidth,
etc.). Nevertheless, people do share files. However, studies
of the Gnutella network have shown that almost 70 percent
of users share no files and nearly 50 percent of responses are
from the top 1 percent of sharing hosts [3]. Is the behavior
of the sharing hosts irrational? It is if we assume appropri-
ate utilities. But perhaps sharing hosts get a big kick out
of being the ones that provide everyone else with the music
they play. Is that so irrational? In other cases, seemingly
irrational behavior can be explained by faulty computers or
a faulty network (this, of course, is the concern that work
on Byzantine agreement is trying to address), or a lack of
understanding of the game.

To give just one example of a stylized game where this
issue might be relevant, consider a group of n bargaining
agents. If they all stay and bargain, then all get 2. However,

if any agent leaves the bargaining table, those who leave get
1, while those who stay get 0. Clearly everyone staying at
the bargaining table is a k-resilient Nash equilibrium for all
k > 0, and it is Pareto optimal (everyone in fact gets the
highest possible payoff). But, especially if n is large, this
equilibrium is rather “fragile”; all it takes is one person to
leave the bargaining table for those who stay to get 0.

Whatever the reason, as pointed out in [1], it seems im-
portant to design strategies that tolerate such unanticipated
behaviors, so that the payoffs of the users with “standard”
utilities do not get affected by the nonstandard players us-
ing different strategies. This can be viewed as a way of
adding fault tolerance to equilibrium notions. To capture
this intuition, Abraham et al. [1] define a strategy profile
to be t-tmmune if no player who does not deviate is worse
off if up to ¢ players do deviate. Note the difference be-
tween resilience and immunity. A strategy profile is resilient
if deviators do not gain by deviating; a profile is immune if
non-deviators do not get hurt by deviators. In the example
above, although everyone bargaining is a k-resilient Nash
equilibrium for all k£ > 0, it is not 1-immune.

Of course, we may want to combine resilience and re-
silience; a strategy is (k,t)-robust if it is both k-resilient
and t-immune. (All the informal definitions here are com-
pletely formalized in [1, 2].) A Nash equilibrium is just a
(1,0)-robust equilibrium. Unfortunately, for (k,t) # (1,0),
a (k,t)-robust equilibrium does not exist in general. Never-
theless, there are a number of games of interest where they
do exist; in particular, they can exist if players can take
advantage of a mediator, or trusted third party. To take
just one example, consider Byzantine agreement [51]. Re-
call that in Byzantine agreement there are n soldiers, up to
t of which may be faulty (the ¢ stands for t¢raitor), one of
which is the general. The general has an initial preference
to attack or retreat. We want a protocol that guarantees
that (1) all nonfaulty soldiers reach the same decision, and
(2) if the general is nonfaulty, then the decision is the gen-
eral’s preference. It is trivial to solve Byzantine agreement
with a mediator: the general simply sends the mediator his
preference, and the mediator sends it to all the soldiers.

The obvious question of interest is whether we can imple-
ment the mediator. That is, can the players in the system,
just talking among themselves (using what economists call
“cheap talk”) simulate the effects of the mediator. This is a
question that has been of interest to both the computer sci-
ence community and the game theory community. In game
theory, the focus has been on whether a Nash equilibrium
in a game with a mediator can be implemented using cheap
talk (cf. [7, 8, 16, 18, 31, 54, 55]). In cryptography, the focus
has been on secure multiparty compuiation [20, 53, 56]. Here
it is assumed that each agent i has some private information
z; (such private information, like the general’s preference, is
typically called the player’s type in game theory). The goal
is to have each agent i learn f(z1,...,%n), for some fixed
function f, without learning anything about z; for j # i
beyond what is revealed by the value of f(z1,...,z,). With
a trusted mediator, this is trivial: each agent i just gives the
mediator its private value z;; the mediator then sends each
agent 7 the value f(z1,...,%,). Work on multiparty com-
putation provides general conditions under which this can
be done (see [19] for an overview). Somewhat surprisingly,
despite there being over 20 years of work on this problem
in both computer science and game theory, until recently,



there has been no interaction between the communities on
this topic.

Abraham et al. [1, 2] essentially characterize when medi-
ators can be implemented. To understand the results, three
games need to be considered: an underlying game [', an ex-
tension [y of I with a mediator, and a cheap-talk extension
Ter of I T is assumed to be a normal-form Bayesian game:
each player has a type from some type space with a known
distribution over types, and must choose an action (where
the choice can depend on his type). The utilities of the play-
ers depend on the types and actions taken. For example, in
Byzantine agreement, the possible types of the general are 0
and 1, his possible initial preferences (the types of the other
players are irrelevant). The players’ actions are to attack or
retreat. The assumption that there is a distribution over the
general’s preferences is standard in game theory, although
not so much in distributed computing. Nonetheless, in many
applications of Byzantine agreement, it seems reasonable to
assume such a distribution. Roughly speaking, a cheap talk
game implements a game with a mediator if it induces the
same distribution over actions in the underlying game, for
each type vector of the players. With this background, I can
summarize the results of Abraham et al.

o If n > 3k + 3¢, a (k,t)-robust strategy ¢ with a me-
diator can be implemented using cheap talk (that is,
there is a (k,t)-robust strategy & in the cheap talk
game such that & and & induce the same distribution
over actions in the underlying game). Moreover, the
implementation requires no knowledge of other agents’
utilities, and the cheap talk protocol has bounded run-
ning time that does not depend on the utilities.

e [fn < 3k+3t then, in general, mediators cannot be im-
plemented using cheap talk without knowledge of other
agents’ utilities. Moreover, even if other agents’ utili-
ties are known, mediators cannot, in general, be imple-
mented without having a (k + t)-punishment strategy
(that is, a strategy that, if used by all but at most k+¢
players, guarantees that every player gets a worse out-
come than they do with the equilibrium strategy) nor
with bounded running time.

e [f n > 2k + 3t, then mediators can be implemented
using cheap talk if there is a punishment strategy (and
utilities are known) in finite expected running time
that does not depend on the utilities.

e [f n < 2k + 3¢ then mediators cannot, in general, be
implemented, even if there is a punishment strategy
and utilities are known.

e If n > 2k + 2t and there are broadcast channels then,
for all €, mediators can be e-implemented (intuitively,
there is an implementation where players get utility
within e of what they could get by deviating) using
cheap talk, with bounded expected running time that
does not depend on the utilities.

o [f n < 2k + 2¢ then mediators cannot, in general, be
e-implemented, even with broadcast channels. More-
over, even assuming cryptography and polynomially-
bounded players, the expected running time of an im-
plementation depends on the utility functions of the
players and e.

e [fn > k43t then, assuming cryptography and polynomially-

bounded players, mediators can be e-implemented us-
ing cheap talk, but if n < 2k + 2¢, then the running
time depends on the utilities in the game and e.

e [fn < k43¢, then even assuming cryptography, polynomially-

bounded players, and a (k + t)-punishment strategy,
mediators cannot, in general, be e-implemented using
cheap talk.

e [fn > k+i then, assuming cryptography, polynomially-
bounded players, and a public-key infrastructure (PKI),
we can e-implement a mediator.

All the possibility results showing that mediators can be
implemented use techniques from secure multiparty compu-
tation. The results showing that that if n < 3k+4 3¢, then we
cannot implement a mediator without knowing utilities and
that, even if utilities are known, a punishment strategy is
required, use the fact that Byzantine agreement cannot be
reached if ¢ < n/3; the impossibility result for n < 2k + 3¢
also uses a variant of Byzantine agreement. These results
provide an excellent illustration of how the interaction be-
tween computer science and game theory can lead to fruitful
insights. Related work on implementing mediators can be
found in [22, 28, 32, 35, 38, 41].

3. TAKING COMPUTATIONINTOACCOUNT

Nash equilibrium does not take computation into account.
To see why this might be a problem, consider the following
example, taken from [25].

ExamMpPLE 1. You are given a number n-bit number x.
You can guess whether it is prime, or play safe and say
nothing. If you guess right, you get $10; if you guess wrong,
you lose $10; if you play safe, you get $1. There is only
one Nash equilibrium in this 1-player game: giving the right
answer. But if n is large, this is almost certainly not what
people will do. FEven though primality testing can be done
wn polynomial time, the costs for doing so (buying a larger
computer, for example, or wriling an appropriate program,),
will probably not be worth it for most people. The point here
is that Nash equilibrium s not taking the cost of computing
whether x is prime into account.

There have been attempts in the game theory community
to define solution concepts that take computation into ac-
count, going back to the work of Rubinstein [52]. (See [33]
for an overview of the work in this area in the 1980s, and
[9] for more recent work.) Rubinstein assumed that play-
ers choose a finite automaton to play the game rather than
choosing a strategy directly; a player’s utility depends both
on the move made by the automaton and the complexity of
the automaton (identified with the number of states of the
automaton). Intuitively, automata that use more states are
seen as representing more complicated procedures. Rafael
Pass and I [25] provide a general game-theoretic framework
that takes computation into account. (All the discussion in
this section is taken from [25].) Like Rubinstein, we view all
players as choosing a machine, but we use Turing machines,
rather than finite automata. We associate a complexity, not
just with a machine, but with the machine and its input.
This is important in Example 1, where the complexity of



computing whether z is prime depends, in general, on the
length of .

The complexity could represent the running time of or
space used by the machine on that input. The complexity
can also be used to capture the complexity of the machine
itself (e.g., the number of states, as in Rubinstein’s case) or
to model the cost of searching for a new strategy to replace
one that the player already has. (One of the reasons that
players follow a recommended strategy is that there may be
too much effort involved in trying to find a new one; I return
to this point later.)

We again consider Bayesian games, where each player has
a type. In a standard Bayesian game, an agent’s utility
depends on the type profile and the action profile (that is,
every player’s type, and the action chosen by each player).
In a computational Bayesian game, each player ¢ chooses a
Turing machine. Player i’s type ¢; is taken to be the in-
put to player ¢’s Turing machine M;. The output of M; on
input ¢; is taken to be player i’s action. There is also a
complexity associated with the pair (M;, ;). Player ¢’s util-
ity again depends on the type profile and the action profile,
and also on the complexity profile. The reason we consider
the whole complexity profile in determining player ¢’s util-
ity, as opposed to just i’s complexity, is that, for example, ¢
might be happy as long as his machine takes fewer steps than
j’s. Given these definitions, we can define Nash equilibrium
as usual. With this definition, by defining the complexity
appropriately, it will be the case that playing safe for suffi-
ciently large inputs will be an equilibrium.

Computational Nash equilibrium also gives a plausible ex-
planation of observed behavior in finitely-repeated prisoner’s
dilemma.

ExamMpPLE 2. Recall that prisoner’s dilemma, in prisoner’s
dilemma, there are two prisoners, who can choose to either
cooperate or defect. As described in the table below, if they
both cooperate, they both get 3; if they both defect, then both
get 1; if one defects and the other cooperates, the defector
gets 5 and the cooperator gets —5. (Intuitively, the coopera-
tor stays silent, while the defector “rats out” his partner. If
they both rat each other out, they both go to jail.)

| ¢ D
Cl B3 (=55
D | (5,-5) (-3/3)

It is easy to see that defecting dominates cooperating: no
maiter what the other player does, a player is better off de-
fecting than cooperating. Thus, “rational” players should
defect. And, indeed, (D, D) is the only Nash equilibrium of
this game. Although (C,C) gives both players a better payoff
than (D, D), this is not an equilibrium.

Now consider finitely repeated prisoner’s dilemma (FRPD),
where prisoner’s dilemma is played for some fired number
N of rounds. The only Nash equilibrium s to always defect;
this can be seen by a backwards induction argument. (The
last round is like the one-shol game, so both players should
defect; given that they are both defecting at the last round,
they should both defect at the second-last round; and so on.)
This seems quite unreasonable. And, indeed, in experiments,
people do not always defect. In fact, quite often they coop-
erate throughout the game. Are they irrational? It is hard
to call this irrational behavior, given that the “irrational”

players do much better than supposedly rational players who
always defect. There have been many attempts to explain co-
operation in FRPD in the literature (see, for example, [36]).
Indeed, there have even been well-known attempts that take
computation into account; it can be shown that if players are
restricted to using a finite automaton with bounded complex-
ity, then there exist equilibria that allow for cooperation [47,
50]. However, the strategies used in those equilibria are quite
complex, and require the use of large automata; as a conse-
quence this approach does not seem to provide a satisfactory
explanation as to why people choose to cooperate.

Using the framework described above leads to a straight-
forward explanation. Consider the tit-for-tat strategy, which
proceeds as follows: a player cooperates at the first round,
and then at round m + 1, does whatever his opponeni did ot
round m. Thus, if the opponent cooperated at the previous
round, then you reward him by continuing to cooperate; if he
defected at the previous round, you punish him by defecting.
If both players play tit-for-tat, then they cooperate through-
out the game. Interestingly, tit-for-tat does exceedingly well
in FRPD tournaments, where computer programs play each
other [5].

Tit-for-tat is a simple program, which needs wvery little
memory. Suppose that we charge even a modest amount
for memory usage, and that there is a discount factor §, with
.5 < d < 1, so that if the player getls a reward of ry, in round
m, his total reward over the whole N-round game is taken
to be 22:1 0" rm. In this case, it is easy to see that, no
matter what the cost of memory is, as long as it is positive,
for a suffictently long game, it will be a Nash equilibrium
for both players to play tit-for-tat. For the best response to
tit-for-tat is to play tit-for-tat up to the last round, and then
to defect. But following this strategy requires the player to
keep track of the round number, which requires the use of
ertra memory. The extra gain of $2 achieved by defecting
at the last round, if sufficienily discounted, will not be worth
the cost of keeping track of the round number.

Note that even if only one player is computationally bounded
and ts charged for memory, and memory is free for the other
player, then there is a Nash equilibrium where the bounded
player plays tit-for-tat, while the other player plays the best
response of cooperating up (but not including) to the round
of the game, and then defecting.

Although with standard games there is always a Nash
equilibrium, this is not the case when we take computation
into account, as the following example shows.

EXAMPLE 3. Consider roshambo (rock-paper-scissors). We
model playing rock, paper, and scissors as playing 0, 1, and
2, respectively. The payoff to player 1 of the outcome (i,7)
s 1 if1 =7 D1 (where @ denotes addition mod 8), —1 if
j=1®1, and 0 ifi = j. Player 2’s playoffs are the negative
of those of player 1; the game is a zero-sum game. As is
well known, the unique Nash equilibrium of this game has
the players randomizing uniformly between 0, 1, and 2.

Now constder a computational version of roshambo. Sup-
pose that we take the complexity of a deterministic strategy
to be 1, and the complexity of a strategy that uses random-
ization to be 2, and take player i’s utility to be his payoff in
the underlying Bayesian game minus the complexity of his
strategy. Intuitively, programs involving randomization are
more complicated than those that do not randomize. Wiith
this utility function, it is easy to see that there is no Nash



equilibrium. For suppose that (M1, M2) is an equilibrium. If
M uses randomazation, then 1 can do belter by playing the
deterministic strategy jP1, where j is the action that gets the
highest probability according to Ma (or is the deterministic
choice of player 2 if Ma does not use randomization). Sim-
tlarly, Ma cannot use randomization. But it is well known
(and easy to check) that there is no equilibrium for roshambo
with deterministic strategies.

Is the lack of Nash equilibrium a problem? Perhaps not.
Taking computation into account should cause us to rethink
things. In particular, we may want to consider other so-
lution concepts. But, as the examples above show, Nash
equilibrium does seem to make reasonable predictions in a
number of games of interest. Perhaps of even more inter-
est, using computational Nash equilibrium lets us provide a
game-theoretic account of security.

The standard framework for multiparty security does not
take into account whether players have an incentive to ex-
ecute the protocol. That is, if there were a trusted media-
tor, would player ¢ actually use the recommended protocol
even if ¢ would be happy to use the services of the mediator
to compute the function f? Nor does it take into account
whether the adversary has an incentive to undermine the
protocol.

Roughly speaking, the game-theoretic definition says that
Il is a game-theoretically secure (cheap-talk) protocol for
computing f if, for all choices of the utility function, if it is
a Nash equilibrium to play with the mediator to compute f,
then it is also a Nash equilibrium to use II to compute f.
Note that this definition does not mention privacy. It does
not need to; this is taken care of by choosing the utilities
appropriately. Pass and I [25] show that, under minimal as-
sumptions, this definition is essentially equivalent to a vari-
ant of zero knowledge [21] called precise zero knowledge [42].
Thus, the two approaches used for dealing with “deviating”
players in two game theory and cryptography—Nash equalib-
rium and zero-knowledge “simulation”—are intimately con-
nected; indeed, they are essentially equivalent once we take
computation into account appropriately.

4. TAKING (LACK OF) AWARENESSINTO
ACCOUNT

Standard game theory models implicitly assume that all
significant aspects of the game (payoffs, moves available,
etc.) are common knowledge among the players. However,
this is not always a reasonable assumption. For example,
sleazy companies assume that consumers are not aware that
they can lodge complaints if there are problems; in a war
setting, having technology that an enemy is unaware of (and
thus being able to make moves that the enemy is unaware
of) can be critical; in financial markets, some investors may
not be aware of certain investment strategies (complicated
hedging strategies, for example, or tax-avoidance strategies).

To understand the impact of adding the possibility of un-
awareness to the analysis of games, consider the game shown
in Figure 1 (this example, and all the discussion in this sec-
tion, is taken from [26]). One Nash equilibrium of this game
has A playing acrossa and B playing downg. However, sup-
pose that A is not aware that B can play downg. In that
case, if A is rational, A will play down 4. Therefore, Nash
equilibrium does not seem to be the appropriate solution
concept here. Although A would play acrosss if A knew

that B were going to play downg, A cannot even contem-
plate this possibility, let alone know it.
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Figure 1: A simple game.

To find an appropriate analogue of Nash equilibrium in
games where players may be unaware of some possible moves,
we must first find an appropriate representation for such
games. The first step in doing so is to explicitly represent
what players are aware of at each node. We do this by using
what we call an augmented game.

Recall that an extensive game is described by a game
tree. Each node in the tree describes a partial history of the
game—the sequence of moves that led to that node. Associ-
ated with each node is the player that moves at that node.
Some nodes where a player i moves are grouped together
into an information set for player i. Intuitively, if player
i is at some node in an information set I, then i does not
know which node of I describes the true situation; thus, at
all nodes in I, i must make the same move. An augmented
game is an extensive game with one more feature: associ-
ated with each node in the game tree where player ¢ moves
is the level of awareness of player i—the set of histories that
player i is aware of.

We use the player’s awareness level as a way of keeping
track of how the player’s awareness changes over time. For
example, perhaps A playing across4 will result in B becom-
ing aware of the possibility of playing downg. In financial
settings, one effect of players using certain investment strate-
gies is that other players become aware of the possibility of
using that strategy. Strategic thinking in such games must
take this possibility into account. We would model this pos-
sibility by having some probability of B’s awareness level
changing. (The formal definition of augmented game can be
found in [26].)

For example, suppose that in the game shown in Figure 1

e players A and B are aware of all histories of the game;

e player A is uncertain as to whether player B is aware of
run {acrossa,downg) and believes that he is unaware
of it with probability p; and

e the type of player B that is aware of the run (acrossa,
downp) is aware that player A is aware of all histories,
and he knows A is uncertain about his awareness level
and knows the probability p.

Because A and B are actually aware of all histories of
the underlying game, from the point of view of the modeler,
the augmented game is essentially identical to the game de-
scribed in Figure 1, with the awareness level of both players
A and B consisting of all histories of the underlying game.



However, when A moves at the node labeled A in the mod-
eler’s game, she believes that the actual augmented game is
I'4, as described in Figure 2. In I'*, nature’s initial move
captures A’s uncertainty about B’s awareness level. At the
information set labeled A.1, A is aware of all the runs of
the underlying game. Moreover, at this information set, A
believes that the true game is I'.

At the node labeled B.1, B is aware of all the runs of
the underlying game and believes that the true game is the
modeler’s game; but at the node labeled B.2, B is not aware
that he can play downpg, and so believes that the true game
is the augmented game T'P described in Figure 3. At the
nodes labeled A.3 and B.3 in the game T'B, neither A nor B
is aware of the move downg. Moreover, both players think
the true game is T'P.
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Figure 2: The augmented game ['*.
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Figure 3: The augmented game T'E.

As this example should make clear, to model a game with
possibly unaware players, we need to consider, not just one
augmented game, but a collection of them. Moreover, we
need to describe, at each history in an augmented game,
which augmented game the player playing at that history
believes is the actual augmented game being played.

To capture these intuitions, starting with an underlying
extensive-form game [', we define a game with awareness
based on T to be a tuple I'* = (G, '™, F), where

e G is a countable set of augmented games based on T,
of which one is T'™;

e F maps an augmented game I'" € G and a history
hin T such that PT(h) = i to a pair (I'", ), where
I'* € G and I is an information set for player 7 in game
.

Intuitively, I'™ is the game from the point of view of an om-
niscient modeler. If player i moves at h in game I'" € G and
F('T,h) = (T", 1), then T" is the game that i believes to be
the true game when the history is h, and I consists of the set
of histories in I'® he currently considers possible. For exam-
ple, in the examples described in Figures 2 and 3, taking T'™
to the augmented game in Figure 1, we have F(I'™,()) =
(T4, 1), where I is the information set labeled A.1 in Fig-
ure 2, and F(I'4, (unaware,acrossa)) = (I'P, {{acrossa)}).
There are a number of consistency conditions that have to
be satisfied by the function F; the details can be found in
[26].

The standard notion of Nash equilibrium consists of a
profile of strategies, one for each player. Our generalization
consists of a profile of strategies, one for each pair (i,T"),
where I is a game that agent i considers to be the true game
in some situation. Intuitively, the strategy for a player i at
I is the strategy 7 would play in situations where i believes
that the true game is I”. To understand why we may need to
consider different strategies consider, for example, the game
of Figure 1. B would play differently depending on whether
or not he was aware of downg. Roughly speaking, a profile
& of strategies, one for each pair (i, 1), is a generalized Nash
equilibrium if o, 1/ is a best response for player ¢ if the true
game is I, given the strategies o; 1/ being used by the other
players in T’. As shown in [26], every game with awareness
has a generalized Nash equilibrium.

A standard extensive-form game I' can be viewed as a
special case of a game with awareness, by taking I'™ = T,
G = {I'"}, and F(I'"™, h) = (I'™,I), where I is the informa-
tion set that contains k. Intuitively, I' corresponds to the
game of awareness where it is common knowledge that I is
being played. We call this the canonical representation of
I as a game with awareness. It is not hard to show that a
strategy profile & is a Nash equilibrium of T iff it is a gen-
eralized Nash equilibrium of the canonical representation of
I as a game with awareness. Thus, generalized Nash equi-
librium can be viewed as a generalization of standard Nash
equilibrium.

Up to now, I have considered only games where players
are not aware of their lack of awareness. But in some games,
a player might be aware that there are moves that another
player (or even she herself) might be able to make, although
she is not aware of what they are. Such awareness of un-
awareness can be quite relevant in practice. For example, in
a war setting, even if one side cannot conceive of a new tech-
nology available to the enemy, they might believe that there
is some move available to the enemy without understanding
what that particular move is. This, in turn, may encourage
peace overtures. To take another example, an agent might
delay making a decision because she considers it possible
that she might learn about more possible moves, even if she
is not aware of what these moves are.

Although, economists usually interpret awareness as “be-
ing able to conceive about an event or a proposition”, there
are other possible meanings for this concept. For exam-
ple, awareness may also be interpreted as “understanding
the primitive concepts in an event or proposition”, or as
“being able to determine if an event occurred or not”, or
as “being able to compute the consequences of some fact”
[12]. If we interpret “lack of awareness” as “unable to com-
pute” (note that this interpretation is closely related to the
discussion of the previous section!), then awareness of un-



awareness becomes even more significant. Consider a chess
game. Although all players understand in principle all the
moves that can be made, they are certainly not aware of
all consequences of all moves. A more accurate representa-
tion of chess would model this computational unawareness
explicitly. We provide such a representation.

Roughly speaking, we capture the fact that player i is
aware that, at a node h in the game tree, there is a move
that 7 can make she (7) is not aware by having i’s subjective
representation of the game include a “virtual” move for j at
node h. Since i might have only an incomplete understand-
ing of what can happen after this move, 7 simply describes
what she believes will be the game after the virtual move,
to the extent that she can. In particular, if she has no idea
what will happen after the virtual move, then she can de-
scribe her beliefs regarding the payofts of the game. Thus,
our representation can be viewed as a generalization of how
chess programs analyze chess games. They explore the game
tree up to a certain point, and then evaluate the board po-
sition at that point. We can think of the payoffs following a
virtual move by j in i’s subjective representation of a chess
game as describing the evaluation of the board from ’s point
of view. This seems like a much more reasonable represen-
tation of the game than the standard complete game tree!

All the definitions of games with awareness can be gener-
alized to accommodate awareness of unawareness. In partic-
ular, we can define a generalized Nash equilibrium as before,
and once again show that every game with awareness (in-
cluding awareness of unawareness) has a generalized Nash
equilibrium [26].

There has been a great deal of work recently on modeling
unawareness in games. The first papers on the topic was by
Feinberg [13, 14]. My work with Régo [26] was the first to
consider awareness in extensive games, modeling how aware-
ness changed over time. There has been a recent flurry on
the topic in the economics literature; see, for example, [30,
39, 40, 49]. Closely related is work on logics that include
awareness. This work started in the computer science lit-
erature [12], but more recently, the bulk of the work has
appeared in the economics literature (see, for example, [11,
23, 27, 29, 43, 44]).

5. CONCLUSIONS

I have considered three ways of going beyond standard
Nash equilibrium, which take fault tolerance, computation,
and lack of awareness into account, respectively. These are
clearly only first steps. Here are some directions for further
research (some of which I am currently engaged in with my
collaborators):

e For example, while (k, t)-robust equilibrium does seem
to be a reasonable way of capturing some aspects of
robustness, for some applications, it does not go far
enough. [ said earlier that in economics, all play-
ers were assumed to be strategic, or “rational”; in
distributed computing, all players were either “good”
(and followed the recommended protocol) or “bad” (in
which case they could be arbitrarily malicious). Immu-
nity takes into account the bad players. The definition
of immunity requires that the rational players are not
hurt no matter what the “bad” players do. But this
may be too strong. As Ayer et al. [6] point out, it is
reasonable to expect a certain fraction of players in a

system to be “good” and follow the recommended pro-
tocol, even if it is not a best reply. In general, it may
be hard to figure out what the best reply is, so if fol-
lowing the recommended protocol is not unreasonable,
they will do that. (Note that this can be captured in
a computational model of equilibrium, by charging for
switching from the recommended strategy.)

There may be other standard ways that players act
irrational. For example, Kash, Friedman, and I [34]
consider scrip systems, where players perform work in
exchange for scrip. There is a Nash equilibrium where
everyone uses a threshold strategy, performing work
only when they have less scrip than some threshold
amount. Two standard ways of acting “irrationally”
in such a system are to (a) hoard scrip and (b) pro-
vide service for free (this is the analogue of posting
music on Kazaa). A robust solution should take into
account these more standard types of irrational behav-
ior, without perhaps worrying as much about arbitrary
irrational behavior.

e The definitions of computational Nash equilibrium con-
sidered only Bayesian games. What would appropriate
solution concepts be for extensive-form games? Some
ideas from the work on awareness seem relevant here,
especially if we think of “lack of awareness” as “unable
to compute”.

o Where do the beliefs come from in an equilibrium with
awareness? That is, if [ suddenly become aware that
you can make a certain move, what probability should
I assign to you making that move? Ozbay [49] proposes
a solution concept where the beliefs are part of the so-
lution concept. He considers only a simple setting,
where one player is aware of everything (so that re-
vealing information is purely strategic). Can his ideas
be extended to a more general setting?

Agents playing a game can be viewed participating in a
concurrent, distributed protocol. Game theory does not take
the asynchrony into account, but it can make a big differ-
ence. For example, all the results from [1, 2] mentioned in
Section 2 depend on the system being synchronous. Things
are more complicted in asynchronous settings. Getting so-
lution concepts and that deal well with with asynchrony is
clearly important.

Another issue that plays a major role in computer science
but has thus far not been viewed as significant in game the-
ory, but will, T believe, turn out to be important to the
problem of defining appropriate solution concepts, is the
analogue of specifying and verifying programs. Games are
typically designed to solve certain problems. Thus, for ex-
ample, economists want to design a spectrum auction so that
the equilibrium has certain features. As I pointed out in an
earlier overview [24], game theory has typically focused on
“small” games: games that are easy to describe, such as
Prisoner’s Dilemma. The focus has been on subtleties re-
garding basic issues such as rationality and coordination.
To the extent that game theory is used to tackle larger,
more practical problems, and especially to the extent that
it is computers, or software agents, playing games, rather
than people, it will be important to specify carefully exactly
what a solution to the game must accomplish. For example,
in the context of a spectrum auction, a specification will



have to address what should happen if a computer crashes
while an agent is in the middle of transmitting a bid, how to
deal with agents bidding on slow lines, dealing with agents
who win but then go bankrupt, and so on.

Finding logics to reason about solutions, especially doing
so in a way that takes into account robustness and asyn-
chrony, seems to me a difficult and worthwhile challenge.
Indeed, one desideratum for a good solution concept is that
it should be easy to reason about. Pursuing this theme, com-
puter scientists have learned that one good way of designing
correct programs is to do so in a modular way. Can a similar
idea be applied in game theory? That is, can games designed
for solving smaller problems be combined in a seamless way
to solve a larger problem. If so, results about composabil-
ity of solutions will be needed; we might want a solution
concept that allows for such composability.
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