
HAL Id: hal-00666660
https://hal.science/hal-00666660

Submitted on 29 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a certified Petri net model-checker
Lukasz Fronc, Franck Pommereau

To cite this version:
Lukasz Fronc, Franck Pommereau. Towards a certified Petri net model-checker. 9th Asian Symposiium
on Programming Languages and Systems (APLAS 2011), Dec 2011, Kenting, Taiwan. pp.322–336,
�10.1007/978-3-642-25318-8_24�. �hal-00666660�

https://hal.science/hal-00666660
https://hal.archives-ouvertes.fr

Towards a certified Petri net model-checker

Lukasz Fronc and Franck Pommereau

IBISC, University of Évry, Tour Évry 2
523 place des terrasses de l’Agora, 91000 Évry, France

{fronc,pommereau}@ibisc.univ-evry.fr

Abstract. Petri nets are widely used in the domain of automated ver-
ification through model-checking. In this approach, a Petri Net model of
the system of interest is produced and its reachable states are computed,
searching for erroneous executions. Model compilation can accelerate this
analysis by generating code to explore the reachable states. This avoids
the use of a fixed exploration tool involving an “interpretation” of the
Petri net structure. In this paper, we show how to compile Petri nets
targeting the LLVM language (a high-level assembly language) and for-
mally prove the correctness of the produced code. To this aim, we define
a structural operational semantics for the fragment of LLVM we use.

Keywords: explicit model-checking, model compilation, LLVM, SOS

1 Introduction

Verification through model-checking [1] consists in defining a formal model of
the system to be analysed and then using automated tools to check whether the
expected properties are met or not. We consider here more particularly the widely
adopted setting in which models are expressed using coloured Petri nets [9] and
there states are explored using explicit model-checking that enumerates them
all (contrasting with symbolic model-checking that works with sets of states).
Model compilation is one of the numerous techniques to speedup explicit model-
checking, it relies on generating source code (then compiled into machine code)
to produce a high-performance implementation of the state space exploration
primitives. For instance, this approach is successfully used in the well known
SPIN tool [7], or in Helena coloured Petri net model-checker [14, 3].

In this paper, we propose a way to prove the correctness of such an ap-
proach. More precisely, we focus on the produced code and prove that the object
computed by its execution is an actual representation of the state space of the
compiled model. We consider the Low-Level Virtual Machine (LLVM) language
as our target language for compilation, which reconciles two otherwise contra-
dictory objectives: on the one hand, this is a typed language with reasonably
high-level operations allowing to express algorithms quite naturally; on the other
hand, it is a low-level language that can be equipped with a formal semantics
allowing to formally prove the programs correctness. To do so, we define a struc-
tural operational semantics of the fragment of LLVM we need and use it to
establish the properties of the programs generated by our compiler.

2 Lukasz Fronc and Franck Pommereau

To the best of our knowledge, this is the first attempt to provide a formal
semantics for LLVM. Moreover, if model-checkers are widely used tools, there
exists surprisingly few attempts to prove them at the implementation level [19],
contrasting with the domain of proof assistants [2, 15] for which “proving the
prover” is a common expectation.

The rest of the paper is organised as follows. We first recall the main notions
about coloured Petri nets. Then, we present the LLVM framework, in particu-
lar the syntax of the language and its intuitive semantics, and how it can be
embedded LLVM into a Petri net as a concrete colour domain. In section 4, we
present algorithms and data structures for state space exploration. We then for-
mally define an operational semantics for LLVM, including an explicit memory
model. Finally we present our correctness results. Due to the limited number of
pages, many definitions and intermediary results have been omitted, as well as
the detailed proofs. This material can be found in [5, 4]. Notice also that our
compilation approach is evaluated from a performance point of view in [6].

2 Coloured Petri nets

A (coloured) Petri net involves objects defined by a colour domain that provides
data values, variables, operators, a syntax for expressions, possibly typing rules,
etc. Usually, elaborated colour domains are used to ease modelling; in particular,
one may consider a functional programming language [9, 17] or the functional
fragment (expressions) of an imperative programming language [14, 16]. In this
paper we will consider LLVM as a concrete colour domain.

All these can be seen as implementations of a more general abstract colour
domain providing D the set of data values, V the set of variables and E the set of
expressions. Let e ∈ E, we denote by vars(e) the set of variables from V involved
in e. Moreover, variables or values may be considered as (simple) expressions,
i.e., we assume D ∪ V ⊆ E.

At this abstract level, we do not make any assumption about the typing or
syntactical correctness of expressions; instead, we assume that any expression
can be evaluated, possibly to ⊥ /∈ D (undefined value) in case of any error. More
precisely, a binding is a partial function β : V → D∪{⊥}. Then, let e ∈ E and β
be a binding, we denote by β(e) the evaluation of e under β; if the domain of β
does not include vars(e) then β(e)

df

= ⊥. The application of a binding to evaluate
an expression is naturally extended to sets and multisets of expressions.

Definition 1 (Petri nets). A Petri net is a tuple (S, T, ℓ) where S is the finite
set of places, T , disjoint from S, is the finite set of transitions, and ℓ is a
labelling function such that:

– for all s ∈ S, ℓ(s) ⊆ D is the type of s, i.e., the values that s may contain;
– for all t ∈ T , ℓ(t) ∈ E is the guard of t, i.e., a condition for its execution;
– for all (x, y) ∈ (S×T)∪ (T ×S), ℓ(x, y) is a multiset over E and defines the

arc from x toward y.

Towards a certified Petri net model-checker 3

A marking of a Petri net is a map that associates to each place s ∈ S a
multiset of values from ℓ(s). From a marking M , a transition t can be fired using
a binding β and yielding a new marking M ′, which is denoted by M [t, β〉M ′, iff:

– there are enough tokens: for all s ∈ S, M(s) ≥ β(ℓ(s, t));
– the guard is validated: β(ℓ(t)) = true;
– place types are respected: for all s ∈ S, β(ℓ(t, s)) is a multiset over ℓ(s);
– M ′ is M with tokens consumed and produced according to the arcs: for all

s ∈ S, M ′(s) = M(s)− β(ℓ(s, t)) + β(ℓ(t, s)).

Such a binding β is called a mode of t at marking M .
For a Petri net node x ∈ S ∪ T , we define •x

df

= {y ∈ S ∪ T | ℓ(y, x) 6= ∅} and
x• df

= {y ∈ S ∪ T | ℓ(x, y) 6= ∅} where ∅ is the empty multiset. Finally, we extend
the notation vars to a transition by taking the union of the variable sets in its
guard and connected arcs.

In this paper, we assume that the considered Petri nets are such that, for
all place s ∈ S and all transition t ∈ T , ℓ(s, t) is either ∅ or contains a single
variable x ∈ V. We also assume that vars(t) =

⋃

s∈S vars(ℓ(s, t)), i.e., all the
variables involved in a transition can be bound using the input arcs. The second
assumption is a classical one that allows to simplify the discovery of modes. The
first assumption is made without loss of generality to simplify the presentation.

3 LLVM

The LLVM project (Low Level Virtual Machine) [11] is a modern and modular
toolkit for compiler development used by a wide variety of commercial and open
source projects as well as academic researches [13, 12]. The LLVM-IR (LLVM
Intermediate Representation) [10] is a part of the LLVM project and is a low-
level, platform-independent, intermediate language. Every program written in
this language can be run in a virtual machine or compiled to native code on all
the platforms supported by the LLVM project. Importantly, the LLVM compiler
runs a variety of optimisation passes on the LLVM-IR, which allows us to produce
simple source code knowing it will be optimised by LLVM.

3.1 Syntax and intuitive semantics

A LLVM program is composed of a set of blocks (i.e., sequences of instruc-
tions) identified by labels. Entering or leaving a block is always explicit through
branching instructions (jumps), subprograms calls or return instructions.

To define the syntax, we consider the following pairwise disjoint sets:

– P is the set of pointers;
– T is the set of types, defined inductively as the smallest set containing the

primitive types in T0
df

= {int , bool , . . . } (integers, Boolean values and other
types defined by LLVM but not needed here) and such that if t0, . . . , tn ∈ T

then struct(t0, . . . , tn) ∈ T, which represents a data structure with n + 1
fields of types t0 to tn;

4 Lukasz Fronc and Franck Pommereau

– L is the set of labels, it contains arbitrary names as well as some specific
labels like fL a1, . . . , an M, where ai ∈ V for 1 ≤ i ≤ n, that correspond to
subprograms entry points (including the formal parameters). We define a set
L⊥

df

= L ∪ {⊥} where ⊥ /∈ L stands for an undefined label.

A program is represented as a partial function P from L to the set of blocks,
i.e., that associates each label in its domain to a sequence of instructions.

For our purpose, we need to consider a fragment of LLVM that is formed by
three main syntactic classes: sequences in seq , commands in cmd (i.e., instruc-
tions) and expressions in expr . A sequence is a list of commands which may end
with an expression, in which case it is considered as an expression itself (which
is not reflected on the grammar in figure 1 to keep it simpler).

We assume that programs are syntaxically correct and well typed, so that
we can simplify the syntax by forgetting all types in LLVM source code. The
resulting syntax is presented in figure 1. To allow for writing one-line sequences,
we introduce the sequencing operator “;” that corresponds to the line endings.
We also introduce the skip command that denotes the empty sequence. It may
be noted that pcall (procedure call) and fcall (function call) do not exist in
LLVM but are different instances of the call instruction. This distinction can
be easily made in LLVM because the instruction contains the return type of
the subprogram (function or procedure). Instruction store (resp. load) is the
action of storing (resp. loading) data into (resp. from) the memory through a
pointer. Instruction icmp compares two integers. Instruction phi is used to access
variables assigned in previously executed blocks. Instruction gep corresponds to
pointer arithmetic, we freeze the second argument to 0, which is enough to access
fields in structures by their indexes.

3.2 LLVM-labelled Petri Nets

To compile Petri nets as defined previously into LLVM programs, we need to
consider a variant where the colour domain explicitly refers to a LLVM program.

Definition 2 (LLVM labelled Petri nets). A LLVM labelled Petri net is a
tuple N

df

= (S, T, ℓ, P), where P is a LLVM program, and such that (S, T, ℓ) is a
coloured Petri net with the following changes:

– for all place s ∈ S, ℓ(s) is a LLVM type in T, interpreted as a subset of D;
– for all transition t ∈ T , ℓ(t) is a call to a Boolean function in P whose

parameters are the elements of vars(t);
– for all s ∈ t•, ℓ(t, s) is a singleton multiset whose unique element is a call to

a ℓ(s)-typed function in P whose parameters are the elements of vars(t).

We assume that all the functions involved in the annotations terminate.

With respect to the previous definition, we have concretized the place types
and each expression is now implemented as a LLVM function called from the
corresponding annotation. To simplify the presentation, we have also restricted
the output arcs to be singleton multisets, but this can be easily generalised.

Towards a certified Petri net model-checker 5

seq ::= cmd (statement)
| expr (expression)
| cmd ; seq (sequence of instructions)

cmd ::= br label (unconditional branching)
| br rvalue, label , label (conditional branching)
| pcall label(rvalue, . . . , rvalue) (procedure call)
| ret (return from a procedure)
| var = expr (variable assignment)
| store rvalue, rvalue (assignment through a pointer)
| skip (empty sequence)

expr ::= add rvalue, rvalue (addition)
| load rvalue (read a value through a pointer)
| gep rvalue, 0, nat (get a pointer to a structure field)
| icmp op, rvalue, rvalue, (integers comparison)
| phi (rvalue, label), . . . , (rvalue, label) (get a value after branching)
| fcall label(rvalue, . . . , rvalue) (function call)
| alloc type (memory allocation)
| ret rvalue (return a value from a function)
| rvalue (variable or value)

Fig. 1. Our fragment of the LLVM syntax, where label ∈ L, rvalue ∈ D∪P∪V, var ∈ V,
type ∈ T, nat ∈ N and op ∈ {<,≤,=, 6=,≥, >}.

Moreover, the definitions of binding and modes are extended to LLVM. A LLVM
binding is a partial function β : V → D ∪ P that maps each variable from its
domain to a pointer or a value, and that is widened to D by the identity function.
B is the set of all LLVM bindings. A LLVM mode is thus a LLVM binding
enabling a transition in a LLVM labelled Petri net.

4 Implementing state space exploration

Given an initial marking M0, the state space we want to compute in this paper
is the set R of reachable marking, i.e., the smallest set such that M0 ∈ R and,
if M ∈ R and M [t, β〉M ′ then M ′ ∈ R also. The correctness and termination of
the implementation presented in this section are addressed in section 6.

Our algorithms are implemented on the basis of data structures (multisets,
places, markings, and sets) that must respect some interfaces. An interface is
presented as a set of procedures or functions that manipulates a data structure
through a pointer (C-like interfaces). Moreover, each such subprogram has a
formal specification of its behaviour that relies on an explicit interpretation of
the data structure before and after the subprogram call. Precise examples are
given in section 5.3, after the definition of LLVM formal semantics.

A multiset structure to store values from a type d is assumed and we call
the set of values from d having non-zero occurrences in the multiset its domain.
The multiset interface contains in particular: two procedures addmsetL pmset , elt M
and remmsetL pmset , elt M to respectively add or remove an element elt in pmset ; a

6 Lukasz Fronc and Franck Pommereau

function sizemsetL pmset M to return the domain size; a function nthmsetL pmset , n M
to return the nth element from the domain (for an arbitrary fixed order).

As a container of tokens, a place can be basically implemented as a multiset
of tokens. So the place interface is exactly the multiset interface but annotated
by the place name, for instance adds is like addmset but for place s.

The markings interface contains for each place s a function getsL pmrk M that
returns a pointer to the corresponding place structure, as well as a function
copymrk L pmrk M that returns a copy of the marking structure.

Finally, the set interface contains a function conssetL M that builds a new
empty set and a procedure add setL pset , elt M that adds an element elt to pset .

Transitions firing. Let t ∈ T be a transition such that •t = {s1, . . . , sn} and
t• = {s′1, . . . , s

′
m}. Then, function firet, that computes the marking M ′ reachable

from M by firing t given a valuation of its variables, can be expressed as shown
on the left of figure 2. This function simply creates a copyM ′ ofM , removes from
it the consumed tokens and adds the produced tokens before to return M ′. One
could remark that it avoids a loop over the Petri net places but instead it executes
a sequence of statements. This is generally more efficient (no branching penalties,
no loop overhead, no lookup of functions ft,s′

j
, . . .) and the code is simpler to

generate. Let now xmrq be a pointer to a marking structure implementing M .
The firing algorithm can be implemented as shown on the right of figure 2.

Successors computation. To discover all the possible modes for transition t, func-
tion succt enumerates all the combinations of tokens from the input places. If a
combination corresponds to a mode then the suitable transition firing function is
called to produce a new marking. This algorithm is shown in figure 3. Note the
nesting of loops that avoids an iteration over •t, which saves from querying the
Petri net structure and avoids the explicit construction of a binding. Moreover,

firet : M, x1, . . . , xn →M ′

M ′ ← copy(M)
M ′(s1)←M(s1)− {x1}
· · ·
M ′(sn)←M(sn)− {xn}

M ′(s′1)←M(s′1) + ft,s′
1
(x1, . . . , xn)

· · ·
M ′(s′m)←M(s′m) + ft,s′m(x1, . . . , xn)

return M ′

P (firetLxmrq , x1, . . . , xn M)
df

=










































































// copy the structure marking
x′
mrq = fcall copymrq(xmrq)
// consume tokens

xsi = fcall getsi (x
′
mrq)

pcall remsi (xsi , xi)

}

1≤i≤n

// produce tokens
xs′

j
= fcall gets′

j
(x′

mrq)

os′
j
= fcall ft,s′

j
(x1, . . . , xn)

pcall add s′
j
(xs′

j
, os′

j
)











1≤j≤m

// return the new marking
ret x′

mrq

Fig. 2. On the left, the transition firing algorithm, where xi is the variable in ℓ(si, t)
for all 1 ≤ i ≤ n, and ft,s′

j
is the function called in ℓ(t, s′j) for all 1 ≤ j ≤ m. On the

right, its LLVM implementation.

Towards a certified Petri net model-checker 7

since gt is written in the target language, we avoid an interpretation of the corre-
sponding expression. For the LLVM version, let xmrq be a pointer to a marking
structure and xnext be a pointer to a marking set structure. Then, the algorithm
from figure 3 can be implemented as shown in figure 4. Each iteration over xk

is implemented as a set of blocks subscribed by t, k (for n ≥ k ≥ 1); blocks
subscribed by t, 0 corresponds to the code inside the innermost loop. Note the
phi instruction to update the value of index isi (used to enumerate the tokens in
place si): when the program enters block loopt,i for the first time, it comes from
block header t,i, so we initialise the value of isi to the last index in the domain
of si; later, the program comes back to block loopt,i from block footer t,i, so it
assigns i′si to isi that is the value of isi − 1 (i.e., the previous index).

A function succ is also defined to compute the set of all the successors of a
marking, which is made by calling all the transition specific successor functions
and accumulating the discovered markings into the same set. This algorithm and
its translation in LLVM are shown in figure 5.

5 A formal semantics of LLVM

5.1 Memory model

To start with, we define a memory model for LLVM, including heaps to store
dynamically allocated pointers as well as stacks to store local variables and
arguments for subprograms calls.

A heap is a partial function H : P → T× (D∪P∪{⊥})∗ with a finite domain.
Each heap maps every pointer in its domain to a type and a tuple of values or
pointers. The set of all heaps is H. A heap is well formed if every pair in its image
is type-consistent, for instance if H(p) = (int , d) then d is indeed an integer or
is ⊥ (uninitialised).

The set of all the pointers accessible starting from a pointer p in a heap H
is denoted by p↓H and is defined for all p in P as:

p↓H
df

= {} if p /∈ dom(H)
p↓H

df

= {p} if H(p) = (t, v) and t ∈ T0

p↓H
df

= {p} ∪ p0↓H ∪ · · · ∪ pn↓H if H(p) = (struct(t0, . . . , tn), (p0, . . . , pn))

In can be shown that if a heap H is well formed then p↓H⊆ dom(H) for every
p ∈ dom(H), and more generally that dom(H) =

⋃

p∈P
p↓H .

Then, we need to access and update the data stored onto a heap. For each
heap H, we define a data structure traversal function ·[·]H : P× N → P ∪ D as:

p[i]H
df

=

{

pi if H(p) = (struct(t0, . . . , tn), (p0, . . . , pn)) and 0 ≤ i ≤ n
undefined otherwise

The overwriting function ⊕ : H × H → H represents the writing into memory
and is defined for each p ∈ P as:

(H ⊕H ′)(p)
df

=







H ′(p) if p ∈ dom(H ′)
H(p) if p /∈ dom(H ′) ∧ p ∈ dom(H)
undefined otherwise

8 Lukasz Fronc and Franck Pommereau

succt : M, next→ ⊥

for xn in M(sn) do
. . .

for x1 in M(s1) do
if gt(x1, . . . , xn) then

next ← next ∪ {firet(M,x1, . . . , xn)}
endif

endfor

. . .

endfor

Fig. 3. Transition specific successors computation algorithm, where gt is the function
that evaluates the guard ℓ(t).

P (succtLxmrq , xnext M
df

=
{

br header t,n

P (header t,k)
df

=







xsk = fcall getsk (xmrq)

ssk = fcall sizesk (xsk)
br loopt,k

P (loopt,k)
df

=







isk = phi (ssk , header t,k), (i
′
sk
, footer t,k)

csk = icmp >, isk , 0
br csk , bodyt,k, footer t,k+1

P (bodyt,k)
df

=

{

xk = fcall nthsk (xsk , isk)
br header t,k−1

P (footer t,k)
df

=

{

i′sk = add isk , −1
br loopt,k

P (header t,0)
df

=

{

cg = fcall gt(x1, . . . , xn)
br cg, bodyt,0, footer t,1

P (bodyt,0)
df

=







x′
mrq = fcall firet(xmrq , x1, . . . , xn)

pcall add set(xnext , x
′
mrq)

br footer t,1

P (footer t,n+1)
df

=
{

ret

Fig. 4. LLVM transition specific successor function, for 1 ≤ k ≤ n.

succ : M → next

next ← ∅
succt1(M ,next)
succt2(M ,next)
. . .

succtn(M ,next)
return next

P (succLxmrq M)
df

=






























xnext = fcall consset()
pcall succt1 (xmrq, xnext)
pcall succt2 (xmrq, xnext)
. . .

pcall succtn (xmrq, xnext)
ret xnext

Fig. 5. Computation of all successors (left) and its LLVM implementation (right),
where xmrq is a pointer to a structure marking.

Towards a certified Petri net model-checker 9

In order to compare heaps, a notion of structural equivalence needs to be
defined. This relation ensures that two heaps contain the same data, accessi-
ble from distinct sets of pointers but with the same layout. More precisely we
consider two heaps H, H ′ and two pointers p, p′ and write (H, p) =st (H ′, p′)
whenever H(p) and H ′(p′) are structurally the same values.

We also need to define an operation new : H × T → H × P to build new
heaps, which corresponds to a pointer allocation, using a helper function alloc :
2P × P× T → H as follows:

new(H, t)
df

= (alloc(dom(H) ∪ {p}, p, t), p)
for p /∈ dom(H) a “fresh” pointer

alloc(d, p, t)
df

= {p 7→ (t,⊥)} for t ∈ T0

alloc(d, p, struct(t0, . . . , tn))
df

= {p 7→ (struct(t0, . . . , tn), (p0, . . . , pn))}
⊕ alloc(d ∪ {p0, . . . , pn}, p0, t0)
⊕ · · ·
⊕ alloc(d ∪ {p0, . . . , pn}, pn, tn)

for p0, . . . , pn /∈ d “fresh” pointers

It can be shown that new always returns a well formed heap, and that calling
new using equivalent heaps always returns equivalent heaps.

To define subprogram calls, our memory model also defines stacks that con-
tain frames implicitly pushed onto the stack by the inference rules in the se-
mantics. A frame is a tuple F ∈ F

df

= L⊥ × L × B whose elements are denoted
by (lp,F , lc,F , βF), where lp,F is the label the block the program comes from
(or undefined), lc,F is the label of the block currently executed, and βF is a
LLVM binding representing the current evaluation context. We widen the bind-
ing functional notation to the frames, so we denote by F (x) the binding βF (x)
of x by βF .

Like for heaps we need operations to update frames. The same operator ⊕
is used because the operations are very similar, but on distinct objects. The
binding overwriting operation ⊕ : B×B → B and the frame binding overwriting
operation ⊕ : F× B → F are defined as:

(β ⊕ β′)(p)
df

=







β′(p) if p ∈ dom(β′)
β(p) if p /∈ dom(β′) ∧ p ∈ dom(β)
undefined otherwise

(l, l′, β)⊕ β′ df

= (l, l′, β ⊕ β′)

The structural equivalence can be widened to pairs of heaps and frames and
is denoted by (H,F) =st (H ′, F ′) for two heaps H, H ′ and two frames F ,
F ′. Intuitively, it checks that all data accessible from the frame bindings are
structurally equivalent. This holds also for values stored directly in the bindings
(i.e., without pointers) since the heap equivalence reduces to the equality on D.

10 Lukasz Fronc and Franck Pommereau

5.2 Inference rules

The operational semantics is defined for a fixed and immutable program P ,
which means that no function nor block can be created nor modified during
the execution. We denote the result of a computation by · , for example 2 + 3
is 5. The main objects handled by our inference rules are configurations that
represent a state of the program during its execution. A configuration is a tuple
(seq , H, F), denoted by

(

seq
)

H,F
, where seq is a sequence of instructions, H is

a heap and F is a frame.

The inference rules for expressions are shown in figure 6; expressions eval-
uate to values in the context of a frame. The inference rules for sequence and
commands are shown in figure 7; sequences and commands evaluate to other
sequences or commands in the context of a heap and a frame. One can remark
how a frame is pushed onto the stack in pcall and fcall rules, a new frame F0

is actually replacing the current frame F in the subsumption of these rules and
used to execute the body of the called subprogram. This semantics mixes up
small-step and big-step reductions. Indeed, most of the rules are small-step ex-
cept for pcall and fcall rules in which we link the computation to its result by
making a sequence of reductions in the rule subsumption.

5.3 Data structures interpretation

The link between Petri nets and their LLVM implementation is formalised with a
family of interpretation functions for all data structures. This allows to formalise
the behavioural requirements on the interfaces presented in section 4.

An interpretation is a partial function which maps a pair formed by a heap
and a pointer to a Petri net object: a marking, a set of markings, a multiset of
tokens or a single token, depending on the interpreted object. Interpretations are
denoted by JH, pK⋆, where H ∈ H, p ∈ P ∪ D and ⋆ is an annotation describing
the interpreted object (for instance we use mset(t) instead of ⋆ to interpret a
multiset over a type t). Whenever p is a pointer, we assume that the interpreta-
tion depends only on data that is accessible from p, i.e., p ↓H . Moreover every
interpretation function has to respect the following consistency requirement.

Requirement 1 (Consistency) Let H, H ′ be two heaps, J·, ·K⋆ an interpre-
tation function, and p, p′ two pointers or values. If (H, p) =st (H ′, p′) then
JH, pK⋆ = JH ′, p′K⋆.

As presented in section 4, we use data structures and functions as basic blocks
for constructing our algorithms, they are either predefined or produced by the
compilation process. Each of these functions and data structures is specified
(actually, axiomatized) by a formal interface. In particular, this helps to ensure
independence and modularity between components both in a programmatic and
formal way. Specifying an interface leads to define a set of primitives that respect
given derivations and interpretations. For example, let H be a heap and F a

Towards a certified Petri net model-checker 11

F (x) = p H(p) = (t, v)
(

load x
)

H,F

(

v
)

H

load
F (x) = p p[i]H is defined

(

gep x, 0, i
)

H,F

(

p[i]H
)

H

gep0

F (x1) + F (x2) = v
(

add x1, x2

)

H,F

(

v
)

H

add
(H ′, p) = new(H, t)

(

alloc t
)

H,F

(

p
)

H⊕H′

alloc

F (x1) op F (x2) = v op ∈ {<,≤,=, 6=,≥, >}
(

icmp op, x1, x2

)

H,F

(

v
)

H

icmp

1 ≤ i ≤ n li 6= ⊥
(

phi (x1, l1), . . . , (xn, ln)
)

H,(li, lc, β)

(

β(xi)
)

H

phi

fL a1, . . . , an M ∈ dom(P)
F0 = (⊥, fL a1, . . . , an M, {a1 7→ F (r1), . . . , an 7→ F (rn)})

(

P (fL a1, . . . , an M)
)

H,F0

∗
(

v
)

H′

(

fcall f (r1, . . . , rn)
)

H,F

(

v
)

H′

fcall

(

ret r
)

H,F

(

F (r)
)

H

ret

Fig. 6. Rules for expressions.

(

cmd
)

H,F

(

seq ′
)

H′,F ′

(

cmd ; seq
)

H,F

(

seq ′; seq
)

H′,F ′

seq

(

skip; seq
)

H,F

(

seq
)

H,F

skip

(

br l
)

H,(lp, lc, β)

(

P (l)
)

H,(lc, l, β)

branch1

(β(r) = true ∧ l = l1) ∨ (β(r) = false ∧ l = l2)
(

br r, l1, l2
)

H,(lp, lc, β)

(

P (l)
)

H,(lc, l, β)

branch2

fL a1, . . . , an M ∈ dom(P)
F0 = (⊥, fL a1, . . . , an M, {a1 7→ F (r1), . . . , an 7→ F (rn)})

(

P (fL a1, . . . , an M)
)

H,F0

∗
(

ret
)

H′,F ′

(

pcall f (r1, . . . , rn)
)

H,F

(

skip
)

H′,F

pcall

(

expr
)

H,F

(

v
)

H′

(

x = expr
)

H,F

(

skip
)

H′,F⊕{x 7→ v}

assign

F (rp) = p H(p) = (t, d) H ′ = {p 7→ (t, F (rnew))}
(

store rnew , rp
)

H,F

(

skip
)

H⊕H′,F

store

Fig. 7. Rules for sequences and commands.

12 Lukasz Fronc and Franck Pommereau

frame such that, F (xmset) = pmset is a pointer on a multiset structure storing
elements of type t. Under these conditions, procedure addmset is specified by:

(

pcall addmset(xmset , x)
)

H,F

(

skip
)

H⊕H′,F
(1)

dom(H) ∩ dom(H ′) ⊆ pmset ↓H (2)

JH ⊕H ′, pmsetKmset(t)
= JH, pmsetKmset(t)

+ {JH,F (x)Kt} (3)

Condition (1) describes by a reduction the result of the call, condition (2) re-
strict the updates to be localised in the heap and condition (3) interprets the
computation in terms of Petri nets objects. Similarly, any implementation of the
marking structures has to respect the two following requirements.

Requirement 2 (Soundness) Let H, H ′ be two heaps, F , F ′ two frames,
pmrq ∈ dom(H) a pointer to a marking structure, and ps a pointer to a place
nested in pmrq (i.e., ps ∈ pmrq ↓H). If JH, pmrqKmrq

(s) = JH, psKs,
(

seq
)

H,F

(

seq′
)

H⊕H′,F ′
and pmrq /∈ dom(H ′) then

JH ⊕H ′, pmrqKmrq
(s) = JH ⊕H ′, psKs

Requirement 3 (Separation) Let pmrq be a pointer on a structure marking
in a heap H. If ps and ps′ are pointers to distinct places in this structure then
we have ps↓H ∩ ps′ ↓H= ∅.

The soundness property ensures that any update of a place through a pointer
returned by gets is actually made on the marking (not on a copy). The separation
property ensures that places do not share memory so that updating a place does
not have side effects on other places.

6 Correctness and termination results

We present now the two main results proving the correctness of functions firet
(theorem 1) and succt (theorem 2). Both these results are shown in a minimal
context, i.e., a heap that just contains the required pointers. An auxiliary the-
orem (not presented here) allows to generalise both results to any context that
includes the minimal one.

Theorem 1. Let M be a marking, H a heap and pmrq a pointer on a marking
structure such that dom(H) = pmrq ↓H and JH, pmrqKmrq

= M . Let β
df

= {x1 7→
v1, . . . , xn 7→ vn} be a LLVM mode for transition t, which implies that each vi
is a value or a pointer encoding a token in place si: JH, viKℓ(si) ∈ M(si). Let F
be a frame such that βF

df

= β ⊕ {xmrq 7→ pmrq}. If

M [t, β〉M ′ and
(

fcall firet(xmrq , x1, . . . , xn)
)

H,F

(

p′mrq

)

H⊕H′

then q
H ⊕H ′, p′mrq

ymrq
= M ′ and dom(H) ∩ dom(H ′) = ∅

Towards a certified Petri net model-checker 13

Proof (sketch). This theorem is the direct application of two lemmas showing the
correctness of tokens consumption and production respectively. Both are proved
by induction on the number of places in the marking structure. �

Corollary 1. Under the same hypothesis, the call to firet terminates. �

Theorem 2. Let F be a frame and pmrq a pointer in a heap H such that
pmrq ↓H= dom(H), JH, pmrqKmrq

= M , βF (xmrq) = pmrq and βF (xnext) = pnext .
If

(

fcall succt(xmrq , xnext)
)

H,F

∗
(

pnext
)

H⊕H′
and JH, pnextKset = E

where E si a set of markings, then

dom(H) ∩ dom(H ′) = ∅

JH ⊕H ′, pnextKset = E ∪ {M ′ | ∃β, M [t, β〉M ′}

Proof (sketch). The first result is a consequence of the formal interfaces of the
called functions. The second result is proved as two inclusions:

⊇. This is the consequence of two lemmas:
– by applying reduction rules, we show that if execution goes through a

block header t,k then it will necessarily reach a block footer t,k+1, and
every block annotated by an index greater than k must be executed
also;

– consequently, all combinations of tokens for the input places are actually
enumerated, which implies that all potential modes of t are considered.

⊆. To prove that only actual successor markings are added, we first remark that
if a marking is added into the set, then this happens in block bodyt,0. So it is
enough to prove that this block is executed only if the binding is actually a
mode for t, which can be proved using the reduction rules backward to show
that the guard necessarily evaluated to true. �

Corollary 2. Under the same hypothesis, the call to succt terminates. �

7 Conclusion

We have shown how a Petri net can be compiled targeting a fragment of the
LLVM language. This compilation produces code that provides the primitives to
compute the state space of the compiled Petri net model. Then we have defined
a formal semantics for the fragment of the LLVM language we use. To produce a
readable and usable system of inference rules, we have defined a memory model
based on explicit heaps and stacks. Finally we have proved the correctness of
the code generated by our compiler. The full proofs provided in [5, 4] are quite
long because they are very much detailed to improve our confidence into their
correctness and to ease there later validation using a proof assistant. But notice

14 Lukasz Fronc and Franck Pommereau

also that they are at the same time quite easy to follow. It is worth noting also
that our proofs are modular thanks to clearly defined interfaces with appropriate
axiomatisation. As a consequence, we should avoid issues when parts of the
generated code are replaced, for instance, to use a more efficient data structure,
or alternative state space exploration approaches (like in [8]).

The fragment of LLVM we have considered is rather limited with respect to
the number of instructions. However, it is at the same time quite representative
of the full language. Indeed, it includes the necessary to handle the stack and
the heap which are conceptually the most complicated parts of the language.
Extending our fragment to include all the LLVM computational instructions
(like arithmetic) would be an easy but tedious work. Adding the instructions to
manipulate the stack (like unwind for exception handling) looks quite straight-
forward. The most complicated is probably adding full support for pointers,
which would required to refine our heap model (in particular, pointer arithmetic
would have to be defined).

In this paper, we have considered an“optimistic” approach in that we assume
that the LLVM code provided in the model annotations is correct and terminates.
Moreover, we did not make any assumption about the finiteness of the state
space or the boundedness of integer values that are assumed not to overflow.
In practice, this are however important issues. Approaches based on abstract
interpretation of assembly code like [18] may be helpful to prove such properties
on the compiled model before to start the state space exploration, ensuring that
it will run safely (and allowing to avoid implementing checks in the generated
code).

Future works will address a generalisation of the presented approach to com-
pile a wider variety of coloured Petri nets, in particular nets embedding annota-
tion languages easier to use for the modeller than LLVM. Moreover, we would
like to refine requirement 3 to allow for a logical separation instead of a physi-
cal separation as it is currently defined. This would enable us for implementing
memory sharing and thus saving a lot of memory during a state space explo-
ration. We are also interested in particular in exploiting remarkable structures of
Petri net models that allow to optimise the code generated by the compiler. Such
optimisations also need to be formally proved and preliminary results about this
can be found in [4]. A longer term goal is to prove the whole compilation chain to
obtain the core (i.e., state space exploration) of a certified explicit model-checker
for coloured Petri nets. A complementary aspect is to evaluate the performance
of the state space generation, which is of course another important motivation
when working on a model-checker. As shown in [6], the current implementation
is efficient and can outperform state-of-the-art tools. So, certification is not an
objective that contradicts efficiency.

References

1. E. Clarke, A. Emerson, and J. Sifakis. Model checking: Algorithmic verification
and debugging. ACM Turing Award, 2007.

Towards a certified Petri net model-checker 15

2. ADT Coq/INRIA. The Coq proof assistant. 〈http://coq.inria.fr〉.
3. S. Evangelista. Méthodes et outils de vérification pour les réseaux de Petri de haut

niveau. PhD thesis, CNAM, Paris, France, 2006.
4. L. Fronc. Analyse efficace des réseaux de Petri par des techniques de compilation.

Master’s thesis, MPRI, university of Paris 7, 〈http://www.ibisc.fr/~lfronc/
pub/LF_2010.pdf〉, 2010.

5. L. Fronc and F. Pommereau. Proving a Petri net model-checker implementation.
Technical report, IBISC, University of Évry, 〈http://goo.gl/WMzhp〉, 2010.

6. L. Fronc and F. Pommereau. Optimizing the compilation of Petri nets models. In
Proc. of SUMo’11, volume 726. CEUR, 〈http://ceur-ws.org/Vol-726〉, 2011.

7. G.J. Holzmann and al. Spin, formal verification. 〈http://spinroot.com〉.
8. G.J. Holzmann, D. Peled, and M. Yannakakis. On nested depth-first search. In

Proc. of the 2nd Spin Workshop. AMS, 1996.
9. K. Jensen and L.M. Kristensen. Coloured Petri Nets: Modelling and Validation of

Concurrent Systems. Springer, 2009, ISBN 978-3-642-00283-0.
10. C. Lattner. LLVM language reference manual. 〈http://llvm.org/docs/LangRef.

html〉.
11. C. Lattner and al. The LLVM compiler infrastructure. 〈http://llvm.org〉.
12. C. Lattner and al. LLVM related publications. 〈http://llvm.org/pubs〉.
13. C. Lattner and al. LLVM users. 〈http://llvm.org/Users.html〉.
14. C. Pajault and S. Evangelista. Helena: a high level net analyzer. 〈http://helena.

cnam.fr〉.
15. L. Paulson, T. Nipkow, and M. Wenzel. The Isabelle proof assistant. 〈http:

//www.cl.cam.ac.uk/research/hvg/Isabelle〉.
16. F. Pommereau. Quickly prototyping Petri nets tools with SNAKES. Petri net

newsletter, 2008.
17. C. Reinke. Haskell-coloured Petri nets. In IFL’99, volume 1868 of LNCS. Springer,

1999.
18. Xavier Rival. Traces Abstraction in Static Analysis and Program Transformation

Abstraction de Traces en Analyse Statique et Transformations de Programmes.
PhD thesis, Computer Science Department, École Normale Supérieure, 2005.

19. K.N. Verma, J. Goubault-Larrecq, S. Prasad, and S. Arun-Kumar. Reflecting
BDDs in Coq. In ASIAN’00, volume 1961 of LNCS. Springer, 2000.

