
Variable and Value Ordering Decision Matrix
Hyper-heuristics: a Local Improvement

Approach

José Carlos Ortiz-Bayliss1, Hugo Terashima-Maŕın1, Ender Özcan2, Andrew J.
Parkes2, and Santiago Enrique Conant-Pablos1

1 Tecnológico de Monterrey, Campus Monterrey
Monterrey, Mexico, 64849

{jcobayliss@gmail.com, terashima@itesm.mx, sconant@itesm.mx}
2 University of Nottingham, Jubilee Campus
Nottingham, United Kingdom, NG8 1BB

{exo@cs.nott.ac.uk, ajp@cs.nott.ac.uk}

Abstract. Constraint Satisfaction Problems (CSP) represent an impor-
tant topic of study because of their many applications in different ar-
eas of artificial intelligence and operational research. When solving a
CSP, the order in which the variables are selected to be instantiated and
the order of the values to be tried affect the complexity of the search.
Hyper-heuristics are flexible methods that provide generality when solv-
ing different problems and, within CSP, they can be used to determine
the next variable and value to try. They select from a set of low-level
heuristics and decide which one to apply at each decision point accord-
ing to the problem state. This study explores a hyper-heuristic model
for variable and value ordering within CSP based on a decision matrix
hyper-heuristic that is constructed by going into a local improvement
method that changes small portions of the matrix. The results suggest
that the approach is able to combine the strengths of different low-level
heuristics to perform well on a wide range of instances and compensate
for their weaknesses on specific instances.

Keywords: Constraint Satisfaction, Hyper-heuristics, Variable and Value
Ordering

1 Introduction

A Constraint Satisfaction Problem (CSP) is defined as follows: given a set of n
variables with its respective domain of possible values m and a set of constraints,
each one involving a subset of variables, find all possible n-tuples such that
each n-tuple is an instantiation of the n variables satisfying all the constraints.
For this research we have only considered those CSP in which the domains are
discrete, finite sets and the constraints involve only one or two variables (binary
constraints). Various studies have been developed to randomly generate instances
of binary CSP (see for example [17]), and those studies have shown that random



2 J. C. Ortiz-Bayliss et al.

binary CSP have very interesting properties which make them an important
topic of study. The relevance of studying CSP lies on the fact that they are
an important technique used to find a solution for many artificial intelligence
problems [12].

Binary CSP present two important properties that are used in this research:
the constraint density (p1) and the constraint tightness (p2). The constraint
density is a measure of the proportion of constraints within the instance; the
closer the value of p1 to 1, the larger the number of constraints in the instance.
The constraint tightness (p2) represents a proportion of the conflicts within
the constraints. A conflict is a pair of values ⟨x, y⟩ that is not allowed for two
variables at the same time. The higher the number of conflicts, the more unlikely
an instance has a solution.

Stated as a classic search problem, a CSP is usually solved using a Depth
First Search (DFS) where every variable represents a node in the tree. Every
time a variable is instantiated, the constraints must be checked to verify that
none of them is violated. When an assignation violates one or more constraints,
the instantiation must be undone, and another value must be considered for that
variable. If there are not any values available, the value of the previous instanti-
ated variable must be changed. This technique is known as backtracking. There
are some improvements to this basic search method which try to reduce the
number of revisions of the constraints (consistency checks) like constraint prop-
agation and backjumping. With constraint propagation the idea is to propagate
the effect of one instantiation to the rest of the variables due to the constraints
among them. Thus, every time a variable is instantiated, the values of the other
variables that are not allowed because of the current instantiation are removed.
Because of this, only allowed values for the variables remain. Backjumping is an-
other powerful technique for retracting and modifying the value of a previously
instantiated variable but is different to backtracking because backjumping can
go back more than one level at the time when a backward movement is needed.

The selection of the next variable to instantiate and its respective value
affects the search complexity and represents an opportunity to optimize the
search. Every CSP contains characteristics that could make it more suitable to
a certain heuristic. If these characteristics can be identified, then the problems
would be solved more efficiently. Some heuristics for variable and value ordering
exist, but none of them has been able to behave well for all instances. As we can
observe, the selection of the right heuristic for the current instance is not trivial.

Hyper-heuristics are a modern approach to take advantage of the selective
application of the low-level heuristics based on the current problem features.
Even though the idea of combining multiple heuristics goes back to 1960s ([9],
[7]) the term hyper-heuristic was first introduced by Denzinger et al. [8] in 1997.
Surveys on hyper-heuristic methodologies can be found in [5] and [3]. Hyper-
heuristics can be divided into two main classes: those which select from existing
heuristics and the ones that generate new heuristics. A more detailed descrip-
tion about the classification of hyper-heuristics can be found in [5] and [4]. As
representative studies on the hyper-heuristic methodologies that generate new



Variable and Value Ordering Decision Matrix Hyper-heuristics 3

heuristics, we can cite Fukunaga, who uses genetic programming as an auto-
mated heuristic discovery system for the SAT problem [10]. Conversely, most of
the hyper-heuristics that select from existing low-level heuristics are based on a
similar iterative framework in which the search is performed in two successive
stages: heuristic selection and move acceptance. One of the first attempts to
systematically map CSP to algorithms and heuristics according to the features
of the problems was presented by Tsang and Kwan [21], in 1993. In that study,
the authors presented a survey of algorithms and heuristics for solving CSP
and they proposed a relation between the formulation of the CSP and the most
adequate solving method for that formulation. More recently, Ortiz-Bayliss et
al. [16] developed a study about heuristics for variable ordering within CSP and
a way to exploit their different behaviours to construct hyper-heuristics by using
a static decision matrix to select the heuristic to apply given the current state
of the problem. More studies about hyper-heuristics applied to CSP include the
work done by Terashima-Maŕın et al. [20], who proposed an evolutionary frame-
work to generate hyper-heuristics for variable ordering in CSP; and the research
developed by Bittle and Fox [1] who presented a hyper-heuristic approach for
variable and value ordering for CSP based on a symbolic cognitive architecture
augmented with case based reasoning as the machine learning mechanism for
their hyper-heuristics. Ortiz-Bayliss et al [15] recently presented a study where
they represent variable ordering hyper-heuristics as integer matrices and a ge-
netic algorithm is used to evolve the structure of the matrices in order to generate
hyper-heuristics.

Our model produces hyper-heuristics represented as matrices of integers by
going through a local improvement process. Each matrix represents a rule for
the application of the ordering heuristics based on the values of p1 and p2 of the
instance at hand.

This paper is organized as follows: Section 2 describes in detail the solution
model developed for this research. The experiments and main results are shown
in Section 3. Finally, Section 4 presents the conclusions and future work.

2 Solution Approach

In this section we present the solution model proposed in this research. We also
include a brief description of the variable and value ordering heuristics and the
CSP instances used in this investigation. Finally, the decision matrix hyper-
heuristic and the local improvement process are described.

2.1 Variable and Value Ordering

Many researchers have proved the importance of the order of the variables and
its impact in the cost of the solution search [17]. The search space grows ex-
ponentially, and so does the time for finding the optimal ordering. This is very
important because a bad ordering can lead to not finding a solution (in case we
are limited in time, which is usually the case). Once a variable has been selected



4 J. C. Ortiz-Bayliss et al.

to be instantiated we need to decide which value, among all the ones feasible,
will be used for that instantiation. This ordering also has relevance to the search,
because it also affects the complexity of the search.

Various heuristic and approximate approaches have been proposed that find
good solutions for some instances of the problem. However, it has not been
possible to find a reliable method to solve well all instances of CSP. In this
study, we have included two variable ordering heuristics and two value ordering
heuristics. Max-Conflicts (MXC) and Saturation Degree (SD) [2] are the variable
ordering heuristics and we have included Min-Conflicts (MINC) [14] and Max-
Conflicts (MXC) as value ordering heuristics.

A solution for any given CSP is constructed selecting one variable at a time
based on one of the two variable ordering heuristics used in this investigation:
MXC and SD. Each one of these heuristics reorders the variables to be instan-
tiated dynamically at each step during the construction process. Later, a value
must be selected and assigned to the chosen variable considering the constraints
and using MINC or MXC as value ordering heuristic depending on the instance
features. A CSP solver that makes use of constraint propagation and backjump-
ing was implemented for developing this research. The ordering heuristics used
in this investigation are briefly explained in the following lines.

MXC is a very simple and fast heuristic, and the main idea is to select the
variable which values are involved in the larger number of conflicts among the
constraints in the instance. MXC can be used both for variable ordering and for
value ordering. When used for variable ordering, the instantiation will produce
a subproblem that minimises the number of conflicts among the variables left to
instantiate. When applied to value ordering, the principle of selecting the ‘most
conflictive’ value remains, but now the heuristic only chooses values from the
selected variable. The other variables are not considered because they have not
been selected for instantiation.

SD has been more frequently used for graph colouring, but it is possible to
adapt it for being applied to the variable ordering problem in general CSP. The
degree of a node is defined as the number of nodes adjacent to it. The saturation
degree of a node Xi is the number of different colours to which Xi is adjacent
[2]. In graph colouring, one implicit constraint is that two adjacent nodes cannot
be assigned the same colour. Thus, all connected instantiated nodes must have
different colors. In our research, we define the saturation degree of a node Xi as
the number of adjacent nodes to Xi that have already been instantiated. In this
way, our implementation of SD takes advantage of the topology of the constraint
graph to select the most restricted variable given the progress in the search.

MINC is one simple and commonly used value ordering heuristic in CSP.
When using MINC, the heuristic prefers the value (from the selected variable)
that is involved in the minimum number of conflicts [13]. MINC will try to leave
the maximum flexibility for subsequent variable assignments.

By combining the variable and value ordering heuristics, we obtain four com-
binations: MXC/MINC, SD/MINC, MXC/MXC and SD/MXC. From this point
on we will refer to each one of these combinations as ordering heuristics. In this



Variable and Value Ordering Decision Matrix Hyper-heuristics 5

way, each heuristic describes one way to order the variables and, at the same
time, a way to order the values from the variables.

2.2 CSP Instances and The Problem State Representation

The binary CSP instances used for the experiments in this research are randomly
generated in two stages. In the first stage, a constraint graph G with n nodes is
randomly constructed and then, in the second stage, the incompatibility graph C
is formed by randomly selecting a set of edges (incompatible pairs of values) for
each edge (constraint) in G. More details on the framework for problem instance
generation can be found in [18] and [19]. The parameter p1 determines how many
constraints exist in a CSP instance and it is called constraint density, whereas p2
determines how restrictive the constraints are and it is called constraint tight-
ness. In this model, there should be exactly p1n(n − 1)/2 constraints (rounded
to the nearest integer), and for each pair of constrained variables, the number
of inconsistent pairs of values should be exactly m2p2 (where m is the uniform
domain size of the variables). Every time a variable is assigned a new value and
the infeasible values are removed from domains of the remaining uninstantiated
variables, the values of p1 and p2 change and a sub-problem with new features
appears. This is the reason why we decided to use the constraint density and
tightness to represent the problem state and guide the selection of the low-level
heuristics. Our idea is that these two features can be used to describe a CSP
instance and to create a relation between instances and heuristics.

There is a relation between the structure of CSP and the difficulty of solving
them with search algorithms [6]. Specifically, the median search cost of search
algorithms for CSP exhibits a sharp peak as the values of p1 and p2 change. This
peak coincides with the transition from under-constrained to over-constrained
instances (region known as transition phase), often manifested as an abrupt
change in the probability that an instance has a solution. Inside this region,
the most difficult soluble problems and the most difficult insoluble problems
co-exist [19].

The collection of instances used for training includes 130 different hard
instances, divided into two sets: 30 for Set A and 100 for Set B. Both sets
A and B are composed by distinct instances generated with the parameters
(n = 20,m = 10, p1 = 0.6, p2 = 0.33), which correspond to hard instances [6].
An additional Set C is used only for testing purposes. For Set C we generated
405 instances, with n = 20, m = 10, p1 = 0.6 and p2 in the range [0, 1] with
increments of 0.0125. The complete collection of instances used in this research
includes both easy instances (outside the transition phase) and hard instances
(inside the transition phase).

2.3 The Decision Matrix Hyper-heuristic and The Local
Improvement Approach

The decision matrix hyper-heuristic is formed by a matrix of integers, where
the rows are used to represent the constraint density (p1) and the columns the



6 J. C. Ortiz-Bayliss et al.

constraint tightness (p2). There are other features that can be used to describe
a CSP instance (see for example: k and ρ in [11]) but p1 and p2 have been
usually applied to for this purpose. The value of each element represents the
heuristic to apply when the instance features correspond to the values of p1 and
p2 coded in the axes. Each cell of the matrix corresponds to one decision point,
the points where the hyper-heuristic decides which heuristic to apply to continue
the search. Each cell contains a value from 0 to 3, which is used to specify the
ordering heuristic to be used when the instance features match the ones at that
decision point. Because the matrix presents increments of 0.10 on both p1 and p2
axes (and these parameters lie in the range (0, 1]), the resulting matrices contain
10 × 10 cells. We tried different resolutions and sizes for the matrices and we
observed that increasing the resolution of the matrix does not necessary provide
a better performance. After preliminary studies we found that the best size of the
matrices (in the number of cells per rows and columns) lies in the range [10, 20].
We observed that small decision matrices do not contain enough decision points
to produce a significant change of heuristics during the search. Thus, the hyper-
heuristics obtained are very monotonous. Conversely, than 20 rows and columns
produced over-detailed matrices that required larger amounts of time during
the improvement process. The results produced by this over-detailed matrices
did not show to be worth the additional improvement time. When the hyper-
heuristic is created, all the cells are initialized to -1, meaning that the cell has
never been used as decision point. When the hyper-heuristic is used to solve an
instance, the decision points used during the search are initialized. There are two
ways to initialize the decision points: (1) selecting one random ordering heuristic
or (2) using a default ordering heuristic. For this research we decided to use the
second way to initialize the matrices.

We will try to clarify how the decision matrix hyper-heuristic is used with
an example. Imagine we have a hyper-heuristic coded in a 4 × 4 matrix with
increments of 0.25 in p1 and p2. This matrix has the next values on each axis:
0.25, 0.5, 0.75 and 1.0 (the values are uniformly distributed in the range (0, 1]). In
this example, we assume that the decision matrix has already been updated via
the improvement process. Thus, the values of the cells that were used during the
training have already been assigned one of the four possible ordering heuristics.
The points that were not visited during the training process do not have one
heuristic assigned. In case an unseen instance is presented to the hyper-heuristic
and it forces the matrix to visit one of these unassigned cells, the value for that
decision point will be determined using the default ordering heuristic. Figure 1
shows the hyper-heuristic discussed. Suppose that an instance P is presented to
this hyper-heuristic and the features of instance P are p1 = 0.8 and p2 = 0.70
(during the search, p1 is estimated as the number of non empty edges in the
constraint graph over the maximum possible number of edges and p2 is obtained
by the average of the tightness of all the constraints). In that case, the cell to be
accessed in the decision matrix would be (2, 2), which corresponds to the values
p1 = 0.75 and p2 = 0.75, due to the resolution of the matrix. In this example,
heuristic 0 would be selected as ordering heuristic. If we change the resolution of



Variable and Value Ordering Decision Matrix Hyper-heuristics 7

the matrix, the number of cells will change along with the values of the constraint
density and tightness coded in the axes. Once the ordering heuristic has been
used, the original instance P is transformed into P ′, which values of p1 and p2
may be different from P . If we continue applying the hyper-heuristic, we will be
moving through the decision matrix. Every time we get closer to the solution,
we also get closer to the origin of the decision matrix. When we finally find a
solution to the instance, the cells visited in the matrix allow us to map the search
tree for that specific instance.

Fig. 1. An example hyper-heuristic.

The local improvement approach uses a very simple method to upgrade the
matrices and improve the performance of the hyper-heuristics. The method is
based on the idea of changing the decision matrix, one cell at the time, and
accepting the change only if it improves the performance of the hyper-heuristic
on a set of instances (training set). Basically, we are implementing a hill climbing
search on the space of heuristics. Every time we change the ordering heuristic
corresponding to one decision point, the rest of the search tree from that node
may be different. Thus, new points will be activated in the decision matrix and
their cells initialized. If we observe the search tree on the space p1×p2, it is clear
that, as we get closer to the solution (the deeper nodes in the search tree), we
find the smaller the values of p1 and p2. Based on this observation we concluded
that the nodes of the tree which are located further from the origin are visited
first than the closer ones. We need to keep a record of the number of changes per
cell in the matrix, otherwise the improvement method will always change the
same decision point. Thus, we proposed an order to change the decision points
in the matrix: the further points from the origin that have not achieved the
maximum number of changes have priority to be updated. Because the process
is not randomized, if we run the process twice with the same parameters we will
obtain the same results. The decision points to be updated depend only on the
instances solved during the training and the cells visited because of the search.
The local improvement process is described in the following lines:

1. Initialize the decision matrix hyper-heuristic.
2. Solve the instances in the training set with the hyper-heuristic and obtain

the average consistency checks per instance (avg0(HH)).



8 J. C. Ortiz-Bayliss et al.

3. Update the decision matrix. Only one cell is changed according to the criteria
already described.

4. Solve the instances in the training set with the updated hyper-heuristic and
obtain the average consistency checks per instance (avg(HH)). If avg(HH) <
avg0(HH), make avg0(HH) = avg(HH) and accept the change. Otherwise,
cancel the change and return the decision matrix to the previous configura-
tion.

5. Repeat from step 3 until the maximum number of cycles is reached.

3 Experiments and Results

In order to test the model proposed we developed three experiments. In the first
experiment we focus on the generation of hyper-heuristics using a small hard
training set (Set A) and later, we test those hyper-heuristics on a larger set of
hard unseen instances (Set B) with similar properties than the instances inside
the training set. The second experiment tries to obtain new hyper-heuristics us-
ing the larger set (Set B) and analysing the results to see whether the training on
those specific instances can improve the results of the hyper-heuristics obtained
in the first experiment. The third and final experiment tests the performance of
the hyper-heuristics trained with Set B on unseen instances from Set C which
includes hard and not so hard instances.

3.1 Experiment I

In this experiment we produced four hyper-heuristics, each one using a differ-
ent default ordering heuristic. The size of the matrices was set to 10 and for
each hyper-heuristic the local improvement process ran for 30 cycles. In this
experiment, the instances from Set A were used as input for the process. Ta-
ble 1 presents the average number of consistency checks that any of the four
hyper-heuristics uses at the start of the process, at the end of the improvement
process and the reduction achieved through the process with respect to the ini-
tial hyper-heuristic. One conclusion derived from Table 1 is that hyper-heuristics
HH01-04 have the same performance on Set A in terms of consistency checks. It
is important to mention that the decision matrices from these hyper-heuristics
are not equal, but some decision points share the same ordering heuristics. This
means that even with a different combination of heuristics we can achieve the
same performance. Because each hyper-heuristic is using a different default or-
dering heuristic to initialize the decision matrix at the beginning of the process,
it is clear to see that the average consistency checks that MXC/MINC requires
to solve each instance in Set A is the the same that the average obtained by
the hyper-heuristic that uses it as default heuristic at the beginning of the pro-
cess, it is, 15834. Following the same reasoning, to solve each instance in Set A,
SD/MINC, MXC/MXC and SD/MXC require 9709, 16032 and 9995 consistency
checks, respectively. In all the cases the hyper-heuristics are able to overcome
the average consistency checks required by the pure ordering heuristics.



Variable and Value Ordering Decision Matrix Hyper-heuristics 9

Table 1. Performance of HH01-04 on Set A

HH Default H Avg. at start Avg. at end Reduction

HH01 MXC/MINC 15834 7947 50%
HH02 SD/MINC 9709 7947 19%
HH03 MXC/MXC 16032 7947 51%
HH04 SD/MXC 9995 7947 21%

Once we trained hyper-heuristics HH01-04, it is time to test whether they
are able to perform well on a wider set of instances with similar features to those
used during the training. We used HH01-04 to solve Set B without any additional
training. The results presented in Table 2 are still competitive, but not as good
as in the previous test. Even though the hyper-heuristics are able to overcome
the results of MXC/MINC and MXC/MXC, the hyper-heuristics are not able
to beat SD/MINC and SD/MXC. This decrease in the performance is justified
because the hyper-heuristics were not trained for those specific instances. Even
though no additional training was performed, HH01-04 provide good results
when compared to the simple ordering heuristics: the average consistency checks
required by HH02 to solve each instance of Set B is 11.57% above the average of
the best ordering heuristic (which in this case is SD/MINC with 7989 consistency
checks). The results from this test are presented in Table 2.

Table 2. Performance of HH01-04 on Set B

H Avg(Checks) HH Avg(Checks)

MXC/MINC 20308 HH01 8913
SD/MINC 7989 HH02 8914
MXC/MXC 19170 HH03 8913
SD/MXC 8553 HH04 8913

3.2 Experiment II

We have already argued that one possible cause of the decrease in the perfor-
mance of HH01-04 when tested on Set B is the fact that they were not trained
for such set. In an attempt to confirm this idea, we produced four new hyper-
heuristics (HH05-08) as described in Experiment I, but this time we used Set B
as training set during the process. The results shown in Table 3 confirm the idea
that the difference in the performance of HH01-04 with respect to the two sets
was not because of the model itself, but the training instances used during the
process. Table 3 presents the results of hyper-heuristics HH05-08 on Set B. As
we can observe, these hyper-heuristics provide better results than the previous
HH01-04. The difference in the performance is notorious, and three of the four
hyper-heuristics are able to perform better than each one of the simple ordering
heuristics (even though in the case of SD/MINC the difference is not significant).



10 J. C. Ortiz-Bayliss et al.

HH07 does not provide results as good as the other hyper-heuristics but it is still
better than any of the previous HH01-04.

Table 3. Performance of HH05-08 on Set B

HH Default H Avg. at start Avg. at end Reduction

HH05 MXC/MINC 20308 7959 61%
HH06 SD/MINC 7989 7959 1%
HH07 MXC/MXC 19170 8856 54%
HH08 SD/MXC 8553 7960 7%

3.3 Experiment III

In the previous experiments we trained and tested our hyper-heuristics using
only hard instances. We also need to consider the performance of these hyper-
heuristics on other instances with similar features, but not as difficult as the
ones presented before. The instances from Set C were solved with HH05-08
and compared against the performance of the corresponding default ordering
heuristic (figure 2).

Fig. 2. Performance of HH05-08 and their corresponding default ordering heuristic on
Set C.



Variable and Value Ordering Decision Matrix Hyper-heuristics 11

In Figure 2 we can observe that HH05 and HH08 clearly outperform their
respective default ordering heuristics. Specially at the peak located at the tran-
sition phase, each of these two heuristics dominate the ordering heuristics. In
the case of HH06 the performance is not very clear. Both the behaviour of HH06
and SD/MINC describe a very similar curve for values of p2 < 0.6. For larger
values of p2, HH06 is dominated by SD/MINC. Finally, without any additional
training, HH07 was not able to compete with MXC/MXC. This ordering heuris-
tic looks very robust for the instances contained in Set C. It is important to
recall that the instances in Set C were never seen before by the hyper-heuristics
and also, they have features different to those used during the training.

4 Conclusions

The solution model presented in this paper produces good quality hyper-heuristics
which are able to compete with the simple ordering heuristics on the different
sets used in this investigation.

The hyper-heuristics produced for one specific set reduce their performance
when applied to unseen instances with similar features but they are still com-
petitive. Even though the hyper-heuristics presented achieved promising results
we still need to work more in order to obtain better quality hyper-heuristics that
can be applied to a wider range of instances without having to retrain them.

As future work we have considered the inclusion of new ordering heuristics
and new ways to test the performance of the hyper-heuristics, not only the
average consistency checks on the sets. We also know it is a common practice
to use randomly generated instances in CSP studies but we are aware that it is
not enough to test our approach. We want to test our hyper-heuristics on real
instances taken from existing CSP repositories.

5 Acknowledgments

This research was supported in part by ITESM under the Research Chair CAT-
144 and the CONACYT Project under grant 99695.

References

1. Bittle, S.A., Fox, M.S.: Learning and using hyper-heuristics for variable and value
ordering in constraint satisfaction problems. In: Proceedings of the 11th Annual
Conference Companion on Genetic and Evolutionary Computation Conference:
Late Breaking Papers. pp. 2209–2212. GECCO ’09, ACM, New York, NY, USA
(2009)

2. Brelaz, D.: New methods to colour the vertices of a graph. Communications of the
ACM 22 (1979)

3. Burke, E., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Rong, Q.: A survey of
hyper-heuristics. Tech. Rep. NOTTCS-TR-SUB-0906241418-2747, School of Com-
puter Science, University of Nottingham (2009)



12 J. C. Ortiz-Bayliss et al.

4. Burke, E., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A classi-
fication of hyper-heuristic approaches. Tech. Rep. NOTTCS-TR-SUB-0907061259-
5808, School of Computer Science, University of Nottingham (2009)

5. Chakhlevitch, K., Cowling, P.: Hyperheuristics: Recent developments. In: Cotta,
C., Sevaux, M., Srensen, K. (eds.) Adaptive and Multilevel Metaheuristics, Studies
in Computational Intelligence, vol. 136, pp. 3–29. Springer Berlin / Heidelberg
(2008)

6. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
In: Proceedings of IJCAI-91. pp. 331–337 (1991)

7. Crowston, W.B., Glover, F., Thompson, G.L., Trawick, J.D.: Probabilistic and
parametric learning combinations of local job shop scheduling rules p. 117 (1963)

8. Denzinger, J., Fuchs, M., Fuchs, M., Informatik, F.F., Munchen, T.: High per-
formance atp systems by combining several ai methods. In: In Proc. Fifteenth
International Joint Conference on Artificial Intelligence (IJCAI 97. pp. 102–107.
Morgan Kaufmann (1997)

9. Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local job-shop
scheduling rules. In: Factory Scheduling Conference. Carnegie Institute of Tech-
nology (1961)

10. Fukunaga, A.S.: Automated discovery of local search heuristics for satisfiability
testing. Evolutionary Computation 16, 31–61 (March 2008)

11. Gent, I., MacIntyre, E., Prosser, P., Smith, B., T.Walsh.: An empirical study of
dynamic variable ordering heuristics for the constraint satisfaction problem. In:
Proceedings of CP-96. pp. 179–193 (1996)

12. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8(1),
99–118 (1977)

13. Minton, S., Johnston, M.D., Phillips, A., Laird, P.: Minimizing conflicts: A heuristic
repair method for csp and scheduling problems. Artificial Intellgence 58, 161–205
(1992)

14. Minton, S., Phillips, A., Laird, P.: Solving large-scale csp and scheduling problems
using a heuristic repair method. In: Proceedings of the 8th AAAI Conference. pp.
17–24 (1990)

15. Ortiz-Bayliss, J.C., Özcan, E., Parkes, A.J., Terashima-Maŕın, H.: On the idea of
evolving decision matrix hyper-heuristics for solving constraint satisfaction prob-
lems. In: GECCO’11: Proceedings of the 13th annual conference on Genetic and
evolutionary computation (to appear) (july 2011)

16. Ortiz-Bayliss, J.C., Terashima-Maŕın, H., Özcan, E., Parkes, A.J.: Mapping the
performance of heuristics for constraint satisfaction. In: IEEE Congress on Evolu-
tionary Computation (CEC). pp. 1–8 (july 2010)

17. Prosser, P.: Binary constraint satisfaction problems: Some are harder than others.
In: Proceedings of the European Conference in Artificial Intelligence. pp. 95–99.
Amsterdam, Holland (1994)

18. Prosser, P.: An empirical study of phase transitions in binary constraint satisfaction
problems. Tech. Rep. Report AISL-49-94, University of Strathclyde (1994)

19. Smith, B.M.: Locating the phase transition in binary constraint satisfaction prob-
lems. Artificial Intelligence 81, 155–181 (1996)

20. Terashima-Maŕın, H., Ross, P., Faŕıas-Zárate, C., López-Camacho, E., Valenzuela-
Rendón, M.: Generalized hyper-heuristics for solving 2d regular and irregular pack-
ing problems. Annals of Operations Research 179, 369–392 (2010)

21. Tsang, E., Kwan, A.: Mapping constraint satisfaction problems to algorithms and
heuristics (1993)


