Skip to main content

MFCA: Matched Filters with Cellular Automata for Retinal Vessel Detection

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7094))

Abstract

Blood vessel extraction is an important step for abnormality detection and for obtaining good retinopathy diabetic diagnosis in digital retinal images. The use of filter bank has shown to be a powerful technique for detecting blood vessels. In particular, the Matched Filter is appropriate and efficient for this task and in combination with other methods the blood vessel detection can be improved. We propose a combination of the Matched Filter with a segmentation strategy by using a Cellular Automata. The strategy presented here is very efficient and experimentally yields competitive results compared with others methods of the state of the art.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Rawi, M., Qutaishat, M., Arrar, M.: An improved matched filter for blood vessel detection of digital retinal images. Computers in Biology and Medicine 37, 262–267 (2007)

    Article  Google Scholar 

  2. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Transactions on Medical Imaging 8(3), 263–269 (1989)

    Article  Google Scholar 

  3. Gang, L., Chutatape, O., Krishnan, S.M.: Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter. IEEE Transactions on Biomedical Engineering 49(2), 168–172 (2002)

    Article  Google Scholar 

  4. Gorman, L.O., Sammon, M.J., Seul, M.: Practical Algorithms for Image Analysis: Description, Examples, Programs and Projects. Cambridge University, New York (2008)

    Google Scholar 

  5. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging 19, 203–210 (2000)

    Article  Google Scholar 

  6. Kittler, J., Illingworth, J.: Minimum error thresholding. Pattern Recognition 19, 41–47 (1986)

    Article  Google Scholar 

  7. Konushin, V., Vezhnevets, V.: Interactive image colorization and recoloring based on coupled map lattices. In: Graphicon, pp. 231–234 (2006)

    Google Scholar 

  8. Li, Q., Zhang, L., You, J., Zhang, D., Bhattacharya, P.: Dark line detection with line width extraction. In: IEEE International Conference on Image Processing, ICIP 2008, pp. 621–624 (2008)

    Google Scholar 

  9. Luo, Z., Liu, Z., Li, J.: Micro-Blood Vessel Detection using K-means Clustering and Morphological Thinning. In: Liu, D., et al. (eds.) ISNN 2011, Part III. LNCS, vol. 6677, pp. 348–354. Springer, Heidelberg (2011)

    Google Scholar 

  10. Martinez-Perez, M., Hughes, A., Thom, S., Bharath, A.A., Parker, K.: Segmentation of blood vessels from red-free and fluorescein retinal images. Medical Image Analysis 11, 47–61 (2007)

    Article  Google Scholar 

  11. Mendonca, A., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Transactions on Medical Imaging 25(9), 1200–1213 (2006)

    Article  Google Scholar 

  12. Palomera-Pérez, M.A., Martínez-Pérez, M.E., Bent́ez-Pérez, H., Ortega-Arjona, J.L.: Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE Transactions on Information Technology in Biomedicine, 500–506 (2010)

    Google Scholar 

  13. Perfetti, R., Ricci, E., Casali, D., Costantini, G.: Cellular Neural Networks with Virtual Template Expansion for Retinal Vessel Segmentation. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 54, 141–145 (2007)

    Article  Google Scholar 

  14. Rangayyan, R.M., Ayres, F.J., Oloumi, F., Oloumi, F., Eshghzadeh-Zanjani, P.: Detection of Blood Vessels in the Retina Using Gabor Filters. J. Electronic Imaging 17(2), 023018 (2008)

    Article  Google Scholar 

  15. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1), 146–168 (2004)

    Article  Google Scholar 

  16. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  17. Singh, N., Tripathi, R.C.: Automated early detection of diabetic retinopathy using image analysis techniques. International Journal of Computer Applications 8(2), 18–23 (2010); published By Foundation of Computer Science

    Google Scholar 

  18. Soares, J.V.B., Le, J.J.G., Cesar, R.M., Jelinek, H.F., Cree, M.J., Member, S.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging 25, 1214–1222 (2006)

    Article  Google Scholar 

  19. Usher, D., Dumskyj, M., Himaga, M., Williamson, T.H., Nussey, S., Boyce, J.: Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening. Diabetic Medicine a Journal of the British Diabetic Association 21(1), 84–90 (2004)

    Article  Google Scholar 

  20. Vezhnevets, V., Konouchine, V.: “GrowCut” - Interactive Multi-Label N-D Image Segmentation By Cellular Automata. In: Graphicon 2005, pp. 150–156. Novosibirsk Akademgorodok, Russia (2005)

    Google Scholar 

  21. Zana, F., Claude Klein, J.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Transactions on Image Processing 10, 1010–1019 (2001)

    Article  MATH  Google Scholar 

  22. Zhang, B., Li, Q., Zhang, L., You, J., Karray, F.: Retinal vessel centerline extraction using multiscale matched filter and sparse representation-based classifier. In: Second International Conference on Medical Biometrics, ICMB 2010, pp. 181–190 (2010)

    Google Scholar 

  23. Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Computers in Biology and Medicine 40, 438–445 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dalmau, O., Alarcon, T. (2011). MFCA: Matched Filters with Cellular Automata for Retinal Vessel Detection. In: Batyrshin, I., Sidorov, G. (eds) Advances in Artificial Intelligence. MICAI 2011. Lecture Notes in Computer Science(), vol 7094. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25324-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25324-9_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25323-2

  • Online ISBN: 978-3-642-25324-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics