Skip to main content

Classification of the Action Surface EMG Signals Based on the Dirichlet Process Mixtures Method

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7101))

Abstract

This paper proposes a new classification method based on Dirichlet process mixtures(DPM) to investigate the classification of the four actions from the action surface EMG(ASEMG) signals. This method first builds a classification model of the data by using the multinomial logit model (MNL). Then a classifier is given by using the classification information of training data. For the features of ASEMG, we use a combined method of the empirical mode decomposition(EMD), Largest Lyapunov exponent and Linear discriminant analysis(LDA) dimension reduction. The highest average classification accuracy rates are over 90%. The results indicate that this classification method could be applied the classification of the ASEMG signals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antoniak, C.E.: Mixture of Dirichlet process with applications to Bayesian nonparametric problems. Annals of Statistics 273(5281), 1152–1174 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ferguson, T.S.: A Bayesian analysis of some nonparamteric problems. Annas of Statistics 1, 209–230 (1973)

    Article  MATH  Google Scholar 

  3. Blackwell, D., MacQueen, J.B.: Ferguson distributions via Polya urn scheme. Annals of Statistics 1, 353–355 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Escobar, M.D., West, M.: Bayesian density estimation and inference using mixtures. J. Amer. Stat. Assoc. 90, 577 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. MacEachern, S.N., Müller, P.: Estimating mixture of Dirichlet process models. J. Comput. Graph. Stat. 7, 223–238 (1998)

    Google Scholar 

  6. Shahbaba, B., Gentles, A.J., Beyene, J., Plevritis, S.K., Greenwood, C.M.T.: A Bayesian nonparametric method for model evaluation application to genetic studies. J. Nonparam. Stat. 21(3), 379–396 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Shahbaba, B., Neal, R.M.: Nonlinear models using Dirichlet process mixtures. J. Mach. Learn. Res. 10, 1829–1850 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Jara, A., García-Zattera, M.J., Lesaffre, E.: A dirichlet process mixture model for the analysis of correlated binary responses. Computational Statistics & Data Analysis 51, 5402–5415 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jackson, E., Davy, M., Doucet, A., Fitzgerald, W.J.: Bayesian unsupervised signal classification by dirichlet process mixtures of Gaussian processes. In: The 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. III-1077 - III-1080 (2007)

    Google Scholar 

  10. Xue, Y., Liao, X.J., Carin, L., Krishnapuram, B.: Multi-Task learning of classification with dirichlet process priors. Journal of Machine Learning Research 8, 35–63 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Silva, A.: A dirichlet process mixture model for brain MRI tissue classification. Medical Image Analysis 11, 169–182 (2007)

    Article  Google Scholar 

  12. Neal, R.M.: Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics 9, 249–265 (2000)

    MathSciNet  Google Scholar 

  13. Huang, N.E., Shen, Z., Long, S.R., et al.: The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis. Proc. Roy. Soc. London 454A, 903–995 (1998)

    Article  MATH  Google Scholar 

  14. Kantz, H.: A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185, 77–87 (1994)

    Article  Google Scholar 

  15. Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: The TISEAN package. CHAOS 9, 413–440 (1999)

    Article  MATH  Google Scholar 

  16. Hegger, R., Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis, http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.1/index.html

  17. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Transaction on Pattern Recogntion and Machine Intelligence 19(7), 711–720 (1997)

    Article  Google Scholar 

  18. Franc, V., Hlavac, V.: Statistical Pattern Recognition Toolbox (STPRtool), http://cmp.felk.cvut.cz/cmp/software/stprtool/

  19. Lei, M., Wang, Z.Z., Feng, Z.J.: Detecting nonlinearity of action surface EMG signal. Physics Letters A 290, 297–303 (2001)

    Article  MATH  Google Scholar 

  20. Chen, X.P., Zhu, X.Y., Zhang, D.G.: Use of the discriminant Fourier-derived cepstrum with feature-level post-processing for surface electromyographic signal classification. Physiol. Meas. 30, 1399–1413 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lei, M., Meng, G. (2011). Classification of the Action Surface EMG Signals Based on the Dirichlet Process Mixtures Method. In: Jeschke, S., Liu, H., Schilberg, D. (eds) Intelligent Robotics and Applications. ICIRA 2011. Lecture Notes in Computer Science(), vol 7101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25486-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25486-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25485-7

  • Online ISBN: 978-3-642-25486-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics