Skip to main content

CAD-2-SIM – Kinematic Modeling of Mechanisms Based on the Sheth-Uicker Convention

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7101))

Included in the following conference series:

Abstract

This paper describes methods of kinematic modeling and of forward kinematics computation that are implemented in a new kinematic modeling software – named CAD-2-SIM – that transfers models of mechanisms from computer-aided design software to simulation. In particular, the software is based on a convention developed by Sheth and Uicker in 1971 that we call the two-frame convention, since it requires the definition of two specifically placed and named frames per joint. This convention simplifies the kinematic specification of an arbitrary mechanism and enables computing its forward kinematics. The presented notation uses an indexing scheme based on graph theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeles, J.: Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, 3rd edn. Springer-Verlag New York, Inc., Secaucus (2007)

    Book  MATH  Google Scholar 

  2. Davidson, J.K., Hunt, K.H., Pennock, G.R.: Robots and Screw Theory: Applications of Kinematics and Statics to Robotics. In: ASME, vol. 126 (2004)

    Google Scholar 

  3. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. Trans. of the ASME. Journal of Applied Mechanics 22, 215–221 (1955)

    MathSciNet  MATH  Google Scholar 

  4. Diankov, R.: Automated Construction of Robotic Manipulation Programs. PhD thesis, Carnegie Mellon University, Robotics Institute (2010)

    Google Scholar 

  5. Diestel, R.: Graph Theory. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  6. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  7. Funda, J., Paul, R.P.: A computational analysis of screw transformations in robotics. IEEE Transactions on Robotics and Automation 6, 348–356 (1990)

    Article  Google Scholar 

  8. Gupta, K.C.: Kinematic analysis of manipulators using the zero reference position description. Int. J. Rob. Res. 5, 5–13 (1986)

    Article  Google Scholar 

  9. Hartenberg, R.S., Denavit, J.: Kinematic Synthesis of Linkages (1964)

    Google Scholar 

  10. Lai, H.-J., Haug, E.J., Kim, S.-S., Bae, D.-S.: A decoupled flexible-relative co-ordinate recursive approach for flexible multibody dynamics. International Journal for Numerical Methods in Engineering 32(8), 1669–1689 (1991)

    Article  MATH  Google Scholar 

  11. McPhee, J.: On the use of linear graph theory in multibody system dynamics. Nonlinear Dynamics 9(1), 73–90 (1996)

    Article  MathSciNet  Google Scholar 

  12. Murray, R.M., Shankar Sastry, S., Li, Z.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  13. Perez, A., McCarthy, J.M.: Dual quaternion synthesis of constrained robotic systems. Journal of Mechanical Design 126, 425–435 (2004)

    Article  Google Scholar 

  14. Roth, B.: Overview on advanced robotics: Manipulation. In: Proceedings ICAR, pp. 569–580 (1985)

    Google Scholar 

  15. Sahu, S., Biswal, B.B., Subudhi, B.: A novel method for representing robot kinematics using quaternion theory. In: IEEE Sponsored Conference on Computational Intelligence, Control And Computer Vision In Robotics & Automation (2008)

    Google Scholar 

  16. Sciavicco, L., Siciliano, B.: Modelling and Control of Robot Manipulators, 2nd edn. Kluwer Academic Publishers (1999)

    Google Scholar 

  17. Selig, J.M.: Geometric Fundamentals of Robotics, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  18. Sheth, P.N., Uicker, J.J.: A generalized symbolic notation for mechanisms. Journal of Engineering for Industry, Series B 93(70), 102–112 (1971)

    Article  Google Scholar 

  19. Thomas, U., Maciuszek, I., Wahl, F.M.: A Unified Notation for Serial, Parallel, and Hybrid Kinematic Structures. In: ICRA, pp. 2868–2873 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bongardt, B. (2011). CAD-2-SIM – Kinematic Modeling of Mechanisms Based on the Sheth-Uicker Convention. In: Jeschke, S., Liu, H., Schilberg, D. (eds) Intelligent Robotics and Applications. ICIRA 2011. Lecture Notes in Computer Science(), vol 7101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25486-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25486-4_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25485-7

  • Online ISBN: 978-3-642-25486-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics