Skip to main content

Meta-modeling for Manufacturing Processes

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7102))

Abstract

Meta-modeling for manufacturing processes describes a procedure to create reduced numeric surrogates that describe cause-effect relationships between setting parameters as input and product quality variables as output for manufacturing processes. Within this method, expert knowledge, empiric data and physical process models are transformed such that machine readable, reduced models describe the behavior of the process with sufficient precision. Three phases comprising definition, generation of data and creation of the model are suggested and used iteratively to improve the model until a required model quality is reached. In manufacturing systems, such models allow the generation of starting values for setting parameters based on the manufacturing task and the requested product quality. In-process, such reduced models can be used to determine the operating point and to search for alternative setting parameters in order to optimize the objectives of the manufacturing process, the product quality. This opens up the path to self-optimization of manufacturing processes. The method is explained exemplarily at the gas metal arc welding process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schuh, G., Klocke, F., Brecher, C., Schmidt, R.: Excellence in Production. Apprimus Verlag, Aachen (2007)

    Google Scholar 

  2. LaValle, S., Kuffner, J.: Radomized Kinodynamic Planning. The International Journal of Robotics Research 25(5), 378–400 (2001)

    Article  Google Scholar 

  3. Kim, C., Tsujino, H., Sugano, S.: Rapid Short-Time Path Planning for Phase Space. Journal of Robotics and Mechatronics 23(2), 271–280 (2011)

    Article  Google Scholar 

  4. N.N.: DIN EN 8580: Fertigungsverfahren – Begriffe, Einteilung (2003)

    Google Scholar 

  5. Stork, A., Thole, C.A., Klimenko, S., Nikitin, I., Nikitina, L., Astakhov, Y.: Simulated Reality in Automotive Design. In: International Conference on Cyberworlds, pp. 23–27 (2007)

    Google Scholar 

  6. Schüttler, J., Lose, J., Schmitt, R., Schulz, W.: Exploring Process Domain Boundaries of Complex Production Processes using a Metamodeling Approach. In: 12th CIRP Conference on Modeling of Machining Operations, Donostia-San Sebastián - Spain, Hrsg.: Arrazola, P. Conference on Modeling of Machining Operations, Mondragon, May 7-8, vol. 2, II, pp. 835–841 (2009)

    Google Scholar 

  7. Michaeli, W., Schreiber, A.: Der Weg zum geregelten Prozess. SwissPlastics 32(11), S.21–S.26 (2010)

    Google Scholar 

  8. Schultz, J.: Eine Strategie zur Gewinnung Neuronaler Modelle für nichtlineare, dynamische Systeme. In: VDI (Hrsg.): VDI-Berichte 1282, GMA-Kongress 1996, Mess- und Automatisierungstechnik. VDI-Verlag, Düsseldorf (1996)

    Google Scholar 

  9. He, X., Asada, H.: A New Method for Identifying Orders of Input-Output Models for Nonlinear Dynamic Systems. In: Proceedings of the American Control Conference, San Francisco, USA (1993)

    Google Scholar 

  10. Witt, S.: Integrierte Simulation von Maschine, Werkstück und spanendem Fertigungsprozess. Dissertation, RWTH Aachen University, pp. 40–41 (2007)

    Google Scholar 

  11. Insperger, T., Mann, B.P., Stépán, G., Bayly, P.V.: Stability of up-milling and down-milling part 1: Alternative analytical methods. International Journal of Machine Tools & Manufacture (43), 25–34 (2002)

    Google Scholar 

  12. Klocke, F., Kratz, S., Veselovac, D., Mtz. de Aramaiona, P., Arrazola, P.: Investigation on force sensor dynamics and their measurement characteristics. In: ASME International Mechanical Engineering Congress and Exposition, Boston (2008)

    Google Scholar 

  13. Gloy, Y.-S., Muschong, C., Gries, T.: Prediction of process- and product-quality of the weaving process. In: Abstract Book / AUTEX 2010: 10th World Textile Conference, p. 91. Technologija, Vilnius (2010)

    Google Scholar 

  14. Reisgen, U., Beckers, M., Willms, K., Buchholz, G.: Einsatz und Vorgehensweise bei der Ersatzmodellierung beim Impulslichtbogenschweißverfahren. DVS-Berichte 268, S.79–S.84 (2010)

    Google Scholar 

  15. Lin, D.: A construction method for orthogonal Latin hypercube designs. Biometrika 93(2), 279–288 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Romero, V., Burkardt, J., Gunzburger, M., Peterson, J.: Comparison of pure and “Latinized” centroidal Voronoi tessellation against various other statistical sampling methods. Journal of Reliability Engineering and system Safety 91(10-11), 1266–1280 (2006)

    Article  Google Scholar 

  17. Klocke, F., Veselovac, D., Auerbach, T., Kamps, S.: Kennwertgenerator für die automatisierte Versuchsdurchführung von Zerspanversuchen. In: Virtuelle Instrumente in der Praxis-Begleitband zum 15. VIP-Kongress 2010, Hrsg.: Jamal, R.; Heinze, R., Hüthig Heidelberg, S. 75–S81 (2010) ISBN 978-3-8007-3235-7

    Google Scholar 

  18. Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş.: EuroGP 2010. LNCS, vol. 6021. Springer, Heidelberg (2010)

    Book  Google Scholar 

  19. Draper, N.R., Smith, H.: Applied Regression Analysis. Wiley Series in Probability and Statistics (1998) ISBN 978-0-471-17082-2

    Google Scholar 

  20. Rojas, R.: Neural Networks. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  21. Jurecka, F.: Robust Design Optimization Based on Metamodeling Techniques. Dissertation, Technische Universität München (2007)

    Google Scholar 

  22. Zell, A., Mache, N., Sommer, T., Korb, T.: Design of the SNNS Neural Network Simulator. In: Österreichische Artificial Intelligence Tagung, pp. 93–102 (1991)

    Google Scholar 

  23. Gorissen, D.: Grid-Enabled Adaptive Surrogate Modeling for Computer Aided Engineering, PhD Thesis, Ghent University (2010)

    Google Scholar 

  24. Wolberg, G.: Recent Advances in Image Morphing. In: Proceedings Computer Graphics International, pp. 64–71 (1996)

    Google Scholar 

  25. Efron, B., Gong, G.: A Leasurly Look at the Bootstrap, the Jackknife, and Cross-Validation. American Statistican 37(1), 36–48 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Auerbach, T. et al. (2011). Meta-modeling for Manufacturing Processes. In: Jeschke, S., Liu, H., Schilberg, D. (eds) Intelligent Robotics and Applications. ICIRA 2011. Lecture Notes in Computer Science(), vol 7102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25489-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25489-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25488-8

  • Online ISBN: 978-3-642-25489-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics