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Abstract. In this paper, a wavelet-based adaptive control is proposed for a class 
of robotic manipulators, which consist of nonlinearities for friction effects and 
uncertain terms as disturbances. The controller is calculated by using a mixed of 
feedback linearization technique, supervisory control and ∞H  control. In addi-

tion, the parameter adaptive laws of the wavelet network are developed using a 
Lyapunov-based design. It is also shown that both system tracking stability and 
convergence of the error estimation can be guaranteed in the closed-loop sys-
tem. Simulation results on a three-link robot manipulator show the satisfactory 
performance of the proposed control schemes even in the presence of large 
modeling uncertainties and external disturbances. 
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1 Introduction 

Wavelet theory has a profound impact on signal processing as it offers a rigorous 
mathematical approach to the treatment of multiresolution. The combination of soft 
computing and wavelet theory has lead to a number of new techniques: wavelet net-
works and fuzzy wavelet [2, 7, 25]. It has been applied in a wide range of engineering 
disciplines such as signal processing, control engineering, pattern recognition and 
computer graphics. In the literature, some of the attempts are made in solving surface 
integral equations, improving the finite difference time domain method, solving linear 
differential equations and nonlinear partial differential equations and modelling non-
linear semiconductor devices [3, 6, 10-15, 21, 23, 24]. It has been shown that by em-
ploying the technique of feedback linearization and the theory of wavelet network, the 
robust adaptive control is designed based on Lyapunov method. The combination of 
wavelet theory and neural networks has lead to the development of wavelet networks. 
Wavelet networks are feed forward neural networks using wavelets as activation func-
tion. Wavelet networks have been used in classification and identification problems 
with some success. The strength of wavelet networks lies in their capabilities of 
catching essential features in “frequency-rich” signals. The origin of wavelet net-
works can be traced back to the work by [5] in which Gabor wavelets were used for 
image classification. Wavelet networks have become popular after the work by works 
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[22, 26]. Recently, application of wavelet networks in identification and control de-
sign for a class of nonlinear dynamical systems has been investigated in [13]. 

On the other hand, robotic manipulators are non-linear models, if we take into ac-
count static frictions and dead zone will have non-linear models with unknown para-
meters. For systems that move at opposite directions and low speed (about zero), if 
we need high accuracy and performance, we have to consider static frictions and dead 
zone and if not, we will encounter a reduction in performance of system and even 
instability. 

In the literature, there are some appreciable works related to utilizing different con-
trol techniques to the nonlinear robotic manipulators. These approaches often com-
bine feedback linearization and optimal control techniques. It has been shown that 
how optimal control and adaptive control of robot motion may act in concert in the 
case of unknown or uncertain system parameters. Until now, often techniques that 
have been expressed need to exact model and exact value of model’s parameters. 
However, in actual situations, the robot dynamics is rarely completely known, and it 
is thus difficult to express real robot dynamics in exact mathematical equations or to 
linearize the dynamics with respect to the operating point, see [4, 8, 9, 16, 17] and the 
references therein. 

In this paper, a wavelet-based adaptive control is designed for a class of robotic 
manipulators. Model of robotic manipulators consists of some nonlinearity for friction 
effects and uncertain terms as disturbances. The controller is found by using the tech-
nique of feedback linearization, supervisory control and ∞H  control and the parame-

ter adaptive laws of the wavelet network are developed using a Lyapunov-based 
|design. It is also shown that both system tracking stability and error convergence of 
the estimation for nonlinear function can be guaranteed in the closed-loop system. 
Simulation results on a three-link robot manipulator show the satisfactory perfor-
mance of the proposed control schemes even in the presence of large modeling uncer-
tainties and external disturbances. 

The paper is organized as follows. In Section 2 we will review some fundamentals 
of wavelet networks and mathematical notations. In Section 3 we give a wavelet-
based adaptive control design for rigid robot systems. In Section 4, in order to demon-
strate the validity of the proposed control method, a three-link robot controller is  
designed and simulated in the face of large uncertainties and external disturbances. 

2 Wavelet Networks 

The original objective of the wavelet theory is to construct orthogonal bases of 
)(L2 ℜ . These bases are constituted by translation and dilation of the same function 

(.)ψ , namely wavelet function. It is preferable to take (.)ψ localized and regular. The 

principles of wavelet construction are as follows [13, 26]:  

1. (.)φ is a scaling function and the family )kx2( j −φ  for j2k0 <≤  constitutes 

an orthogonal basis of  jV , 

2. the function )kx( −φ  are mutually orthogonal for k  ranging over Ζ  , 
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3. the family )kx2( j −ψ  for j2k0 <≤  constitutes an orthogonal basis of jW . 

4. the family }jjfor)kx2(),kx2({ 0
j0j ≥−ψ−φ  forms an orthogonal basis of 

)(L2 ℜ . 

The wavelet subspaces jW are defined as 

}2k0,)kx2({W jj
j <≤−ψ=                                                   (1) 

which satisfy  0WW ij =∩  for ij ≠∀ . For each Ζ∈j , let us consider the closed 

subspaces 1j2jj WWV −− ⊕⊕="  of )(L2 ℜ , where ⊕ denotes the direct sum, these 

nested subspaces have the following properties [13, 26]: 

i. "" ⊂⊂⊂⊂ − 101 VVV ;  

ii. )(L)V(close 2j
j

2L ℜ=
Ζ∈
∪ ; 

iii.  0Vj
j

=
Ζ∈
∩ ; 

iv. Ζ∈⊕=+ jWVV jj1j ; 

v. .jV)x2(fV)x(f 1jj Ζ∈∈↔∈ +  

If (.)φ and (.)ψ  are compactly supported, they give a local description, at different 

scales j , of the considered function. The wavelet series representation of the one-

dimensional function )x(f is given by 

 
Ζ∈ ≥ Ζ∈

ψ+φ=
k 0jj k

jkjkk0jk0j
)x(ba)x(f                                   (2) 

where )kx2(2)x( 0j2
0j

k0j
−φ=φ , )kx2(2)x( j2

j

jk −ψ=ψ , and using the inner product 

property >< .,. , the wavelet coefficients k0j
a  and jkb  are obtained as 

>φ=< )x(),x(fa k0jk0j
,                                                           (3) 

>ψ=< )x(),x(fb jkjk .                                                          (4) 

While the function )x(f  is unknown, the wavelet coefficients K0j
a and jkb cannot be 

calculated simply by (3) and (4), respectively. Since, it is not realistic to use an infi-
nite number of wavelets to represent the function )x(f , we consider the following 

wavelet representation form of the function )x(f  

)x()x(b)x(f̂ T2M

1Mj

2N

1Nk
jkjk ψθ=ψ=  

−= −=
                            (5) 

for some positive integers 2211 N,M,N,M , vector  
T

2N2M1N2M2N1M1N1M )b,,b,,b,,b( ………=θ  and vector 

.))x(,),x(,),x(,),x(()x( T

2N2M1N2M2N1M1N1M ψψψψ=ψ ………  
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If )x(f̂)x(f)N,N,M,M( 2121f −=Ξ  is the Network Error (or approximation er-

ror), then it is easy to show that for arbitrary constant 0≥η , there exist some con-

stants 2211 N,M,N,M  such that η≤Ξ
22121f )N,N,M,M(  for all ℜ∈x [1]. This 

means that )x(f can be approximated to any desired accuracy by a wavelet network

)x(f̂ with large enough 2211 N,M,N,M . The variable wavelet networks were intro-

duced to achieve desired estimation accuracy and a suitable size network, and to adapt 
to variations of the characteristics and operating points in nonlinear systems [13, 26].  

The wavelet series representation can be easily generalized to any dimension n. 
For the n-dimension case T

n21 ]x,,x,x[x "= , we introduce the wavelet function  

)x()x()x()x,,x,x()x( n21n21 ψψψ=ψ=ψ "… .                         (6) 

Now, we make a modification to replace the wavelet bases in (5) with (6). Then the 
modified wavelet network becomes 

)x()x(b)x(b)x(f̂ T2M

1Mj

2N

1Nk

n

1l
ljkjk

2M

1Mj

2N

1Nk
jkjk ψθ=ψ=ψ=   ∏ 

−= −= == =
                (7) 

where T

2N2M1N2M2N1M1N1M )b,,b,,b,,b( ………=θ  and 

.))x(,),x(,),x(,),x(()x( T

2N2M1N2M2N1M1N1M ψψψψ=ψ ………  

3 Robot Manipulators Dynamics 

The dynamics of an n-link robot manipulator may be expressed in the Lagrange form 
[18]: 

 )t()t()q(g)q(
c

fq
V

Fq)q,q(
m

Vq)q(M d τ=τ+++++ ������                     (8) 

with q(t)∈ℜn  joint variable, M(q) ∈ℜ n×n inertia, ∈)q,q(Vm � ℜm×n  Coriolis/centripetal 

forces, g(q)∈ℜn  gravitational forces, Fv∈ℜn×n  diagonal matrix of viscous friction 
coefficients, fc(q)∈ℜn Coulomb friction coefficients, and τd(t)∈ℜn external distur-
bances. The bounded values of the external disturbances are given by ║τd(t)║ < bd. 
The external control torques to each joints are τ(t) ∈ℜn. Given a desired trajectory 
qd(t) ∈ℜ n , the tracking error is 

 )t(q)t(q)t(e d −=                                                         (9) 

and the instantaneous performance measure is defined as 

 )t(e)t(e)t(r Λ+= �                                                        (10) 

where Λ is the constant gain matrix or critic (not necessarily symmetric). The robot 
dynamics (8) may be written as 

 )t()t(-)x(h)t(r)q,q(
m

V -)t(r)q(M dτ+τ+= ��                                         (11) 
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where the robot nonlinear function is 

  )q(cfqvF)q(g)edq)(q,q(mV)edq)(q(M)x(h ������� +++Λ++Λ+=          (12) 

where TT
d

T
d

T
d

TT ]q,q,q,e,e[x ����= . This key function h(x) captures all the unknown dy-

namics of the robot arm. We employ an adaptive wavelet networks 

)x(),x(ĥ
f

T
ff ψθ=θ                                                             (13) 

to approximate (or model) the nonlinear function h(x). The optimal weight vector ∗θf

is quantities required only for analytical purposes. Typically ∗θf are chosen as 

})x()x(hmax{minarg f
T
f

xf
f ψθ−=θ

θ

∗ ,                                      (14) 

and the function (.)h  which is valid for all xUx ∈  has the following representation 

)x()x()x(),x(ĥ)x(h ff

T
fff Ξ+ψθ=Ξ+θ= ∗∗                                    (15) 

By using definitions of (12)-(15), we rewrite (11) as 

)t()t(-)x()x()t(r)q,q(
m

V -)t(r)q(M dff

T
f τ+τΞ+ψθ+= ∗��

 
Define the position error dynamics as 

  )t(r)t(e)t(e +Λ−=�                                                       (16) 

The following augmented system is obtained: 

))t((t))x()x()(q(B)t(z)q,q(A)t(z dff

T
f τ+τ−Ξ+ψθ+= ∗��                   (17) 

with 









=








−

−
=








= −− 1

m
1 M

0
)q(B,

VM0

IΛ
)q,q(A,

r

e
z(t) � . 

Definition 1. The effect of )t(dτ , denoting the external disturbance, will be attenu-

ated by the ∞H  control signal if the following ∞H  tracking performance holds 

∞<≤∀ττγ+≤  T0dt)0(zP)0(zdtzQz
T

0
d

T
d

2
T

0

TT                     (18) 

where γ  is a prescribed attenuation level, and Q,P are positive definite weighting 

matrixes. 

4 Control Design 

Consider the Lyapunov function 

)
~~

(tr
2

1
zPzV

T

ff
T θθ+=                                                      (19) 
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where matrix P  is a positive definite matrix and ∗θ−θ=θ fff

~
. The first derivative of 

the Lyapunov function V  with respect to time t is 

[ ] )
~~

(tr))t((t))x()x((BPz2zPAPAPzV
T

ffdff

T
f

TTT θθ+τ+τ−Ξ+ψθ+++= ∗ ���
  

(20) 

Substituting [13, 19]  
sa

f

T
f )x((t) τ+τ+ψθ=τ                                                      (21) 

with 

zPB
1 T

2
a

β
−=τ                                                               (22) 

)),x(ĥ)x(h()BPz(sgn f
UT

s
s θ+μ=τ

                   
                 (23) 

where 







<
≥

=μ
E)t(zif0

E)t(zif1
s  

into (20), we have: 

)
~~

(tr))t()x()x()x((BPz2

zPBBP
2

PAPAPzV

T

ffd
s

f

T
fff

T
f

T

T

2
TT

θθ+τ+τ−ψθ−Ξ+ψθ+









β

+++=

∗ �

��
             (24) 

By using (28), (35) and inequality YY
1

XXXYYX TTTT

γ
+γ≤+

 
for any matrices 

X  and Y  with appropriate dimensions and for any constant 0>γ , and the fact that 

ff

~
θ=θ ��

, we conclude: 

)t()t()
~

(tr))x(
~

)x((BPz2

zPBBP
1

PBBP
2

PAPAPzV

d
T
d

2T

ff
s

f

T

ff
T

T

2

T

2
TT

ττγ+θθ+τ−ψθ−Ξ+









γ

+
β

+++≤

�

��
           (25)          

Considering 

0QPB)
12

(BPPAPAP T

22
T =+

γ
+

β
+++�

   
                               (26) 

and the adaptation law 

ffff ),(ojPr Π=Πθ=θ�                                               (27) 

with )x(BPz2
f

T
f ψ=Π , we find:  







<θ++ττγ+−

≥ττγ+−
≤ ∗ E)t(zif)),x(ĥ)x(h(BPz2)t()t(zQz

E)t(zif)t()t(zQz
V

f
T

d
T
d

2T

d
T
d

2T

�     (28) 
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Fig. 1. Adap
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
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
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ττγ+
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dtzQz)T(V

T
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d
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d

2

T
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d
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d

2

T

0
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and after some simple mani

≤λ )t(e)Q(
2

min

where (ĥ)x(h(BP: +=ρ

of the closed loop system 

can be achieved from the re
In summary, the block d

the wavelet-based adaptive 

Finally, we can guarantee th

(18) will be satisfied.  

5 Simulation Resu

The dynamic equations for
we have simulated a three-l
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f (28) from 0 to T, we have:  

<θ++

≥


∗ E)t(zifdt)),x(ĥ)x(h(BPz2dt)t(

E)t(zifdt)t(

T

0
f

T

d

ipulations on the inequality above, we conclude: 







<ρ+γ+
≥γ+

≤
E)t(zif)t(z2B)0(V

E)t(zifB)0(V
2
d

2

2
d

2

                (

),x( f
∗θ . This demonstrates all states and signals invol

are bounded, furthermore, the ∞H  tracking performa

esults above. 
iagram in Fig. 1 shows the major components that embo

controller (21) with aτ given by (22) and sτ  given by (2

hat E)t(z <  and the criteria of ∞H  tracking performa

ults 

r an n-link manipulator can be found in [20]. In this stu
link robot manipulator. 

407 

E

 

(29) 

ved 

ance 

ody 

23). 

ance 

udy 



408 H.R. Karimi 

An external disturbance and

+[3=τ sin)t(

)q(fqF cV �� =+

where sgn(x) is a signum fu

Q11=1

Our target is that the manip
determinate path, by solvin
ry. In this study, we wa

T]5.1,1),t1.0(Sin5.0[)t(q =
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