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Abstract. The advent of Pairing-based protocols has had a major im-
pact on the applicability of cryptography to the solution of more complex
real-world problems. However there has always been a question mark over
the performance of such protocols. In response much work has been done
to optimize pairing implementation, and now it is generally accepted that
being pairing-based does not preclude a protocol from consideration as a
practical proposition. However although a lot of effort has gone into the
optimization of the stand-alone pairing, in many protocols the pairing
calculation appears in a particular context within which further opti-
mizations may be possible. It is the purpose of this paper to bridge the
gap between theory and practise, and to show that even complex proto-
cols may have a surprisingly efficient implementation. We also point out
that in some cases the usually recommended pairing friendly curves may
not in fact be optimal. We claim a new record with our implementation
of a pairing at the AES-256 bit level.

Keywords: Pairing implementation.

1 Introduction

Pairings, with their richer structure, allow solution to problems for which tra-
ditional public key methods could offer no solution. The classic example would
be Identity-based Encryption, long known as a concept, stubbornly resistant to
realisation using standard methods, yet easy to construct using pairings.

Other problems of interest, like short signature schemes [13], non-interactive
key exchange [33], attribute-based cryptography [38] (which has particular sig-
nificance for security in the context of cloud computing [2]), and public key en-
cryption with key-word search [12], also succumbed. These protocols, although
often proven secure under reasonable assumptions, were becoming ever more
complex, outstripping the ability of implementers to keep up. Indeed in parallel
with these developments optimal methods for calculating bilinear pairings and
ancillary operations were also being developed. To give an idea of the current
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state-of-the-art, see [9] where a pairing at the equivalent of AES-128 bit security
is calculated on the standard contemporary computing platform in less than a
millisecond. See also [3].

However depending on the context in which the pairing is needed within
a particular protocol further optimizations may also be possible, and it is the
purpose of this paper to highlight these possibilities and measure their impact.
We also give some performance statistics for practical implementation of some
protocols.

2 Pairings

There are, it is generally accepted, 4 varieties of pairing, of which the Type-1
and Type-3 are the most common, and the most practical for implementation
purposes [18]. Here we restrict ourselves to Type-1 and Type-3 pairings imple-
mented on elliptic curves. Note that while pairing-based protocols are commonly
described in the context of a Type-1 pairing, most can be ported to the Type-3
setting. This will of course impact on the security assumptions, but that is not
a concern here.

The notation for the pairing is e(P, Q). We will refer to P as the left-hand
argument and Q as the right-hand argument. The pairing itself evaluates as
an element in the k-th extension of the underlying finite field Fq, where k is
called the embedding degree, which is a fixed parameter associated with the
chosen curve. Note that only elliptic curves E(Fq) with reasonably small values
of embedding degrees are of interest here – such curves are called pairing-friendly.

For sensible choices, at least one of P or Q is a point in E(Fq), and the
other may be represented as a point in E(Fqd), where d is an exact divisor of k.
For security it is important the discrete logarithm problems in both the elliptic
curve fields (ECDLP) and the k-th extension of the finite field (DLP) should be of
equal complexity. Indeed as pointed out some years ago by Menezes, Okamoto
and Vanstone [26] (see also [17]), the former problem can be easily converted
to the latter on pairing-friendly curves. Unfortunately index calculus methods
apply in the finite field setting, so parameter sizes must be adjusted upwards to
take this into account. We must also be wary of a direct Pollard-rho attack on
the ECDLP problem. For a survey of the discrete logarithm problem in all of its
settings, see [29].

Therefore in an ideal world, for AES-128 security, one would like the elliptic
curve group size to be 256-bits embedded in a field of the same size (to defend
against Pollard-rho), and an extension degree of 12 to raise the size of the finite
field DLP problem to 3072 bits (to defend against index calculus). In fact using
a member of the well known Barreto-Naehrig family of pairing friendly curves
[7], we can achieve exactly that.

Type-1 pairings, denoted G1 ×G1 → GT , are implemented on supersingular
elliptic curves over Fp, F2m and F3m , with maximum embedding degrees of 2, 4
and 6 respectively. In a Type-1 pairing both P and Q are points over the base
field G1, and the pairing supports the property of symmetry, that is e(P, Q) =
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e(Q,P ), so left and right hand arguments can be swapped at will. A problem
with Type-1 pairings is that none are known which are as efficient at the AES-
192 and AES-256 levels of security as the Type-3 equivalent, primarily as none
support embedding degrees greater than 6 (on elliptic curves).

Type-3 pairings, here denoted G2 × G1 → GT , are much more numerous
and support any embedding degree. They are only known on elliptic curves over
fields of large prime characteristic E(Fp). Usually we prefer those that support
the maximal twist (minimizing d above), and those which support the required
size of group (for the chosen level of security) in the smallest possible field. This
feature is captured in the ρ parameter of the pairing-friendly curve – see the
Freeman-Scott-Teske taxomony of pairing-friendly curves for more details [16].
There such curves are referred to as curves which support “efficient arithmetic”.
For a Type-3 pairing one of P or Q is in the larger field G2, a point on E(Fqd),
and the symmetry property does not hold.

Another matter of choice is that of which pairing function to implement.
The Tate pairing was initially preferred, until the discovery of truncated loop
variants like the ηT pairing [6], which was more efficient over fields of small char-
acteristic. In the Type-3 setting the situation is a little more complex. In the
Miller algorithm the left-hand argument, in the course of the calculation, un-
dergoes a point multiplication by a fixed system parameter. The best truncated
loop variants of the Tate pairing in the Type-3 setting are the ate pairing [20],
or the R-ate pairing [23]. These can achieve the maximum loop reduction, by a
factor of φ(k), where φ(.) is the Euler totient function [37]. In both cases the left-
hand parameter must, unfortunately, be the element in the larger field E(Fpd).
However this only partially offsets the advantage of optimal loop reduction.

Algorithm 1 Computation of basic ate pairing e(P,Q) using Miller’s algorithm
Input: P ∈ E(Fpd), Q ∈ E(Fp), trace t, even k, where P has order r
Output: e(P, Q)
1: T ← P , m ← 1
2: n ← t− 1
3: for i ← blg(n)c − 1 downto 0 do
4: m ← m2.lT,T (Q)
5: T ← 2T
6: if ni = 1 then
7: m ← m.lT,P (Q)
8: T ← T + P
9: end if

10: end for
11: m ← m(pk−1)/r

12: return m

In the Miller algorithm the line function lA,B(Q) is a distance calculated
between the fixed point Q and the lines that arise when adding B to A on the
elliptic curve in the standard way.
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A final choice is projective or affine coordinates for the representation of el-
liptic curve points. Recall that the latter representation requires a single base
field modular inversion for each point addition or doubling. However over Fpd , for
larger d, this becomes less significant than multiplications over the full extension
field. Also the line functions required for Miller’s algorithm are simpler to calcu-
late using affine coordinates. Recent work indicates that for embedding degrees
less than 12 projective coordinates may be optimal, but that above that affine
may be preferred [22]. However this decision depends to an extent on the chosen
platform [1]. For BN curves we certainly lean towards projective coordinates [3].

3 Optimizations

The pairing itself is open to some interesting optimisations, depending on its
context. These often involve precomputation, and so in some contexts storage
availability may become an issue. As we will see these optimizations can interact
in interesting ways.

If both left-hand and right-hand arguments are fixed, then clearly the pairing
itself can be precalculated and stored. If the left-hand parameter is fixed, then
its multiples that arise in its multiplication by the fixed loop variable can be
precalculated offline and stored in affine coordinates. We will call this the “fixed
argument” optimization, first pointed out by Scott [34] and recently analysed in
more detail by Costello and Stebila [15]. No advantage can be taken of a fixed
right-hand parameter, but for a Type-1 pairing only, symmetry can be exploited
to move it to the left-hand side and precalculate its multiples as before. For a
protocol on a Type-3 pairing it might well be worthwhile to consider reversing
the roles of the left-hand and right-hand parameters in the protocol, in order to
get the precomputable variable (if there is one) on the left side of the pairing.

Note that if storage is not an issue, and the left-hand parameter is fixed, then
the size of d in E(Fqd) doesn’t really matter, and so it is no longer important to
use a pairing-friendly curve with the maximal twist. However it will be advan-
tageous to use the pairing which gives us the maximal loop reduction, and the
extra storage required for precomputation is often offset by the degree of loop
reduction that can be achieved [15]. Therefore the possibility of precomputation
may impact our choice of pairing-friendly curve. We will return to this point
later.

A second raft of optimisations is associated with the calculation of products
of pairings, as arise in many protocols. As first pointed out by Solinas [36] and
Scott [34] and expanded upon by Granger and Smart [19] three major optimi-
sations are possible in this setting. All of the pairings can share the same Miller
variable m, and all can share the final exponentiation. Also Montgomery’s trick
can be used to carry out all of the point additions/doublings for all of the pairings
simultaneously in affine coordinates, while sharing just one modular inversion. If
products of pairings play a major part in a protocol this may be a further incen-
tive to use affine coordinates through-out. However if most or all of the left-hand
parameters can be precomputed on, this optimization becomes less interesting.
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In this case the inclusion of one more pairing to a product of pairings typically
carries only the extra cost of n sparse k-th extension field multiplications, if
there are n iterations required in the main Miller loop.

Well-known precomputation optimizations apply to powering fixed elements
in finite fields, and multiplying fixed points on elliptic curves. These may be ap-
plicable in some steps of a pairing-based protocol, and should not be overlooked.

It is interesting to observe however that precomputation optimizations do
not really apply to Type-1 pairings over fields of small characteristic. This is
related to the fact on a supersingular curve E(F2m) (for example) point dou-
blings require only field squarings, and these are very fast (asymptotically and in
practise) compared to field multiplications. Therefore cheap multiples of a point
may be calculated efficiently on-the-fly rather than needing to be precalculated.
Also in our experience such Type-1 pairings tend to result in smaller implemen-
tations, and so they may be considered a better choice for the space-constrained
environment where precomputation would not be an option anyway [30]. In the
sequel we will concentrate on the Type-3 pairing scenario.

4 Pairing friendly curves

We will use a variety of pairing-friendly curves to cover all common security
levels, corresponding to common AES-like security levels of 80, 128, 192 and 256
bits. All are associated with an even embedding degree k, as the denominator-
elimination optimization is important [5]. The curves used are given in Table
1. These curves have been obtained from a number of sources. For a review of
the available pairing friendly curves see the Freeman-Scott-Teske taxonomy [16].
The curve CP-80 is a Cocks-Pinch curve [10], MNT-80 is a Miyaji-Nakabayashi-
Takano curve [27], BN-128 is a Barreto-Naehrig curve [7], KSS-192 is a Kachisa-
Schaefer-Scott curve [21], and finally BLS-256 is a Barreto-Lynn-Scott curve [4].
These have been chosen to conservatively satisfy the above levels of security in
terms of the difficulty of the various discrete logarithm problems which defend
pairing-based cryptography from attack. In all cases the size of k. lg p is within
the limits given in [16], Table 1.1. Note that the choice of curve for AES-192
security is not straightforward as there is not an obvious best choice amongst
the available pairing-friendly curves. A KSS curve with k = 16 would be a
contender, as would a BN curve with a group size of 640-bits [32]. Some tests
indicate that our choice is slightly better than the BN alternative, and requires
a smaller G1. Our choice also supports a sextic twist on G2. For an alternative
point of view, see [28].

Extension fields of degree k, in which the bulk of the pairing computation
takes place, are built using a tower of extensions - see [8] for details.

5 A simple example - Boneh-Boyen IBE

To illustrate these points let us first look at a relatively simple protocol and see
which optimizations apply. Note that in a pairing based protocol we should first
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Table 1. Pairing-friendly curves

Curve G2 type k Modulus (bits) ρ Towering Pairing

CP-80 Fp (projective) 2 512 3.2 1-2 Tate
MNT-80 Fp3 (affine) 6 160 1 1-2-6/1-3-6 ate
BN-128 Fp2 (projective) 12 256 1 1-2-4-12 R-ate
KSS-192 Fp3 (affine) 18 512 1.33 1-3-6-18 R-ate
BLS-256 Fp4 (affine) 24 640 1.25 1-2-4-8-24 ate

look at fixed system parameters, that are often introduced in the Setup part of
the protocol. These are obvious candidates for precomputation. A second good
place to look is at the private keys of the users, created often in the Keygen or
Extract step of the protocol. Clearly a particular individual is free to precompute
on their own fixed private key.

Our first example is the BB1 Identity Based Encryption scheme from Boneh
and Boyen, as described in section 4.3 of [11] (the full version).

Setup Select random points P ∈ G2 and Q ∈ G1. If the pairing friendly group
is of size r, then pick random group elements α, β and δ ∈ Zr. Set Qa = αQ
and Qd = δQ. Compute v = e(P, Q)αβ . Finally choose a hash function H1(.)
which hashes an element in GT to a string of length m bits, and a second
hash function H2(.) which hashes an identity string to a group element. The
public parameters are {Q,Qa, Qd, v}, and the master key is {P, α, β, δ}.

Extract Given the master key and an identity ID, generate a random w and
extract the private key as D0 = (αβ + w(αH2(ID) + δ))P and D1 = wP .

Encrypt Given ID and a message M of length m, pick a random s and output
C = {M ⊕H1(vs), sQ, sQd + sH2(ID)Qa}

Decrypt To decrypt the ciphertext C = {C0, C1, C2} using the private key
{D0, D1}, output M = C0 ⊕H1(e(D0, C1)/e(D1, C2))

As pointed out by the authors, this protocol is remarkable to the extent that
it can benefit from multiple precomputation optimizations. However the fixed-
argument optimization was overlooked. To benefit from this on a Type-3 pairing,
the precomputable variable (in this case the private key) must appear on the left
side of the pairing. Indeed the applicability of this optimization helps fix the opti-
mal role assignment in many pairing-based protocols on Type-3 curves. Costello
and Stebila did consider this optimization for this protocol (Table 5 [15]), but
not in conjunction with the multi-pairing optimization which also applies in the
decryption step. Granger and Smart [19] estimated the gain from using a multi-
pairing, but not in the context where the fixed-argument optimization applied.
Finally Lauter, Montgomery and Naehrig [22] did consider both optimizations
in combination (see also [1]), but not in the context of a particular protocol.

To summarise for this protocol, all point multiplications and extension field
exponentiations in the Extract and Encrypt steps can benefit from “fixed-point”
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optimizations. In the Decrypt step the quotient of pairings can be trivially re-
placed with a product, and so both the multi-pairing and fixed-argument opti-
mizations apply.

To measure performance we present timings for an actual implementation
[35], for each step of this protocol. See table 2. All of the code and implementa-
tions described here can be found in [35], along with details of the pairing-friendly
curves used. Our hardware is a 64-bit Intel i5 520M, clocked at 2.4GHz. Our im-
plementation runs on a single core, and uses a mixture of C++, C and some
automatically generated assembly language. We acknowledge that hand-crafted
assembly will always do better, sometimes a lot better [3], especially at lower
levels of security.

We use an 8-bit window size for fixed-point optimizations. For the fixed-
argument optimization we do not exploit the merging optimization as described
in [15]. However exploiting this idea (at the cost of doubling the storage require-
ment) would give a further small but useful speed-up.

Table 2. BB1 protocol - timings in milliseconds

Curve CP-80 MNT-80 BN-128 KSS-192 BLS-256

with/without precomp w w/o w w/o w w/o w w/o w w/o

Extract 0.207 1.020 0.663 2.239 0.363 0.854 5.265 10.237 10.360 30.598
Encrypt 0.366 1.695 0.194 0.767 0.653 1.646 3.625 8.596 8.110 29.460
Decrypt (2 pairings) 1.213 2.360 1.392 3.788 4.097 4.680 36.438 41.090 65.846 73.469
Decrypt (multi-pairing) 0.834 1.991 1.043 3.383 2.533 3.106 20.614 25.221 36.900 44.035

The most striking conclusion to be drawn from this table is that by exploiting
both the fixed-argument and multi-pairing precomputation optimizations, for
this protocol we basically get the two pairings for the price of one (or less). In
the case of the MNT curve, the gain is even more striking. For these curves
only a quadratic twist is possible for G2, where point multiplication is therefore
particularly expensive.

Note that the latency of both the encryption and extract stages can be further
optimized by exploiting the fact that a lot of the calculation can be carried
out offline, prior to the presentation of the inputs. For example the encrypting
entity can compute and maintain offline a pool of tuplets {s, vs, sQ, sQd} prior
to receiving the the message and ID. In this way the online part of the calculation
reduces to a single fixed-point multiplication. The same applies to the extract
phase by precomputing tuplets {w,wP}.
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6 Attribute based cryptography

Next we consider a much more elaborate protocol, a ciphertext-policy attribute-
based encryption scheme due to Waters [38]. Our first problem is that the pro-
tocol ([38] section 3) is described in the context of a Type-1 pairing. However
this protocol has already been implemented on an MNT curve by Akinyele et
al., [2] so we follow the example of their conversion to a Type-3 setting.

Each participant in this scheme is equipped with a set of attributes. When
a message is encrypted, it is encrypted in such a way that it is only acessible to
recipients who possess a particular combination of attributes. This combination
of attributes is described in a logical fashion, which can be put into the form of a
tree-like structure. The attributes form the leaf-nodes of the tree. Each attribute
might appear at several leaf nodes. Each node evaluates as true or false, and these
results eventually arrive at the root of the tree, which itself evaluates as true
or false. If a recipient’s attributes satisfy this access structure, then they can
decrypt the ciphertext.

This tree structure can in turn be converted into an LSSS matrix, which is
required by the protocol. For this we use the method of Liu and Cao [25]. The
number of rows in the matrix is the number of leaf nodes of the access tree.
Each row of the matrix is associated with an (not necessarily distinct) attribute
by a function f(.). If attribute j is associated with row i of the LSSS matrix,
then j = f(i). A secret value s will be hidden using a secret sharing operation
using the LSSS matrix, and can only be recovered by a valid recipient. The
satisfiability of the access structure is reflected in the ability to find the inverse
of the subset of the LSSS matrix associated with the attributes available to a
recipient, who can then regenerate s. The protocol as described here includes an
optimized Decrypt step found in the implementation associated with [2].

Setup Select random points P ∈ G2 and Q ∈ G1. If the pairing friendly group
is of size r, then pick random group elements α and δ ∈ Zr. Set Pd =
δP , Qd = δQ, Qα = αQ and v = e(P,Q)α. For each of the U attributes
in the system, generate a random Hi ∈ G2. The public parameters are
{P, Q, v, Pd, Qd,H1 . . . HU}. The master key is Qα.

Encrypt The inputs are a message M , and an m×n LSSS matrix S. Generate a
random vector ū = (s, y2, . . . yn) ∈ Zr. Then calculate the m vector λ̄ = S.ū
and generate another random m vector x̄ ∈ Zr. Calculate the ciphertext as
Ct = Mvs, Cd = sP , and for i equal 1 to m calculate Ci = λiPd − xiHf(i)

and Di = xiQ. Note that the same attribute may be associated with different
indices i.

Keygen The inputs are the master key and a set of ` attributes A assigned to
an individual. Pick a random group element t ∈ Zr and create a private key
as K = Qα + tQd, L = tQ and Ki = tHi for each possessed attribute i ∈ A.

Decrypt First reduce the matrix S by removing rows associated with attributes
that are not in A and remove redundant all-zero columns from the matrix.
Next calculate the vector ω̄ which in the first row of S−1. For a reasonable
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number of attributes, the ωi will be very small integers. (The shared secret
s = ω̄.λ̄.) Set all Cj ← ωjCj and Dj ← ωjDj . Where the same attribute
is associated with more than one row of the S matrix, combine the associ-
ated Cj and Dj values by simply adding them. (We exploit bilinearity as
e(Ki, Dj).e(Ki, Dk) = e(Ki, Dj + Dk), and rewrite Di = Dj + Dk). Finally
recover the message as

M = Ct.e(Cd,−K)e(
∑

i∈A

Ci, L)
∏

i∈A

e(Ki, Di)

Casting an implementer’s eye over the above we observe that

1. All point multiplications and extension field exponentiations in the Encrypt
and Extract steps benefit from the fixed-point optimization.

2. The latency of both Encrypt and Keygen steps can benefit from the off-
line maintainance of precomputed pools of data, in the former case tuples
of {s, sP, vs, x1, x1Q, x1H1, . . . x1HU , x2, . . . xUHU} and in the latter tuples
of {t, tQ, tQd, tH1 . . . tHU}. Now Keygen requires essentially no work at all
other than plucking values from the pool and a single point addition, and en-
cryption requires an on-line calculation of just m fixed-point multiplications,
if there are m leaf nodes in the access tree.

3. We have assigned roles to G1 and G2 to facilitate the fixed-argument pre-
computation for the potentially expensive Decrypt step. As can be seen
decryption boils down primarily to a multi-pairing of ` + 2 pairings. For the
first two of these the precomputable parameter (K and L) unfortunately falls
on the “wrong side” of the pairing. Interestingly on a Type-1 pairing over
a field of prime characteristic, symmetry could be expoited to move these
over to the other side. However the ` pairings associated with the potentially
large number of attributes can all profit from precomputation.

We provide timings for an implementation in the context of a fairly elabo-
rate but arbitrarily chosen access structure with a total of U = 12 attributes.
The LSSS matrix has m = 14 rows (two of the attributes appear twice), and
the recipient has ` = 6 attributes, which are sufficient to satisfy the access tree.
We also show decryption times where an extra attribute is required, increas-
ing the number of pairings in the multi-pairing by 1. Note the Encryption and
Keygen timings are for the complete operation, without exploiting the possibil-
ity of off-line maintainance of precomputed pools. One surprising observation is
that the Encrypt step for this implementation of this protocol is actually more
time-consuming than the pairing-heavy Decrypt step. This goes counter to the
received wisdom.

For a contrived system with 20 attributes, all of which are required for de-
cryption, for the BN-128 curve it takes 9.93ms for encryption and 13.05ms for
decryption. This is more than 30 times faster (and at a higher level of security)
than the timings reported in [2] on the same processor, and significantly faster
than the results reported recently by Acar et al. ([1], Table 3).
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Table 3. Waters CP-ABE protocol - timings in milliseconds

Curve CP-80 MNT-80 BN-128 KSS-192 BLS-256

Encrypt 4.57 10.61 6.96 84.16 164.88
Keygen 1.25 2.24 1.42 17.06 33.03
Decrypt (6 attributes) 3.26 5.63 6.18 39.28 66.91
Decrypt (7 attributes) 3.41 6.03 6.68 41.54 71.04

7 Inner-Product Predicate Encryption

Finally we consider a complex Inner-Product Predicate Encryption scheme based
on bilinear maps with prime-order groups, recently proposed by Park [31]. We
omit the details of the protocol (see page 251 of [31]), which although described
in the setting of a Type-1 pairing can easily be converted to use a Type-3 pairing.
Our implementation exploits all of the precomputation possibilities. Fixed point
optimizations apply to all stages of the Encrypt step, and the fixed-argument
optimization applies to the Decrypt step. The Encrypt step calculations take
place in G1 (and are therefore unaffected by the size of G2). At first glance
this protocol appears to be potentially quite impractical. For an implementation
supporting 10 attributes the decryption step requires the computation of the
product of 42 pairings. However as can be seen from table 4 the timings achieved
are surprisingly reasonable.

Table 4. Park’s IPE protocol (10 attributes) - timings in milliseconds

Curve CP-80 MNT-80 BN-128 KSS-192 BLS-256

Encrypt 13.02 4.72 9.05 32.37 61.84
Decrypt 9.49 16.23 22.22 112.76 188.47

8 Discussion

The applicability of these optimizations potentially has an impact on the optimal
choice of pairing. In particular if the fixed-argument optimization applies to the
pairing, then all required multiples of points on E(Fqd) can be precalculated,
and thus there is no longer any major benefit in d being minimal. However while
this is true in the context of a protocol step involving pairings, if G2 becomes
larger this may have a negative impact on the performance of other phases of a
particular protocol.

As a concrete example compare a Brezing and Weng curve [14] with k = 8,
ρ = 1.25 and d = 4, with the alternative efficient-arithmetic curve recommended

10



in FST [16], for which k = 8, ρ = 1.5 and d = 2. If the fixed argument opti-
mization applies then the smaller d value for the latter is largely irrelevant to
the pairing calculation, and with a superior ρ value the Brezing and Weng curve
may well make a better choice at an AES-112 level of security.

In the context of a multi-pairing in conjunction with fixed arguments, then
the impact of “one more” pairing will be minimized if we choose a curve which
supports the minimum Miller loop length for a given level of security.

In the paper [28] the authors consider curves with k = 15. Despite the loss of
full denominator elimination the authors contend that this might be a contender
with BN curves at the AES-128 bit level. One of the problems with the k = 15
curve is that only a cubic twist is possible, and arithmetic on E(Fp5) is expensive
compared with arithmetic on E(Fp2) as required for the BN curve which supports
a sextic twist. However if the fixed argument optimization applies, this advantage
for BN curves disappears as all these values required by the pairing can be
precomputed. And a k = 15 curve will have an optimal pairing with a half-
sized Miller loop compared with the BN equivalent (φ(15) = 8, φ(12) = 4). In
[24] the authors make a similar case for a k = 9 curve. At the AES-256 level
the KSS k = 32 curve [16] might turn out to be a better choice than our BLS
k = 24 curve. The latter has a better twist (6 vs 4), but the former has twice
the loop-reduction and a better ρ value of 1.125.

So in the scenario of a protocol where a multi-pairing is required, and where
the great majority of the left-hand parameters are fixed – a scenario which a quick
glance through the literature would seem to indicate is quite common – efficient
implementation might benefit from a reappraisal of which pairing-friendly curve
is optimal to use for the standard levels of security.

9 Conclusion

We have pointed out that in pairing-based protocols many precomputation op-
timizations are possible. By combining these the performance can be improved
significantly. In particular we show that relatively complex protocols are com-
pletely practical on standard hardware at all levels of security. We give for the
first time realistic timings for pairings at the AES-256 bit level. Whereas one
pairing at the AES-256 level takes 37 milliseconds on a contemporary PC, we
observe that “one-more” pairing in the context of a multi-pairing can take less
than 5 milliseconds. For future work we ask whether the currently accepted
pairing-friendly curves are actually the optimal choice when deployed in real-
world protocols.
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