Skip to main content

Self-correctors for Cryptographic Modules

  • Conference paper
Book cover Cryptography and Coding (IMACC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7089))

Included in the following conference series:

Abstract

A self-corrector for a function f is an efficient machine that computes f correctly using any untrusted black-box that computes f correctly only with a certain probability. The design of self-correctors for non-verifiable functions, typically decryption functions of public-key cryptographies, was investigated. We present a design method for self-correctors that works even when the black-box returns correct output with probability of less than 1/2. For a practical demonstration of the method, we also present examples of self-correctors for the decryption functions of public-key cryptosystems, such as the ElGamal, the Pailler, and the GHV cryptosystems, and for hidden pairings with trapdoors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof Verification and Intractability of Approximation Problems. Journal of the ACM 45, 501–555 (1992); Preliminary version in FOCS 1992

    Article  MATH  Google Scholar 

  2. Arora, S., Safra, S.: Probabilistic Checkable Proofs: A New Characterization of NP. Journal of the ACM 45, 70–122 (1992); Preliminary version in FOCS 1992

    Article  MATH  Google Scholar 

  3. Arora, S., Sudan, M.: Improved low degree testing and its applications. In: STOC 1997, pp. 485–495 (1997)

    Google Scholar 

  4. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: STOC 1988, pp. 103–112 (1988)

    Google Scholar 

  5. Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applications to Numerical Problems. In: STOC 1990, pp. 73–83 (1990)

    Google Scholar 

  6. Dent, A.W., Galbraith, S.D.: Hidden Pairings and Trapdoor DDH Groups. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 436–451. Springer, Heidelberg (2006)

    Google Scholar 

  7. Feigenbaum, J., Fortnow, L., Laplante, S., Naik, A.V.: On Coherence, Random-self-reducibility, and Self-correction. Computational Complexity 7(2), 174–191 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gemmell, P., Lipton, R., Rubinfeld, R., Sudan, M., Wigderson, A.: Self-testing/correcting for polynomials and for approximate functions. In: STOC 1991, pp. 32–42 (1991)

    Google Scholar 

  9. Gentry, C., Halevi, S., Vaikuntanathan, V.: A Simple BGN-Type Cryptosystem from LWE. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 506–522. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Goldreich, O., Levin, L.: A Hard-Core Predicate for all One-Way Functions. In: STOC 1989, pp. 25–32 (1989)

    Google Scholar 

  11. Hohenberger, S., Lysyanskaya, A.: How to Securely Outsource Cryptographic Computations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Lenstra Jr., H.W.: Factroing Integers with Elliptic Curves. Ann. Math. 126, 649–673 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Maurer, U.M., Wolf, S.: The Relationship Between Breaking the Diffie-Hellman Protocol and Computing Discrete Logarithms. SIAM Journal of Computing 28, 1689–1721 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Raz, R., Safra, S.: A subconstant error-probability low-degree test, and a subconstant error-probability PCP characterization of NP. In: STOC 1997, pp. 475–484 (1997)

    Google Scholar 

  16. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM Journal of Computing 25(2), 252–271 (1992); Preliminary version in SODA 1992

    Article  MATH  MathSciNet  Google Scholar 

  17. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamamoto, G., Kobayashi, T. (2011). Self-correctors for Cryptographic Modules. In: Chen, L. (eds) Cryptography and Coding. IMACC 2011. Lecture Notes in Computer Science, vol 7089. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25516-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25516-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25515-1

  • Online ISBN: 978-3-642-25516-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics