EDACC - An advanced Platform for the
Experiment Design, Administration and
Analysis of Empirical Algorithms

Adrian Balint, Daniel Diepold, Daniel Gall, Simon Gerber, Gregor Kapler, and
Robert Retz

Ulm University
Institute of Theoretical Computer Science
89069 Ulm, Germany
{adrian.balint, daniel.diepold, daniel.gall, simon.gerber, gregor.kapler,
robert.retz}Quni-ulm.de

Abstract. The design, execution and analysis of experiments using he-
uristic algorithms can be a very time consuming task in the development
of an algorithm. There are a lot of problems that have to be solved
throughout this process. To speed up this process we have designed and
implemented a framework called EDACC, which supports all the tasks
that arise throughout the experimentation with algorithms. A graphical
user interface together with a database facilitates archiving and man-
agement of solvers and problem instances. It also enables the creation of
complex experiments and the generation of the computation jobs needed
to perform the experiment. The task of running the jobs on an arbitrary
computer system (or computer cluster or grid) is taken by a compute
client, which is designed to increase computation throughput to a maxi-
mum. Real-time monitoring of running jobs can be done with the GUI or
with a web frontend, both of which provide a wide variety of descriptive
statistics and statistic testing to analyze the results. The web frontend
also provides all the tools needed for the organization and execution of
solver competitions.

1 Introduction

Many problems that come from practical applications or from theory are known
to be very hard to solve. This means that the time for solving these problems
increases exponentially with the size of the input. The class of NP-complete
problems is probably the most well known class of such problems. Formerly,
proving that a problem was NP-complete meant that the design of a practical
algorithm for this problem would be useless because of the estimated exponential
time of the algorithm. The situation changed drastically with the development of
heuristics, meta-heuristics and approximation algorithms for hard combinatorial
problems. The size of the problems that can be solved by these kind of algorithms
has increased continuously over the years.

2 A. Balint, et al.

This progress can be seen as the result of a paradigm change from “algo-
rithms are fast if they have a theoretical good upper bound for their runtime”
to “algorithms are fast if they are fast in practical experiments”. This should
not mean that theoretical results are not important any more, but rather that
the design of algorithms has become oriented towards practical applications.

With this paradigm change methodologies have also changed a lot. A theo-
retical analysis of heuristics is not possible in most cases, and has been replaced
by an empirical evaluation like the ones used in engineering. Most development
of empirical algorithms now follows an engineering scheme like the one in figure
1.

interesting (re)design satisfactory yes publish
idea algorithm no results results
(re)implement run analyze
algorithm algorithm results

Fig. 1. A typical work flow for the development of empirical algorithms

With the use of new methodologies new problems arise. After the design and
implementation phase the algorithm has to be tested and evaluated, which in
most cases is a very time consuming task. The first problem that an algorithm
designer encounters is the collection and selection of instances on which the
solver will be evaluated. A lack of publicly available repositories can hinder this
task. Dependent on the set of instances chosen for the evaluation a parameter
configuration for the algorithm has to be chosen. This problem can be very often
solved by automated procedures like ParamILS [5]. Having the instances and
the parameters for the evaluation the user has to choose a computing system. A
multi-core computer or a cluster or even a grid can speed up the computations
drastically, but at the same time the problem of equally distributing the work-
load arises, which in most cases is solved by some home brewed scripts. After
finishing the computation the results have to be gathered from the computing
systems and the important information has to be extracted from the output by
some parsing procedures. To find out to what extent the results are satisfactory
some statistical tests have to be applied. Comparing the performance of the own
algorithm with others demands further elaborated statistics.

The processes of evaluation and analysis are seldom reproducible between
different researchers, because of the complexity of the process and the lack of
common methods. This is probably the reason why most of the communities
working on empirical algorithms periodically organize competitions. The purpose
of these competitions is to provide the same evaluation and analysis environment

EDACC2 3

for all the algorithms. A problem with these competitions is that the underlying
evaluation system consists of scripts and databases that are not freely available.

The system EDACC (Experiment Design and Administration for Computer
Clusters) overcomes most of these problems. The previous version of EDACC [1]
was restricted to SAT-solvers and SAT-instances). EDACC is capable of manag-
ing solvers with their parameters, instances, creating experiment jobs, running
them on arbitrary computing systems ranging from multi-core computers to
large scale grids, collecting the results and processing them. Advanced meth-
ods for automatically extracting and archiving information from the results and
from the instances are provided for users. EDACC also provides a large vari-
ety of statistical tests and descriptive statistics to analyze the results. To make
the organization and execution of competitions with EDACC possible, also a
competition mode that follows a widely accepted scheme is provided.

The paper is organized as follows. Chapter 2 gives an overview over the sys-
tem. Chapter 3 describes the methods for extracting information from instances
and from the results. The wide range of possibilities for statistically analyzing
this information is presented in chapter 4. Chapter 5 describes the competition
mode of the system. Some implementation details and related work is given in
chapters 6 and 7. Chapter 8 concludes with some outlooks.

2 EDACC - Overview of the main components

A detailed description of the core functionalities of EDACC restricted to the
SAT problem was given in [1]. We have considerably extended EDACC to be
able to handle arbitrary solvers and instances. All further improvements such as
information extraction, statistical analysis and the competition mode, are new
features described in this work. To make this paper self-contained an overview
of the components of EDACC is given.

Before describing the main components some entities that will be used through
the rest of the paper are defined. A solver is an implementation of an algorithm
that works on some input and has an output. The behavior of a solver is con-
trolled by arbitrarily many parameters. A solver together with some fixed param-
eters is called a solver configuration. The input to a solver is called an instance.
Any information that can be computed from an instance is called an instance
property. A computing system is defined as the computer, computer cluster, or
grid on which a solver is tested. When running a solver on a computing system
computational limits can be imposed (e.g. maximum computation time or maxi-
mum memory). An experiment is the cartesian product of some set of algorithm
configurations, a set of instances, a set of computing systems, and some compu-
tational limits. An element of an experiment is a job. When the computation of
a job is finished it will have a result. Any information that is computed from a
result is a result property.

The main components of EDACC are:

1. database (DB)
2. graphical user interface client (GUI)

4 A. Balint, et al.

3. compute client (CC)
4. web frontend (WF)

The DB is responsible for storing and archiving all the information about the
entities defined above. Examples for such information are for solvers the name,
version, author, binary, MD5 checksum and the source code. For instances we
store the filename, the instance, and the MD5 checksum. The DB also acts as
the mediator between GUI, CC, and WF.

The GUI is split into two modes: manage DB mode and experiment mode.
The first mode provides all the necessary DB-operations e.g. create, remove, up-
date and delete (CRUD) for solvers, parameters and instances. As the number
of instances stored in the DB can be very large a categorization of the instances
into a hierarchical class model is provided. There are two types of classes: source
classes and user classes. The first one specifies the source of the instances. The
second one enables the user to create its own collection of instances from different
source classes. The class generation process can be done manually or automat-
ically by using the names and the hierarchies of the directories from where the
instances are imported.

The work flow of EDACC usually starts by adding solvers, specifying their
parameters, and by adding instances and categorizing them into classes. When
all the solvers and instances are available in the DB, the user can switch to the
experiment mode. After providing some general information, e.g. a name and
description of the experiment, the user can select and configure the solvers to be
used in the experiment. There are a lot of solver configuration possibilities e.g.
enabling or disabling parameters, automated generation of seeds for probabilistic
solvers, linking seeds between solvers, for minimizing the variance, and many
more.

Next, the instances to use for the created experiment have to be chosen.
This operation is alleviated by the instance classes and by filters, enabling a
fast selection process. To restrict the consumption of resources like cpu time or
memory different limitations can be imposed on the solvers. If the tested solvers
are probabilistic there is the possibility to configure the number of repetitions.
After choosing a computation system (for which some basic information has to be
provided), the user can generate the jobs for the experiment and the distribution
package, which is an archive containing the compute client and a configuration
file. The configuration file contains information about the DB connection, the
experiment and the target compute system.

Copying the distribution package to the computing system and starting the
CC will start the processing of the jobs. The CC consists of three programs:
launcher, watcher and verifier. The launcher fetches jobs from the DB and passes
them to the watcher, which monitors the use of resources and imposes the de-
sired limitations (At the moment we use the runsolver program from the SAT
Competition to achieve this [7]). When a solver finishes, the verifier is used to
check the result of the solver, and upon completion the launcher writes all results
back to the DB. The verifier is characteristic for each kind of instance and can
be replaced or not invoked at all.

EDACC2 5

2/ epAcC ===l
File Grid Mode Help Property
(Active: Random Category 2) I Solvers l Instances I Generate Jobs | Job Browser Analysls‘
Cnnwh; Queue Solver Instance Time Status Result Code
fritz [adaptG2WSAT ++ unifk3-r4.2-v2000-c8400-5136987316-008.cnf 0.17 finished i
fritz {adaptG2WSAT ++ junifk3-r4. 2-v2000-c8400-5779309989-069.cnf 0.61 finished
fritz {adaptG2WSAT ++ junif%3-r4.2-v4000-c16800-51203268705-053.anf 0.57 finished
fritz |Sparrow unifk3-r4.2-v4000-c16800-5139794312-098.cnf 6.09 finished
fritz laNovelty +2 junifk3-r4. 2-v4000-c16800-52018484485-019.anf |9.02 finished
fritz {adaptG2WSAT ++ unif-k3-r4. 2-v4000-c16800-5568017735-066.anf 0,44 finished
fritz [Sparrow unif+3-r4. 2-v6000-c25200-51119314619-090.cnf | 1.93 finished isfiabl
fritz [TNM unifk3-r4,2-v6000-c25200-51490060417-003.cnf 3.05 finished i
fritz ladaptG2WSAT ++ junif43-r4. 2-v6000-c25200-51622437320-053.cnf 43.14 running unknown
fritz laNovelty +2 junifk3-r4. 2-v6000-c25200-51760652419-100.enf | 10.81 finished i
fritz [Sparrow junifk3-r4. 2-v6000-c25200-51760652419-100.cnf | 2.91 finished
fritz [TrM junifk3-r4. 2-v6000-c25200-51760652419-100.cnf |7.49 finished
fritz [TRM junifk3-r4. 2-v6000-c25200-52100934911-025.enf |13.52 finished i
fritz {adaptG2WSAT ++ junif-k3-r4. 2-v8000-c33600-51741734682-076.cnf |100. 13 exceeded limit: 21 cpu time limit exceeded
fritz [TNM junif-k3-r4. 2-v8000-c33600-52044894925-062.cnf | 100.02 exceeded limit: 21 cpu time limit exceeded
none adaptG2WSAT ++ unifk3-r4. 2-v10000-c42000-51012522562-096.cnf 0.0 not started unknown
none aNovelty+2 unifk3-r4, 2-v10000-c42000-5 101252256 2-096.cnf 0.0 not started unknown
none Hybrid2 unifk3-r4, 2-v10000-c42000-51012522562-096.cnf 0.0 not started unknown
none hybridGM3 unif+k3-r4, 2-v 10000-c42000-51012522562-096.cnf 0.0 not started unknown
Refresh ‘ Select columns J [Filter ‘ l Compute l [Export | 33 (14) / 630 jobs (5.24%) finished. 3 jobs are running.
MANAGE EXPERIMENT MODE (Active: Random Category 2) - Connected to database: EDACC on host: 134.60.76.71

Fig. 2. A snapshot of the job browser within the experiment mode of the GUI, while
monitoring the progress of an experiment.

There are no limitations on how many CC’s are running at the same time. If
the computing system is a computer cluster or a grid, then the CC can be run on
all nodes to increase throughput. If the nodes have multi-core CPU’s the client
can make use of this by starting multiple jobs on a node. Crashes of parts of
the computing system will not affect the processing of the experiment, because
failed jobs are computed by other CC’s. A nice feature worth mentioning is
that instances or solvers can be added and deleted during computation, without
having to stop the CC’s. When a CC finishes a job it writes the results (e.g.
CPU time, output of solver, watcher and verifier) back to the DB and picks
another job until all jobs are completed. During the computation of the jobs the
job browser from the GUI or the WF enables real-time monitoring of the jobs
(see Fig. 2). When all jobs of an experiment are finished, the user can extract
information from the results and from the instances, and use it for descriptive
statistics or statistical tests, that can be performed within the GUI or WF. These
features are described in detail in the next chapters.

3 Information extraction

To analyze the results of an experiment different kinds of statistics can be used.
The more information about the experiment’s results and instances are available,
the more powerful these statistics can be. To make the analysis more easy for
the user, EDACC supports a variety of information extraction mechanisms. All

6 A. Balint, et al.

the information extracted through these mechanisms can be saved in the DB
and used for statistics or can be exported.

We differentiate between two kinds of information, depending on the source.
Any information that can be computed from the input instances is called an
instance property (IP). All other information is called a result property (RP).
The sources of RP’s are: the parameters of the solver, and the outputs (stdout,
stderr) of the solver, launcher, watcher and verifier.

Most of the information researchers are interested in is present in some out-
put file, and can be easily extracted by a parser procedure. However there are
a lot of information, e.g. the “hardness” of an instance or the “qualitiy” of a
solution, that requires advanced information processing. To cover both of these
scenarios, we provide two major mechanisms to extract IP’s and RP’s : by an in-
ternally defined parser, that can work with regular expressions, or by an external
program.

Before starting to extract information, the user has to define the properties
in the EDACC GUI by specifying the name, value type, description, source and
the regular expression or external program. The value type of the property can
be chosen from several predefined types like boolean, integer, float or string. To
make the information extraction as flexible as possible, the user is also able to
define further types and also to specify if the property has multiple occurrences.
If the property’s computation mechanism is an external program, the user has
to provide a binary and a parameter line to run the program. The stdout output
of the program is then interpreted as the value of the property.

Properties are stand-alone entities, and do not require the existence of in-
stances or of results. Starting the computation of a property creates a link be-
tween the property and the instance or the result. The link contains the value
of the property.

The computation of properties can take a long time, depending on the com-
plexity and size of the input. To take advantage of current multi-core computer
architectures EDACC can parallelize the computation of properties.

3.1 Instance properties

Instance properties can be computed in the manage DB mode of EDACC and
are independent of the existence of an experiment. Information about instances
can be also parsed from the instance filenames. This can be very useful when
the filename encodes different properties. After their computation, IP’s can be
displayed within the GUI, or can even be used to filter instances, according to
certain values of a property. This feature can be very useful when selecting the
instances for an experiment. Further, all computed IP’s are available for use in
the WF.

3.2 Result properties

Result properties can be computed in the experiment mode of EDACC and
assume the existence of an experiment. Most of the RP’s, excepting those com-

EDACC2 7

puted from solver parameters, can be computed only when a job is finished
and the output files of solver, launcher, watcher (and verifier) are available in
the DB. The computation of result properties can be started during the com-
putation of an experiment because EDACC will take only finished jobs into
consideration. Thereby preliminary analysis of the results and their properties is
possible. Computed RP’s can be displayed in the result browser or can be used
in the WF. There are some predefined RP’s within EDACC that do not have to
be computed: the result time (the time it took to compute the result) and the
parameters of a solver.

4 Analysis and statistical evaluation

Through its information extraction mechanism, EDACC provides a lot of infor-
mation about an experiment. Having all this sort of information in the same DB
we have extended the GUI and the WF to provide also descriptive statistics and
statistical tests. This can be for example used to measure the performance of
algorithms, to find out correlations between some properties of the results or to
simply have a graphical representation of the results. This enables the user to
directly analyze the results without having to export the data, and then process
them within a statistical program.

The information that can be used for analysis is stored in the DB within IP’s
and RP’s. We differentiate between two scenarios in which analysis is performed.
Analysis of a single solver or comparison of two or more solvers. We also have
to differentiate between single runs or multiple runs of a solver on the same
instance. If multiple runs are available, the information used for statistics can
be chosen by the user from median, mean, all runs or only a single specified run.

To improve the statistical methods the user has also the ability to select the
instances used for the analysis. For example when analyzing the results of SAT
solvers on random instances containing 3-SAT, 5-SAT, and 7-SAT instances,
the user might be only interested in 3-SAT. This can be performed by choosing
only the 3-SAT instances for the analysis. Instance selection is provided for all
methods.

A RP distribution plot (see Fig. 3) and a nonparametric kernel density esti-
mation is provided for the analysis of the results of a single solver on an arbitrary
instance by means of an arbitrary RP. To analyze the results of a solver on all in-
stances (or a selection) the user can use scatter plots. The compared information
can be an IP with a RP, like for example number of variables vs. CPU time or
two RP’s, like memory-usage vs CPU-time. Beside the scatter plots we also com-
pute the Spearman rank correlation coefficient and the Pearson product-moment
correlation coefficient.

A scatter plot (see fig. 4 for a run time comparison) together with the
two mentioned correlation tests is provided for the comparison of two solvers
by means of an arbitrary result property. When the comparison is limited to
one instance we also provide RP distributions comparisons together with a
Kolmogorow-Smirnow two-sample test and a Mann-Whitney-U Test (Wilcoxon

8 A. Balint, et al.

TNM vs. Sparrow

Runtime Distributions N
TNM CPU Time

0.0 0.5 1.0 15 20 25 3.0

30 F T T T T T 4 30

°
>
L
~
o
T
L
N
o

P(solve within x seconds)
R

S
Oty
g
-
o
T
L
-
&
Sparrow CPU Time

L
=
o

T T T T T
0.0 05 10 15 20 25

L U 0.0

CPU Time (s)

Fig. 3. Comparison of the runtime distri- Fig. 4. Scatter plot to compare the run-
bution of two solvers. time of two solvers.

rank sum test). The RP distribution comparison plot can be also done for all
solvers but without the tests.

A well founded comparison of the performance of two solvers can also be
done with the help of a probabilistic domination test by means of an arbitrary
RP. Within this tests instances are split into three categories. The first cate-
gory contains the instances where the first solver probabilistically dominates the
second one. The second one contains the instances where the second solver prob-
abilistically dominates the first one and the third category contains the instances
where no probabilistic domination can be found because of the crossing of the
RP distributions.

Analyzing one result property for one or more solvers can be done by a box
plot or by a cactus plot (number of solved instances within a given amount of
the RP’s see Fig. 7) .

Finally EDACC can export the generated plots in a huge variety of file for-
mats including vector graphics. To support third-party analysis tools IP’s and
RP’s can also be exported to the widespread csv-format.

5 EDACC - Competition Mode

Solver competitions can be an incentive for researchers to implement new ideas,
to improve existing solver and spark interest in the field. Recurring competitions
can show the progress in the development of solvers by comparing new solvers
with reference solvers from previous competitions. They can also help to identify
challenging instances for state-of-the-art solvers. The results of such a compe-
tition can be used by researchers to identify the strengths and weaknesses of
solvers and instances and to guide further development.

EDACC2 9

There are several competitions in the field of empirical algorithms, for exam-
ple the ”SAT Competition” [6][7], the ”SAT-Race”[8], the ?SMT-COMP”[9] or
“CASC” [3]. Running such competitions is an organizational challenge and comes
with the inevitable need for tools to make it possible to run dozens of solvers on
a huge set of instances in a multi-computer environment and then retrieve and
process the results for competition purposes. The competitions mentioned above
do have such internal tools and web interfaces, but to our knowledge they are not
publicly available. To make the organization of competitions to everybody possi-
ble, (who has the computational resources) we decided to extend EDACC to be
able to provide all required functionalities for the organization of competitions.

We first started by analyzing the existing competition systems to find out
their commonalities and to identify interesting or missing features.

From an abstract point of view all competitions have:

. static web pages to provide information about rules and the course of events
. user administration to control the access to the results

. an execution system to run solvers and manage the results

. dynamic web pages to present the results

=W N

As necessary, interesting or missing features we have identified:

1. Plausibility and verifiability of the steps taken in all competition phases by
providing participants real-time access to all relevant information.

2. The results have to be reproducible, which means all required information
(e.g. starting command, seeds, input files, output files) should be easily ac-
cessible through a web interface.

3. Various forms of presentation of the results with cross linking and filtering.
4. Different graphical presentations of the results, including interactive ele-
ments such as clickable points in plots that lead to detailed information.

5. All graphical presentations are exportable both as image and as numerical

data.

. Descriptive statistics and statistical tests for analysis of the results.

7. Clean encapsulation of the ranking system enabling easy implementation of
new ranking systems.

We have extended the WF of EDACC to provide together with the GUI and
CC all of these features. Further we have added a phase system (see Fig. 5)
to specify the course of events during a competition. The phases also specify
which actions should be taken by whom and control the access to the various
information.

Next we are going to describe the organization of a competition with the
EDACC WF by describing each phase, and pointing out the interesting features
that are provided. The access control to different kinds of information (e.g. own
results, all results, statistics, etc.) can be configured by the organizers for each
phase individually, according to their competition policies. Through the descrip-
tion of the phases an exemplary access control is given.

In the first phase the organizers of the competition define the competition
categories (which actually can be seen as sub-competitions). A category is defined

[=p}

10 A. Balint, et al.

A . . . o
— nnounce 1. Category definition 2. Registration/Submission
competition

7. Rel
3. Solver 4. Solver g 6. Release Release
. . 5. Competition results
testing resubmission results :
to public

Fig. 5. The phases of a competition

by the instances it will contain and should give the competitors an orientation
where to submit their solvers. In EDACC, each category will be represented by
an experiment. In this phase competitors have access only to general information,
rules and the schedule. The WF provides containers for these static web pages.

In the second phase, competitors are requested to create an account for the
web interface. After login they can submit their solvers (i.e. source code or bi-
nary), which are directly saved within the DB. They have to provide detailed
information about their solvers like the parameters and the competition cate-
gory where the solver should participate. Instances can also be submitted by
specifying the origin, type and the category it would suit best. Submitted in-
stances will be then available to organizers in the EDACC DB. During this phase
competitors have no access to other competitors’ solvers nor instances. The WF
together with the DB provides the necessary access controls.

The solver testing phase is used to ensure that the submitted solvers are able
to run on the computing system of the competition. Within the EDACC GUI
organizers create test experiments, corresponding to each of the competition
categories. Creating this experiments is straightforward, because solvers and
instances are already in the DB. Each solver will be tested in all categories it
was submitted to. The experiments are then run on the competition computing
system with the help of the CC. Competitors have the possibility to real-time
monitor their solvers through the WF (results of other solvers are not visible).
Registration and submission of solvers or instances is no longer possible within

the WF. From this phase on results are accessible in several forms !:

1. By solver configuration: The results for all instances computed by a solver
configuration.

2. By instance: The results of all solver configurations.

3. By solver configuration and instance (if multiple runs are allowed): multiple
jobs of each solver configuration on an instance are accumulated and some
descriptive statistics like the minimum, maximum, median and mean runtime
displayed.

! An example for the results of a competition can be found at http://edacc.
informatik.uni-ulm.de/

SAT Competition

Overview | Schedule | Rules | Categories | Results Login
» Experiments :: Random Category

Random Category

Date: 14.10.2010
Description: Contains uniform random generated SAT problems.

Progress
Live information about experiment progress
Information about solvers and instances

List of solver configurations used
List of instances used

Results

By solver configuration and instance (runs accumulated)

By solver configuration

By instance

Analysis

Box plot - Box plots of the runtimes of solvers on instances

Scatter plot - One result property of two solvers (e.g. CPU time vs. CPU time)

Scatter plot - Twi It properties of a solver (e.g. CPU time vs. Memory)

Scatter plot - Re: ainst instance property (e.g. CPU Time against Number of Atoms)
Cactus plot - Nun within a given amount of urce (time, memory, ...)

RTD plot - RTD and K nati
Result property distribution plot and Analysis - Comparison of two solvers on an instance
RTD plot - Runtime distributions of several solvers on an instance

Analysis - Probabilistic Domination of solvers on the instances

Ranking

Ranking by number of successful runs

Fig.6. View of the WF showing the result

EDACC2 11

Number of solved instances within a given amount of CPU time

o TNM
100 4 Hybrid2

i3
5

gNoveltys2
adaplGZWSAT++ Y

CPU Time (s)

number of solved instances

Download as PDF | EPS | Raw Data (CSV)

Fig. 7. Cactus plot of the results dur-

phase of a competition. ing the run of a competition.

4. Single result: The result of a single job, including the output of solver,
launcher, watcher and verifier and also all result properties that where com-
puted for this result.

During a solver resubmission phase, competitors have the opportunity to
submit solver updates if bugs or compatibility issues with the computing sys-
tem occurred during the test phase. The organizers can then rerun the testing
experiments with the updated solvers.

Similar to the testing phase, in the competition phase organizers create exper-
iments based on the competition categories and choose the solvers and instances
for each experiment. This task is again accomplished with the help of the GUIL.
The experiments are then run on the computing system and competitors have
the possibility to monitor the results of their own solvers online (and of others
if configured so by the organizers).

In the release phase competitors gain access to the results of all competing
solvers. Before making the results available to the wide public a ranking has
to be calculated. The ranking can either be calculated dynamically by the web
application or simply displayed after a manual calculation. We implemented a
simple, exemplary ranking using the number of correct results and breaking
ties by the accumulated CPU time. Further rankings can be easily encapsulated
within the application. Also available in this phase is the complete spectrum of
descriptive statistics and statistical tests described in chapter 4. For pointing out
interesting results or correlations the organizer have the possibility to extract
instance or result properties within the GUI and make them available within the
WE.

In a last phase, instances, results and possibly solver source codes and binaries
are made publicly available on the web interface without requiring registration.

12 A. Balint, et al.
6 Implementation Details

The first component of EDACC, the DB, requires an user-account on a MySQL
5.1 database with read and write access. The location of the DB plays no role.
The needed tables are generated by EDACC itself. The GUI of EDACC is written
in Java and is independent of the operating system of the computer. It needs
only the Java virtual machine version 6. For the statistical evaluation, the R
programming language should also be installed on the computer.

The compute client consists of three sub programs: the launcher, the watcher
and the verifier. The launcher builds a DB-connection, and is responsible for
fetching the jobs and all necessary files, providing them to the watcher. The
launcher is written in C and was tested only on unix-like systems. The watcher
starts the solver, and monitors the consumption of resources on the computing
system. If some limits are exceeded the solver will be stopped. At the moment
we use the runsolver code of Olivier Roussel from the SAT Competition as a
watcher. The watcher is a replaceable component in EDACC. The verifier is
problem dependent and has to be provided by the user. If the results of the
solver can be trusted (e.g. the solver contains a verifier procedure) the verifier
can be omitted.

A MySQL proxy is provided to make the execution of the CC on computer
clusters possible, where the nodes do not have Internet access, except for a login
node. In such a scenario the MySQL-proxy running on the login node provides
the DB-connection for the CC’s. This feature was tested on several computer
clusters.

The web interface for the competition mode is implemented as Python WSGI
(Web Server Gateway Interface) application. The application uses a web frame-
work and several open source libraries which are available on most platforms.
All competition specific data like user accounts, instance types and the phase of
the competition are stored in the central DB. To generate plots and calculate
statistics it uses an interface library to the statistical computing language R.

The code of EDACC components is open source and is released under the
MIT License (excepting the watcher, which has an GPLv3 license). The code is
available at the project site: http://sourceforge.net/projects/edacc/.

7 Related Work

We are not aware of the existence of an experimentation system for empiri-
cal algorithms that provides all the functionalities of EDACC within the same
platform. Parts of EDACC’s functionalities are provided by different systems or
tools. GridTPT [4] for example supports the testing of SMT solvers and their
distribution on computer clusters supporting a master/slave architecture. It is
also able to parse information from the output and present some statistics as
scatter plots.

The different competitions like [7] and the SMT Competition [9] systems
have several tools similar to our WF but they lack the possibility to perform

EDACC2 13

advanced analysis of the results and are not freely available nor portable to
other computing systems.

8 Conclusion and future work

In this work we have introduced EDACC, a platform for the design, adminis-
tration and analysis of experiments on empirical algorithms. EDACC consists
of four major components, the database, a graphical user interface, a compute
client and a web frontend. The DB is the central information storage of EDACC
and provides the communication link between GUI, CC and WF. The GUI en-
ables the user to manage solvers, their parameters and instances within the DB.
It also enables the design and creation of complex experiments and their ad-
ministration on different computing systems. The compute client performs the
computation of the experiment jobs on arbitrary computing systems ranging
from multi-core computers to large scale grids. The architecture of the compute
client is designed to use the allocated resources to a maximum, increasing the
computational throughput. Crashes of parts of the computational system do not
affect the processing of experiment jobs, as failed jobs can be recomputed by
other CC’s. During the computation of an experiment the GUI and the WF
provide a job browser to monitor the jobs. They also provide a wide variety of
statistical analysis methods like descriptive statistics and statistical tests. For
organizing solver competitions the WF provides all necessary functionalities like
user administration, and different dynamic web pages for monitoring the course
of events. The statistical analysis possibilities are also provided for the compe-
tition mode, enabling a fast evaluation of the results.

We think that researchers, that study empirical algorithms, can drastically
speed up their experimental and analysis work by using EDACC as their exper-
imental platform.

In the further development of EDACC we plan to integrate an automatic
parameter optimizing procedure. Together with the distributed computing pos-
sibilities of EDACC, the optimization process could be sped up. We also plan
to integrate different priority policies for processing the jobs within an exper-
iment. For the competition mode of the WF an automated compilation of the
source code (which is submitted by the competitors) on the computing system
is planed.

Acknowledgments: We would like to thank the bwGrid [2] project for
providing the test environment, and Borislav Junk and Raffael Bild for the first
version of the launcher code. We would also like to thank Geoff Sutcliffe for
fruitful suggestions regarding the first version of this paper.

References

1. Balint, A., Gall D., Kapler G., Retz, R., Experiment design and administration
for computer clusters for SAT-solvers (EDACC). JSAT Volume 7 (2010), system
description, pages 77-82.

14

®

10.

A. Balint, et al.

. bwGRID (http://www.bw-grid.de), member of the German D-Grid initiative,

funded by the Ministry for Education and Research (Bundesministerium fiir
Bildung und Forschung) and the Ministry for Science, Research and Arts
Baden-Wiirttemberg (Ministerium fiir Wissenschaft, Forschung und Kunst Baden-
Wiirttemberg)
Sutcliffe, G.: The CADE-22 Automated Theorem Proving System Competition
CASC-22 2010, AT Communications Journal 23 Number 1 pages 47-60
Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe and Pascal
Fontaine: GridTPT: a distributed platform for Theorem Prover In Proc. Workshop
on Practical Aspects of Automated Reasoning 2010
Frank Hutter, Holger Hoos, and Thomas Stiitzle: Automatic Algorithm Configura-
tion based on Local Search In AAAI-07.
Le Berre, D., Simon, L.: The essentials of the SAT 2003 competition In Sixth Inter-
national Conference on Theory and Applications of Satisfiability Testing, volume
2919 of LNCS, pages 452-467.
The SAT Competition Homepage: http://www.satcompetition.org
SAT-Race 2010 Homepage: http://baldur.iti.uka.de/sat-race-2010/
Barrett, C., De Moura, L., Stump, A.: SMT-COMP: Satisfiability Modulo Theories
Competition In CAV’05, LNCS 3576

Homepage of the project : http://sourceforge.net/projects/edacc/

