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Abstract. Sophisticated empirical methods drive the development of
high-performance solvers for an increasing range of problems from industry
and academia. However, automated tools implementing these methods
are often difficult to develop and to use. We address this issue with two
contributions. First, we develop a formal description of meta-algorithmic
problems and use it as the basis for an automated algorithm analysis and
design framework called the High-performance Algorithm Laboratory.
Second, we describe HAL 1.0, an implementation of the core components
of this framework that provides support for distributed execution, remote
monitoring, data management, and analysis of results. We demonstrate
our approach by using HAL 1.0 to conduct a sequence of increasingly
complex analysis and design tasks on state-of-the-art solvers for SAT and
mixed-integer programming problems.

1 Introduction

Empirical techniques play a crucial role in the design, study, and application of
high-performance algorithms for computationally challenging problems. Indeed,
state-of-the-art solvers for prominent combinatorial problems, such as proposi-
tional satisfiability (SAT) and mixed integer programming (MIP), rely heavily on
heuristic mechanisms that have been developed and calibrated based on extensive
computational experimentation. Performance assessments of such solvers are also
based on empirical techniques, as are comparative analyses of competing solvers
for the same problem. Advanced algorithm design techniques based on empirical
methods have recently led to substantial improvements in the state of the art for
solving many challenging computational problems (see, e.g., [1–3]).

Empirical analysis and design techniques are often used in an ad-hoc fashion,
relying upon informal experimentation. Furthermore, despite a growing body of
literature on advanced empirical methodology, the techniques used in practice are
often rather elementary. We believe that this is largely due to the fact that many
researchers and practitioners do not have sufficient knowledge of, or easy access
to, more sophisticated techniques, and that implementations of these techniques
are often difficult to use, if publicly available at all. At the same time, it is clear
that much can be gained from the use of advanced empirical techniques.

To address the need for easy access to powerful empirical techniques, we
developed HAL, the High-performance Algorithm Laboratory – a computational
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environment for empirical algorithmics. HAL was conceived to support both the
computer-aided design and the empirical analysis of high-performance algorithms,
by means of a wide range of ready-to-use, state-of-the-art analysis and design
procedures [4]. HAL was also designed to facilitate the development, dissemination,
and ultimately wide adoption of novel analysis and design procedures.

By offering standardized, carefully designed procedures for a range of empirical
analysis and design tasks, HAL aims to promote best practices and the correct
use of advanced empirical methods. In particular, HAL was designed to support
the use and development of fully automated procedures for the empirical analysis
and design of high-performance algorithms. Since they operate upon algorithms,
we refer to these procedures as meta-algorithmic procedures (or meta-algorithms).
Example meta-algorithmic analysis procedures include the characterization of
algorithm performance on a set of benchmark instances using a solution cost
distribution, as well as the comparison of two algorithms’ performance using the
Wilcoxon signed-rank test (see, e.g., [5]). Meta-algorithmic design procedures
are rapidly gaining prominence and include configuration procedures, such as
ParamILS [6, 7] and GGA [8], and portfolio builders like SATzilla [9, 1].

During the early stages of developing HAL, we realized that appropriately
formalized notions of meta-algorithmic procedures, and of the tasks accomplished
by these procedures, would provide an ideal foundation for the system. This
conceptual basis promotes ease of use, by inducing a natural categorization
of analysis and design procedures and by facilitating the use of multiple (or
alternative) analysis or design procedures. For example, configuration procedures
like ParamILS and GGA solve the same fundamental problem, and with HAL
it is easy to conduct analogous (or even parallel) experiments using either of
them. Furthermore, HAL’s foundation on meta-algorithmic concepts facilitates
the combination of various procedures (such as configuration and algorithm
selection [10]) and their sequential application (such as configuration followed
by comparative performance analysis), as well as the application of analysis or
design procedures to other meta-algorithmic procedures (as in the automated
configuration of a configurator). Finally, meta-algorithmic concepts form a solid
basis for realizing HAL in a convenient and extensible way.

HAL also offers several other features important for work in empirical algo-
rithmics. First, to support large computational experiments, HAL uses a database
to collect and manage data related to algorithms, benchmark instances, and
experimental results. Second, while HAL can be used on a stand-alone computer,
it also supports distributed computation on computer clusters. Third, it allows
researchers to archive experiment designs into a single file, including settings,
instances, and solvers if unencumbered by license restrictions. Another user can
load the file into HAL and replicate exactly the same experiment.

HAL is also designed to facilitate the development and critical assessment of
meta-algorithmic procedures. To this end, it is realized as an open environment
that is easy to extend, and offers strong support for recurring tasks such as
launching, monitoring, and analyzing individual algorithm runs. In short, HAL
allows developers to focus more on building useful and powerful meta-algorithmic
procedures and less on the infrastructure required to support them. We hope that
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this will help to bring about methodological progress in empirical algorithmics,
and specifically in the development of novel meta-algorithmic procedures, incor-
porating contributions from a broad community of researchers and practitioners.

HAL shares some motivation with other systems supporting the empirical
study of algorithms. Paver [11] performs automated performance analysis of
optimization software through a web-based interface, but requires that input
data be collected by separate invocation of a different tool, and thus is unsuitable
for automated techniques that perform concurrent data collection and analysis.
EDACC [12] is an experiment management framework which, like HAL, supports
distributed execution on compute clusters and centralized data storage, accessed
via a unified web interface; unlike HAL, EDACC is focused only on the SAT
problem, and more fundamentally does not provide any support for automated
meta-algorithmic design procedures. Overall, HAL is the only environment of
which we are aware that is designed for the development and application of
general-purpose meta-algorithmic analysis and design techniques.

The remainder of this paper is structured as follows. In Section 2, we describe
in more detail our vision for HAL and the meta-algorithmic concepts underlying
it. In Section 3, we explain how HAL 1.0, our initial implementation of the HAL
framework, provides an extensible environment for empirical algorithmics research.
We illustrate the use of HAL 1.0 with a sequence of analysis and design tasks for
both SAT and MIP in Section 4: first characterizing one solver’s performance,
next comparing alternative solvers, and finally automating solver design using
proven meta-algorithmic techniques. Finally, in Section 5 we summarize our
contributions and discuss ongoing work.

2 HAL: A Framework for Meta-algorithmics

The concepts of meta-algorithmic analysis and design procedures are fundamental
to HAL. In this section we formally introduce these concepts, discuss benefits we
can realize from this formal understanding, and outline HAL’s high-level design.

2.1 Meta-algorithmic Problems

We begin by defining a (computational) problem as a high-level specification of a
relationship between a space of inputs and a corresponding space of outputs. An
instance of a problem p is any set of values compatible with its input space, and
a solution to an instance is a set of values compatible with its output space and
satisfying the relationship required by p. For example, SAT can be defined as:

Input: 〈V, φ〉, where V is a finite set of variables, and φ is a Boolean formula in
conjunctive normal form containing only variables from V or their negations;

Output: s =

{
true if ∃K : V 7→ {true, false} such that φ = true under K;
false otherwise.

Thus, 〈V = {a, b, c}, φ = (¬b∨ c)∧ (a∨ b∨¬c)〉 is an example of a SAT instance
with solution s = true.

An algorithm is any well-defined computational procedure that takes some
set of inputs and produces some set of outputs. We say an algorithm A solves a
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problem p if it accepts any instance of p as a subset of its inputs, and a solution to
that instance is identified in its outputs when executed. We observe that A may
include inputs and/or outputs other than those required by p, and distinguish
three types of algorithm inputs: the algorithm-independent problem instance to
be solved, algorithm-specific parameters that qualitatively affect behaviour while
solving the instance, and any other settings that might be required (e.g., a CPU
time budget or a random seed). We refer to algorithms that have parameters as
parameterized, and to the rest as parameterless. Any parameterized algorithm can
be made parameterless by instantiating all of its parameters with specific values.
Thus, a parameterized algorithm defines a space of parameterless algorithms.

A meta-algorithmic problem is a problem whose instances contain one or
more algorithms, and a meta-algorithm, or meta-algorithmic procedure, is an
algorithm that solves some meta-algorithmic problem. We refer to algorithms
that serve as (part of) a meta-algorithm’s input as target algorithms, and to
the problems target algorithms solve as target problems. An analysis problem
is a meta-algorithmic problem whose solution must include a statement about
the target algorithm(s); a design problem is a meta-algorithmic problem whose
solutions must include one or more algorithms. Finally, we refer to an algorithm
that solves an analysis problem as an analysis procedure, and one that solves a
design problem as a design procedure.

Meta-algorithmic analysis problems are ubiquitous, even if they are not always
solved by automated procedures. Consider the task of evaluating a solver on
a benchmark instance set, using various statistics and diagnostic plots. This
corresponds to the single-algorithm analysis problem:

Input: 〈A, I, m〉, where A is a parameterless target algorithm, I is a distribution
of target problem instances, and m is a performance metric;

Output: 〈S, T 〉, where S is a list of scalars and T a list of plots; and where each
s ∈ S is a statistic describing the performance of A on I according to m, and
each t ∈ T is a visualization of that performance.

One meta-algorithmic procedure for solving this problem might collect runtime
data for A, compute statistics including mean, standard deviation, and quantiles,
and plot the solution cost distribution over the instance set [5]; other procedures
might produce different plots or statistics. We can similarly define pairwise
comparison, whose instances contain two parameterless algorithms, and whose
output characterizes the two algorithms’ relative strengths and weaknesses.

Now consider the use of ParamILS [6, 7] to optimize the performance of a SAT
solver. ParamILS is a meta-algorithmic design procedure that approximately
solves the algorithm configuration problem:

Input: 〈A, I, m〉, where A is a parameterized target algorithm, I is a distribution
of target problem instances, and m is a performance metric;

Output: A∗, a parameterless algorithm for the target problem; where A∗ corre-
sponds to an instantiation of A’s parameters to values that optimize aggregate
performance on I according to m.

We can similarly define the per-instance portfolio-based algorithm selection prob-
lem, which is approximately solved by SATzilla [9, 1]:
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Input: 〈A, I, m〉, where A is a finite set of parameterless target algorithms, I
is a distribution of target problem instances, and m is a performance metric;

Output: A′, a parameterless algorithm for the target problem; where A′ executes
one A ∈ A for each input instance, optimizing performance according to m.

Other variations also fit within the framework. Since we consider a parameterized
algorithm to be a space of parameterless algorithms, portfolio-based selection can
be seen as a special case of the generalization of configuration sometimes referred
to as per-instance configuration, restricted to finite sets of target algorithms.
Generalizing differently, we can arrive at the parallel portfolio scheduling problem,
which requires that A′ executes multiple algorithms from A in parallel and
returns the first solution found, allocating computational resources to optimize
the expected aggregate performance on I according to m. Finally, one can further
generalize to per-instance parallel portfolio scheduling, where A′ executes multiple
algorithms from A for each input instance and returns the first solution found,
allocating computational resources to optimize performance according to m.

We note a parallel between meta-algorithmic problems and the idea of de-
sign patterns from software engineering, which describe recurrent problems
arising frequently in a given environment, along with solutions for them [13].
Meta-algorithmic problems identify challenges that arise regularly in algorithm
development and present specific solutions to those challenges. However, choosing
between design patterns relies on understanding the benefits and drawbacks of
each. The same holds in the meta-algorithmic context; we hope that HAL will
prove useful for developing such understanding.

2.2 The High-Performance Algorithm Laboratory

HAL has been designed to align closely with the conceptual formalization from
Section 2.1, thereby providing a unified environment for the empirical analysis
and design of high-performance algorithms via general meta-algorithmic tech-
niques. In particular, HAL allows explicit representation of arbitrary problems
and algorithms (including input and output spaces), problem instances and
distributions, and performance metrics. Meta-algorithmic problems in HAL are
simply problems whose input (and perhaps output) spaces are constrained to
involve algorithms; likewise, meta-algorithmic procedures are realized as a special
case of algorithms. HAL presents a unified user interface that gives the user easy
and uniform access to a wide range of empirical analysis and design techniques
through a task-basked workflow. For example, users can design experiments
simply by selecting a meta-algorithmic problem of interest (e.g., configuration),
a meta-algorithmic procedure (e.g., ParamILS), and additional information
that specifies the meta-algorithmic problem instance to be solved (e.g., a target
algorithm, a distribution of target instances, and a performance metric).

This design provides the basis for five desirable characteristics of HAL. First,
it allows HAL to work with arbitrary problems, algorithms and meta-algorithmic
design and analysis techniques. Second, it enables HAL to automatically archive
and reuse experimental data (avoiding duplication of computational effort, e.g.,
when rerunning an experiment to fill in missing data), and to serve as a central
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repository for algorithms and instance distributions. Third, it makes it easy to
support packaging and distribution of complete experiments (including target
algorithms, instances, and other experiment settings) for independent verification,
for example to accompany a publication. Fourth, it facilitates the straightforward
use (and, indeed, implementation) of different meta-algorithmic procedures with
compatible input spaces; in particular including procedures that solve the same
meta-algorithmic problem (e.g., two algorithm configuration procedures). Finally,
it simplifies the construction of complex experiments consisting of sequences of
distinct design and analysis phases.

To support a wide range of meta-algorithmic design and analysis procedures,
HAL allows developers to contribute self-contained plug-in modules relating to
specific meta-algorithmic problems and their associated procedures. A plug-in
might provide a new procedure for a relatively well-studied problem, such as
configuration. Alternately, it might address new problems, such as robustness
analysis or algorithm simplification, and procedures for solving them drawing on
concepts such as solution cost and quality distributions, runtime distributions,
or parameter response curves. In the long run, the value of HAL to end users
will largely derive from the availability of a library of plug-ins corresponding to
cutting-edge meta-algorithmic procedures. Thus, HAL is an open platform, and
we encourage members of the community to contribute new procedures.

To facilitate this collaborative approach, HAL is designed to ensure that the
features offered to end users are mirrored by benefits to developers. Perhaps most
importantly, the separation of experiment design from runtime details means
that the execution and data management features of HAL are automatically
provided to all meta-algorithmic procedures that implement the HAL API. The
API also includes implementations of the fundamental objects required when
building a meta-algorithm, and makes it easier for developers to implement new
meta-algorithmic procedures. Adoption of this standardized API also stream-
lines the process of designing hybrid or higher-order procedures. For example,
both Hydra [10] and ISAC [14] solve algorithm configuration and per-instance
portfolio-based selection problems; implementation using HAL would allow the
underlying configuration and selection sub-procedures to be easily replaced or
interchanged. Finally, as we continue to add meta-algorithmic procedures to HAL,
we will compile a library of additional functionality useful for implementing design
and analysis procedures. We expect this library to ultimately include compo-
nents for exploring design spaces (e.g., local search and continuous optimization),
machine learning (e.g., feature extraction and regression/classification methods),
and empirical analysis (e.g., hypothesis testing and plotting), adapted specifically
for the instance and runtime data common in algorithm design scenarios.

3 The HAL 1.0 Core Infrastructure

The remainder of this paper describes an implementation of HAL’s core function-
ality, HAL 1.0, which is now available as a limited pre-release online.1 The system

1 cs.ubc.ca/labs/beta/Projects/HAL
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is essentially complete in terms of core infrastructure (i.e., experiment mod-
elling, execution management, and user interface subsystems), and includes five
meta-algorithmic procedures, focused on two meta-algorithmic analysis problems—
single algorithm analysis and paired comparison—and the meta-algorithmic design
problem of configuration. These procedures are further described in Section 4,
where we present a case study illustrating their use. As discussed above, we
intend to add a variety of additional meta-algorithmic procedures to HAL in
the next release, and hope that still others will be contributed by the broader
community.

This section describes HAL 1.0’s core infrastructure. We implemented HAL
1.0 in Java, because the language is platform independent and widely used, its
object orientation is appropriate for our modular design goals, and it offers
relatively high performance. The HAL 1.0 server has been tested primarily under
openSUSE Linux and Mac OS X, and supports most POSIX-compliant operating
systems; basic Windows support is also provided. The web-based UI can provide
client access to HAL from any platform. HAL 1.0 interfaces with Gnuplot for
plotting functionality, and (optionally) with R for statistical computing (otherwise,
internal statistical routines are used), MySQL for data management (otherwise,
an embedded database is used), and Grid Engine for cluster computing.

In the following subsections, we describe HAL 1.0’s implementation in terms
of the three major subsystems illustrated in Figure 1. While these details are
important for prospective meta-algorithm contributors and illustrative to readers
in general, one does not need to know them to make effective use of HAL 1.0.

3.1 Experiment Modelling

The components of the experiment modelling subsystem correspond to the con-
cepts defined in Section 2. This subsystem includes most of the classes exposed to
developers using the HAL API, including those that are extensible via plug-ins.

We will consider the running example of a user designing an experiment with
HAL 1.0, which allows us to describe the Java classes in each subsystem. The
user’s first step is to select a meta-algorithmic problem to solve. The Problem
class in HAL 1.0 encodes the input and output Spaces defined by a particular
computational problem. (We hereafter indicate Java classes by capitalizing and
italicizing their names.) The relationship between the inputs and outputs is not
explicitly encoded, but is implicitly identified through the name of the Prob-
lem itself. Individual variables in a Space are represented by named Domains;
functionality is provided to indicate the semantics of, and conditional interde-
pendencies between, different variables. HAL 1.0 supports a variety of Domains,
including Boolean-, integer-, and real-valued numerical Domains, categorical
Domains, and Domains of other HAL objects.

Once a problem is selected, the user must import an InstanceDistribution
containing target problem Instances of interest. HAL 1.0 currently supports finite
instance lists, but has been designed to allow other kinds of instance distributions
such as instance generators. The Instance class provides access to problem-specific
instance data, as well as to arbitrary sets of Features and user-provided Tags (used,
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Fig. 1. Infrastructural overview of HAL 1.0. Dashed arrows indicate composition; solid
arrows, inheritance. Key components are shaded. Note the distinct subsystems, with
interactions between them (double arrows) typically moderated by AlgorithmRuns.

e.g., to indicate encoding formats that establish compatibility with particular
Problems or Algorithms). An Instance of a target problem typically includes
a reference to the underlying instance file; an Instance of a meta-algorithmic
problem contains the Algorithms, Instances, and Metrics that define it.

The next step in experiment specification is to choose one or more target
algorithms. In HAL 1.0, the Algorithm class encodes a description of the input
and output spaces of a particular algorithm Implementation. For external tar-
get algorithms, the Implementation specifies how the underlying executable is
invoked, and how outputs should be parsed; for meta-algorithmic procedures, it
implements the relevant meta-algorithmic logic. Note that the base Implementa-
tion classes are interfaces, and meta-algorithmic procedures added via plug-ins
provide concrete implementations of these. Input and output spaces are encoded
using the Space class, and an Algorithm may be associated with a set of Tags that
identify the Problems that the algorithm solves, and compatible Instances thereof.
Two Algorithm subclasses exist: a ParameterizedAlgorithm includes configurable
parameters in its input space, and a ParameterlessAlgorithm does not. Before
execution, an Algorithm must be associated with a compatible Instance as well
as with Settings mapping any other input variables to specific values.

The final component needed to model a meta-algorithmic experiment is a
performance metric. A Metric in HAL 1.0 is capable of performing two basic
actions: first, it can evaluate an AlgorithmRun (see Section 3.2) to produce a single
real value; second, it can aggregate a collection of such values (for example, over
problem instances, or over separate runs of a randomized algorithm) into a single
final score. HAL 1.0 includes implementations for commonly-used performance
metrics including median, average, penalized average runtime (PAR), and average
solution quality, and it is straightforward to add others as required.
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3.2 Execution and Data Management

The execution subsystem implements functionality for conducting experiments
specified by the user; in HAL 1.0, it supports execution on a local system, on a
remote system, or on a compute cluster. It also implements functionality for cata-
loguing individual resources (such as target algorithms or instance distributions)
and for archiving and retrieving the results of runs from a database.

Once our user has completely specified an experiment, he must define the
environment in which execution is to occur. An Environment in HAL 1.0 is
defined by ExecutionManagers which are responsible for starting and monitoring
computation and a DataManager which is responsible for performing archival
functions. When an algorithm run request is made, the Environment queries the
DataManager to see if results for the run are already available. If so, these results
are fetched and returned; if not, the request is passed to an ExecutionManager for
computation and automatic output parsing. In either case, results are returned
as an AlgorithmRun object which allows monitoring of the run’s elapsed CPU
time, status, and individual output value trajectories both in real time during
execution and after completion. It also exposes functionality for early termination
of runs and uses this to enforce runtime caps.

HAL 1.0 includes three ExecutionManager implementations. The LocalExe-
cutionManager performs runs using the same machine that runs HAL 1.0, and
the SSHExecutionManager performs runs on remote machines using a secure
shell connection. The SGEClusterExecutionManager distributes algorithm runs
to nodes of a compute cluster managed by Oracle Grid Engine (formerly Sun
Grid Engine). The Environment can be configured to use different ExecutionMan-
agers in different situations. For example, for analysis of an algorithm on target
problems that require a particularly long time to solve, the user might specify
an Environment in which the parent meta-algorithm is executed on the local
machine, but target algorithm runs are distributed on a cluster. Alternatively,
when target algorithm runs are relatively short but require a platform different
than the one running HAL 1.0, the user might specify an Environment in which
all execution happens on a single remote host.

HAL 1.0 includes two DataManager implementations. By default, a subclass
employing an embedded SQLite database is used. However, due to limitations of
SQLite in high-concurrency applications, a MySQL-backed implementation is also
provided. These DataManagers use a common SQL schema based on the same
set of fundamental meta-algorithmic concepts to store not only experimental
results, but also information sufficient to reconstruct all HAL objects used in
the context of a computational experiment. We note that external problem
instances and algorithms are not directly stored in the database, but instead at
recorded locations on the file system, along with integrity-verifying checksums.
This eliminates the need to copy potentially large data files for every run, but
presently requires that all compute nodes have access to a shared file space.
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3.3 User Interface

The user interface subsystem provides a remotely-accessible web interface to HAL
1.0, via an integrated WebServer. Many classes have associated ObjectServlets
in the WebServer, which provide interface elements for their instantiation and
modification. The ObjectServlets corresponding to Problems are used to design
and execute experiments; the servlet for a given Problem automatically makes
available all applicable meta-algorithmic procedures. Additional ObjectServlets
allow the user to specify and examine objects such as Algorithms, Instance-
Distributions, Settings, and Environments. A StatusServlet allows the user to
monitor the progress and outputs of experiments both during and after execution,
by inspecting the associated AlgorithmRun objects. Finally, the interface allows
the user to browse and maintain all objects previously defined in HAL, as well
as to export these objects for subsequent import by other users.

4 Case Study: Analysis and Design with HAL 1.0

We now demonstrate HAL 1.0 in action. Specifically, we walk through two
workflow scenarios that could arise for a typical user. In this way, we also present
the five meta-algorithmic procedures that are available in HAL 1.0. The outputs
of these procedures are summarized in Table 1, and in the following figures
(exported directly from HAL 1.0). Exports of experiment designs are available
on the HAL website to facilitate independent validation of our findings.

Scenario 1: Selecting a MIP Solver. In this scenario, a user wants to se-
lect between two commercial mixed-integer program (MIP) solvers, IBM ILOG
Cplex2 12.1 and Gurobi3 3.01, on the 55-instance mixed integer linear program-
ming (MILP) benchmark suite constructed by Hans Mittelmann.4 Our user sets
a per-target-run cutoff of 2h and uses penalized average runtime (PAR-10) as
the performance metric (PAR-k counts unsuccessful runs at k times the cutoff).

Scenario 2: Adapting a SAT Solver. In this scenario, a user aims to adapt
a stochastic tree search solver for SAT, version 1.2.1 of Spear [15], to achieve
strong performance on the 302-instance industrial software verification (SWV)
benchmark training and test sets used by Hutter et al. [16]. Our user sets a
per-target-run cutoff of 30s and evaluates performance by mean runtime (PAR-1).

Computational Environment. All experiments were performed on a Grid
Engine cluster of 55 identical dual-processor Intel Xeon 3.2GHz nodes with
2MB cache and 4GB RAM running openSUSE Linux 11.1. Runtime data was
archived using a dedicated MySQL server with the same machine specifications.
Individual target algorithm runs for Scenario 1 experiments were distributed
across cluster nodes, and for Scenario 2 experiments were consolidated on single
nodes. Reported runtimes indicate CPU time used, as measured by HAL 1.0.

2 ibm.com/software/integration/optimization/cplex
3 gurobi.com
4 plato.asu.edu/ftp/milpf.html
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4.1 The Single-Algorithm Analysis Problem

In both scenarios, our user begins by analyzing single algorithms individually.

Analysis Procedure 1: SCD-Based Analysis. This comprehensive approach
to single-algorithm analysis takes as input a single target algorithm, a set of
benchmark instances, and some additional settings including a maximum number
of runs per target instance, a maximum CPU time per target run, a maximum
number of total target runs, and a maximum aggregate runtime budget. It collects
runtime data for the target algorithm on the instance distribution (in parallel,
when specified) until a stopping criterion is satisfied. Summary statistics are
computed over the instance distribution, and a solution cost distribution plot
(SCD; see, e.g., Ch. 4 of [5]), illustrating (median) performance across all target
runs on each instance, is produced.

Scenario 1(1). Cplex is the most prominent mixed-integer programming solver.
Here, our user measures its performance on the MILP instance set using the
SCD-Based Analysis procedure; as Cplex is deterministic, it is run only once
per instance. The resulting summary statistics are shown in Table 1, and the
SCD appears in the left pane of Figure 2.

Scenario 2(1). Spear was originally optimized for solving SAT instances from
several applications, but was later prominently used for software verification in
particular. In this phase of the case study, our user assesses the original, manually
optimized version of Spear on the SWV test set. The summary statistics from
an SCD-based analysis (performing 20 runs per instance as Spear is randomized)
are shown in Table 1 and the SCD in the top left pane of Figure 3.

4.2 The Pairwise Comparison Problem

Now our user performs pairwise comparisons between different solvers.

Analysis Procedure 2: Comprehensive Pairwise Comparison. This pro-
cedure performs SCD-Based Analysis on two given algorithms, generates a scatter
plot illustrating paired performance across the given instance set, and performs
Wilcoxon signed-rank and Spearman rank correlation tests. The Wilcoxon signed-
rank test determines whether the median of the paired performance differences
between the two algorithms across the instance set is significantly different from
zero; if so, it identifies the better-performing algorithm. The Spearman rank cor-
relation test determines whether a significant monotonic performance correlation
exists between them. Both tests are non-parametric, and so appropriate for the
non-Gaussian performance data frequently seen in empirical algorithm analysis.

Scenario 1(2). Our user aims to compare Cplex with Gurobi, a relatively recent
commercial MIP solver. He uses HAL’s Comprehensive Pairwise Comparison
procedure on the MILP benchmark set for this task. Statistics on the performance
of the two solvers are shown in Table 1. As can be seen from Figure 2, which
presents the combined SCD plot and the performance correlation plot, Gurobi
outperformed Cplex on most instances; the Wilcoxon signed-rank test indicated
that this performance difference was significant at α = 0.05 (p = 0.024). This
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Fig. 2. Comparison of Cplex and Gurobi on the MILP benchmark set. In the SCD,
median runtimes are indicated by vertical lines.

result is consistent with Mittelmann’s observations using the MILP benchmark
set. A Spearman correlation coefficient of ρ = 0.86 (p = 0.0) reflects the strong
correlation seen in the scatter plot. However, the slightly better performance of
Cplex observed for a number of instances suggests a potential for modest perfor-
mance gains by using automated portfolio-based algorithm selection techniques
(see, e.g., [1]), which we plan to support in HAL in the near future.

Scenario 2(2). When adapting an algorithm to a new class of benchmark instances,
algorithm designers often apply intuition to making important design choices;
these choices are often realized by setting parameters of the algorithm to certain
values. For example, Hutter et al. [16] provide an intuitive explanation of the
strong performance of one particular configuration of Spear in solving software
verification instances. Our user follows their qualitative description to manually
obtain a configuration of Spear that he then compares against the default on the
SWV test set (based on 20 runs per instance) using the Comprehensive Pairwise
Comparison procedure; the results are shown in Figure 3 and Table 1. Overall,
the modified configuration achieved better (PAR-1) performance than the default,
as expected. However, as clearly seen from the SCDs and from the scatter plot,
this was accomplished by sacrificing performance on easy instances for gains on
hard instances. The Wilcoxon signed-rank test determined that if all instances
were weighted equally, the median paired performance difference over the full
benchmark set was not significantly different from zero at α = 0.05 (p = 0.35).
The inter-instance correlation was significant, however, with ρ = 0.97 (p = 0.0).

4.3 The Algorithm Configuration Problem

In Scenario 2(2) above, our user observed that Spear’s performance can be
improved by manually modifying its parameters. Seeking further performance
gains, he turns to automatic configuration. HAL 1.0 supports three procedures
for this meta-algorithmic design problem.

Design Procedure 1: Automated Configuration using ParamILS. HAL
1.0 supports the FocusedILS variant of the local-search-based ParamILS
configurator [7]. The original Ruby implementation is augmented by using an
adapter class to implement the plugin in HAL 1.0.
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Fig. 3. Analysis of Spear designs on SWV test set. Top row, original vs. intuitively
modified design; bottom row, original vs. best configured design (from ParamILS).

Design Procedure 2: Automated Configuration using GGA. HAL 1.0
includes a plugin that interfaces with the original implementation of GGA, which
employs a gender-based genetic algorithm [8]. Unfortunately, sources for this
procedure are not available, and because of copyright restrictions we are unable
to further distribute the executable supplied to us by its authors.

Design Procedure 3: Automated Configuration using ROAR. HAL 1.0
also supports the Random Online Aggressive Racing (Roar) procedure, a simple
yet powerful model-free implementation of the general Sequential Model-Based
Optimization (SMBO) framework [17]. Roar was implemented entirely within
HAL 1.0, and serves as an example of developing meta-algorithmic design proce-
dures within the HAL framework.

Unlike Roar and GGA, ParamILS requires sets of discrete values for all target
algorithm parameters; therefore, when using ParamILS, HAL 1.0 automatically
discretizes continuous parameters. Unlike ParamILS and Roar, GGA requires
all target runs to be performed on the same host machine, and GGA’s authors
recommend against the use of performance metrics other than average runtime.

Scenario 2(3) Because the three configuration procedures are easily interchange-
able in HAL 1.0, our user runs all of them. He performs 10 independent runs of
each configurator on the SWV training set, and sets a time budget of 3 CPU
days for each run. For some of Spear’s continuous parameters, our user indicates
that a log transformation is appropriate. In these cases, HAL performs the trans-
formations automatically when calling each configurator; it also automatically
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Training Set Test Set
Algorithm q25 q50 q75 mean stddev q25 q50 q75 mean stddev

Cplex 26.87 109.93 360.59 9349.1 24148.9
Gurobi 13.45 71.87 244.81 1728.8 9746.0

Spear default 0.13 0.80 10.78 6.78 10.62
Spear modified 0.19 0.89 4.35 3.40 6.31
Spear ParamILS 0.22 0.80 2.63 1.72 2.54 0.19 0.80 2.21 1.56 2.22
Spear GGA 0.22 0.90 1.96 2.00 3.36 0.16 0.90 1.72 1.72 3.39
Spear Roar 0.22 0.92 2.70 1.91 2.59 0.19 0.91 2.41 1.82 2.98

Table 1. Summary of case study results. Reported statistics are in terms of PAR-10
for Cplex and Gurobi, and PAR-1 for Spear; units are CPU seconds. Only the best
design in terms of training set performance is reported for each configuration procedure.

discretizes parameters for ParamILS. Our user validates the performance of each
of the 30 final designs on the training set using the SCD-Based Analysis procedure
with 20 runs per instance. He then compares the design with the best training
performance found by each of the procedures against the default configuration
using the Comprehensive Pairwise Comparison procedure on the test set, again
performing 20 runs per instance. Results are shown in Figure 3 and Table 1.
The best design found by each configurator was substantially better than both
the default and the intuitively-modified configuration in terms of PAR-1, with
ParamILS producing slightly better results than GGA, and with GGA in turn
slightly better than Roar. In all cases, the performance difference with respect
to the default was significant at α = 0.05 according to the Wilcoxon signed rank
test (p = {7.8, 9.7, 0.002} × 10−3 for ParamILS, Roar, and GGA respectively).

5 Conclusions and Future Work

In this work we introduced HAL, a versatile and extensible environment for
empirical algorithmics, built on a novel conceptual framework that formalizes
meta-algorithmic problems and procedures. HAL facilitates the application of
advanced empirical methods, including computationally intensive analysis and
design tasks. It also supports the development and critical assessment of novel
empirical analysis and design procedures. The first implementation of our frame-
work, HAL 1.0, can address arbitrary target problems; can run experiments on
local machines, remote machines, or distributed clusters; and offers detailed exper-
iment monitoring and control, both before, during and after execution. HAL 1.0
provides a versatile API for developing and deploying new meta-algorithmic anal-
ysis and design procedures. Using this API, we developed plugins implementing
two performance analysis tasks and supporting three state-of-the-art automated
algorithm configurators. We demonstrated the use of all five procedures in a case
study involving prominent solvers for MIP and SAT.

Our group continues to actively develop and extend the HAL framework. We
are currently working on adding support for additional meta-algorithmic design
procedures, such as SATzilla [1], the Hydra instance-based portfolio-builder
[10], and the Sequential Model-Based Optimization framework [17]. We are also
working on adding new analysis procedures, such as comparative analysis of more
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than two algorithms and scaling analyses. Finally, we plan to improve HAL’s
support for execution of experiments on Windows platforms, and on computer
clusters running Torque. Ultimately, we hope that the HAL software framework
will help to promote the use of state-of-the-art methods and best practices in
empirical algorithmics, and to improve the state of the art in solving challenging
computational problems through the use of advanced empirical techniques.
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