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Abstract

Let G be a finite undirected graph with edge set E. An edge set E′ ⊆ E is an
induced matching in G if the pairwise distance of the edges of E′ in G is at least
two; E′ is dominating in G if every edge e ∈ E \ E′ intersects some edge in E′. The
Dominating Induced Matching Problem (DIM, for short) asks for the existence of an
induced matching E′ which is also dominating in G; this problem is also known as the
Efficient Edge Domination Problem.

The DIM problem is related to parallel resource allocation problems, encoding
theory and network routing. It is NP-complete even for very restricted graph classes
such as planar bipartite graphs with maximum degree three. However, its complexity
was open for Pk-free graphs for any k ≥ 5; Pk denotes a chordless path with k vertices
and k− 1 edges. We show in this paper that the weighted DIM problem is solvable in
linear time for P7-free graphs in a robust way.

Keywords: dominating induced matching; efficient edge domination; P7-free graphs; linear time

algorithm; robust algorithm.

1 Introduction

Let G be a simple undirected graph with vertex set V and edge set E. A subset M of E
is an induced matching in G if the G-distance of every pair of edges e, e′ ∈ M , e 6= e′, is
at least two, i.e., e ∩ e′ = ∅ and there is no edge xy ∈ E with x ∈ e and y ∈ e′. A subset
M ⊆ E is a dominating edge set if every edge e ∈ E \M shares an endpoint with some
edge e′ ∈ M , i.e., if e ∩ e′ 6= ∅. A dominating induced matching (d.i.m. for short) is an
induced matching which is also a dominating edge set.
Let us say that an edge e ∈ E is matched by M if e ∈ M or there is e′ ∈ M with e∩e′ 6= ∅.
Thus, M is a d.i.m. of G if and only if every edge of G is matched by M but no edge is
matched twice.
The Dominating Induced Matching Problem (DIM, for short) asks whether a given graph
has a dominating induced matching. This can also be seen as a special 3-colorability
problem, namely the partition into three independent vertex sets A,B,C such that G[B ∪
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†Dipartimento di Scienze, Universitá degli Studi “G. D’Annunzio” Pescara 65121, Italy.
r.mosca@unich.it

1

http://arxiv.org/abs/1106.2772v1


C] is an induced matching: If M ⊆ E is a d.i.m. of G then the vertex set has the
partition V = A ∪ V (M) with independent vertex set A, and independent sets B,C with
B ∪ C = V (M).
Dominating induced matchings are also called edge packings in some papers, and DIM
is known as the Efficient Edge Domination Problem (EED for short). A brief history of
EED as well as some applications in the fields of resource allocation, encoding theory and
network routing are presented in [16] and [19].
Grinstead et al. [16] show that EED is NP-complete in general. It remains hard for
bipartite graphs [21]. In particular, [20] shows the intractability of EED for planar bipartite
graphs and [10] for very restricted bipartite graphs with maximum degree three (the
restrictions are some forbidden subgraphs). In [4], it is shown that the problem remains
NP-complete for planar bipartite graphs with maximum degree three but is solvable in
polynomial time for hole-free graphs (which was an open problem in [20] and is still
mentioned as an open problem in [9]; actually, [9, 20] mention that the complexity of DIM
is an open problem for weakly chordal graphs which are a subclass of hole-free graphs).
In [9], as another open problem, it is mentioned that for any k ≥ 5, the complexity of
DIM is unknown for the class of Pk-free graphs. Note that the complexity of the related
problems Maximum Independent Set and Maximum Induced Matching is unknown for
P5-free graphs, and a lot of work has been done on subclasses of P5-free graphs.
In this paper, we show that for P7-free graphs, DIM is solvable in linear time. Actually, we
consider the edge-weighted optimization version of DIM, namely theMinimum Dominating

Induced Matching Problem (MDIM), which asks for a dominating induced matching M in
G = (V,E) of minimum weight with respect to some given weight function ω : E → R (if
existent).
For P5-free graphs, DIM is solvable in time O(n2) as a consequence of the fact that the
clique-width of (P5,gem)-free graphs is bounded [5, 6] and a clique-width expression can be
constructed in time O(n2) [3]. In [9], it is mentioned that DIM is expressible in a certain
kind of Monadic Second Order Logic, and in [12], it was shown that such problems can be
solved in linear time on any class of bounded clique-width assuming that the clique-width
expressions are given or can be determined in the same time bound.
It is well known that the clique-width of cographs (i.e., P4-free graphs) is at most two (and
such clique-width expressions can be determined in linear time) and thus the DIM problem
can be solved in linear time on cographs. In section 4 we give a simple characterization of
cographs having a d.i.m.
Our algorithm for P7-free graphs is based on a structural analysis of such graphs having
a d.i.m. It is robust in the sense of [24] since it is not required that the input graph is
P7-free; our algorithm either determines an optimal d.i.m. correctly or finds out that G
has no d.i.m. or is not P7-free.

2 Further Basic Notions

Let G be a finite undirected graph without loops and multiple edges. Let V denote its
vertex set and E its edge set; let |V | = n and |E| = m. For v ∈ V , let N(v) := {u ∈ V |
uv ∈ E} denote the open neighborhood of v, and let N [v] := N(v) ∪ {v} denote the closed

neighborhood of v. If xy ∈ E, we also say that x and y see each other, and if xy 6∈ E,
we say that x and y miss each other. A vertex set S is independent (or stable) in G if for
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Figure 1: K4, W4, diamond, gem, and co-C6.

every pair of vertices x, y ∈ S, xy 6∈ E. A vertex set is a clique in G if for every pair of
vertices x, y ∈ S, x 6= y, xy ∈ E holds. For uv ∈ E let N(uv) := N(u)∪N(v) \ {u, v} and
N [uv] := N [u] ∪N [v]. Distinct vertices x and y are true twins if N [x] = N [y].
For U ⊆ V , let G[U ] denote the induced subgraph of G with vertex set U , hence, the
graph which contains exactly the edges xy ∈ E with both vertices x and y in U .
Let G (or co-G) denote the complement graph of G = (V,E), i.e., G = (V,E) with xy ∈ E
if and only if x 6= y and xy 6∈ E.
Let A and B be disjoint vertex sets in G. If every vertex from A sees (misses, respectively)
every vertex from B, we denote this by A 1©B (by A 0©B, respectively).
A set H of at least two vertices of a graph G is called homogeneous if H 6= V (G) and
every vertex outside H is adjacent to all vertices in H or to no vertex in H. Obviously,
H is homogeneous in G if and only if H is homogeneous in the complement graph G.
A homogeneous set H is maximal if no other homogeneous set properly contains H. It
is well known that in a connected graph G with connected complement G, the maximal
homogeneous sets are pairwise disjoint and can be determined in linear time (see, e.g.,
[23]).
A chordless path Pk (chordless cycle Ck, respectively) has k vertices, say v1, . . . , vk, and
edges vivi+1, 1 ≤ i ≤ k − 1 (and vkv1, respectively). We say that such a path (cycle,
respectively) has length k. Let Ki denote the clique with i vertices. Let K4 − e or
diamond be the graph with four vertices and five edges, say vertices a, b, c, d and edges
ab, ac, bc, bd, cd; its mid-edge is the edge bc. Let W4 denote the graph with five vertices
consisting of a C4 and a universal vertex (see Figure 1). Let K1,k denote the star with one
universal vertex and k independent vertices. A star is nontrivial if it contains a P3 or an
edge, otherwise it is trivial.
For two vertices x, y ∈ V , let distG(x, y) denote the distance between x and y in G, i.e.,
the length of a shortest path between x and y in G. The distance of two edges e, e′ ∈ E
is the length of a shortest path between e and e′, i.e., distG(e, e

′) = min{distG(u, v) | u ∈
e, v ∈ e′}. In particular, this means that distG(e, e

′) = 0 if and only if e ∩ e′ 6= ∅. For a
vertex x, let Ni(x) denote the distance levels of x: Ni(x) := {v | distG(v, x) = i}. Thus,
N1(x) = N(x). For an edge xy, let Ni(xy) denote the distance levels of xy: Ni(xy) := {z |
distG(z, xy) = i}. Thus, N1(xy) = N(xy).
A connected component of G is a maximal vertex subset U ⊆ V such that all pairs of
vertices of U are connected by paths in G[U ]. A 2-connected component of G is a maximal
vertex subset U ⊆ V such that all pairs of vertices of U are connected by at least two
vertex-disjoint paths in G[U ]. The 2-connected components are also called blocks. It is
well known that the blocks of a graph can be determined in linear time [17] (see also [1]).
For a set F of graphs, a graph G is called F-free if G contains no induced subgraph from
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F . A hole is a Ck for some k ≥ 5. A graph is hole-free if it is Ck-free for all k ≥ 5. A
graph is chordal if it is Ck-free for all k ≥ 4. A graph is weakly chordal if it is Ck-free and
Ck-free for all k ≥ 5.
If M is a d.i.m., an edge is matched by M if it is either in M or shares a vertex with some
edge in M . Likewise, a vertex is matched if it is in V (M).
Note that M is a d.i.m. in G if and only if it is a dominating vertex set in the line graph
L(G) and an independent vertex set in the square L(G)2. Thus, the DIM problem is
simultaneously a packing and a covering problem.

3 Simple Properties of Graphs With Dominating Induced

Matching

The following observations are helpful (some of them are mentioned e.g. in [4]):

Observation 1. Let M be a d.i.m. in G.

(i) M contains at least one edge of every odd cycle C2k+1 in G, k ≥ 1, and exactly one

edge of every odd cycle C3, C5, C7 of G.

(ii) No edge of any C4 can be in M .

(iii) If C is a C6 then either exactly two or none of the C-edges are in M .

Proof. (i): Let C be an odd cycle C2k+1 in G, k ≥ 1, with vertices v1, . . . , v2k+1 and
edges vivi+1, i ∈ {1, . . . , 2k + 1} (index arithmetic modulo 2k + 1). Suppose first that
none of the edges of C are in M . Then the edge v1v2 must be matched by an M -edge, say
by v1x, x 6= v2, v2k+1. Now the edge v2v3 must be matched in v3 and so on, until finally
the edge v2kv2k+1 must be matched in v2k+1 but now two M -edges are in distance one -
contradiction.
Now for C3’s and C5’s in G, obviously not more than one edge can be in M . If for a C7,
two edges would be in M , say v1v2 ∈ M and v4v5 ∈ M then v6v7 cannot be matched -
contradiction.
(ii): If (v1, v2, v3, v4) is a C4 in G then if v1v2 ∈ M , v3v4 is not matchable.
(iii): This condition obviously holds.

If an edge e ∈ E is contained in any d.i.m. of G, we call it mandatory (or forced) in G.
Mandatory edges are useful for some kinds of reductions.

Observation 2. The mid-edge of any diamond in G is mandatory.

If an edge xy is mandatory, we can reduce the graph as follows: Delete x and y and all edges
incident to x and y, and give all edges in distance one to xy the weight ∞. This means
that these edges are not in any d.i.m. of finite weight in G. For a set M of mandatory
edges, let Reduced(G,M) denote the reduced graph as defined above. Obviously, this
graph is an induced subgraph of G and can be determined in linear time for given G and
M . Moreover:

Observation 3. Let M ′ be an induced matching which is a set of mandatory edges in G.

Then G has a d.i.m. M if and only if Reduced(G,M ′) has a d.i.m. M \M ′.
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We can also color red all vertices in distance one to a mandatory edge; subsequently, edges
ab with a red vertex a cannot be matched in vertex a; they have to be matched in vertex
b. If also b is red then G has no d.i.m.

Subsequently, as a kind of preprocessing, some of the mid-edges of diamonds will be
determined. Since it would be too time-consuming to determine all diamonds in G, we
will mainly find such diamonds whose mid-edges are edges between true twins having at
least two common neighbors. These are contained in maximal homogeneous sets which
can be found in linear time.

Since the edges of any d.i.m. must have pairwise distance at least two, we obtain:

Observation 4. If G has a d.i.m. then for all vertices v, G[N(v)] is the disjoint union

of at most one star with P3, and of edges and vertices.

Proof. Let G have a d.i.m. M . Then by Observation 1 (i), M contains an edge of every
triangle, and by Observation 2, any P3 abc in N(v) generates a mandatory edge bv. Thus,
if N(v) contains a cycle or P4, we obtain a contradiction to the distance requirements in
M . This means that N(v) is a P4-free forest, i.e., a disjoint union of stars. If there are
two stars with P3 in N(v) then again we obtain a contradiction.

From the previous observations, it follows (see Figure 1 for K4,W4, gem, and C6):

Corollary 1. If G has a d.i.m. then G is K4-free, W4-free, gem-free and Ck-free for any

k ≥ 6.

Now we deal with homogeneous sets in G.

Corollary 2. Let G have a d.i.m. and let H be a homogeneous set in G.

(i) If H contains an edge then N(H) is stable.

(ii) If |N(H)| ≥ 2 then H is either a stable set or a disjoint union of edges.

(iii) Vertices x and y are true twins with at least two common neighbors in G if and only

if they appear as an edge in a homogeneous set H with |N(H)| ≥ 2.

Proof. Let G have a d.i.m. and let H be a homogeneous set in G. (i): If H contains an
edge then since G is K4-free, N(H) is stable.
(ii): If |N(H)| ≥ 2 then by Observation 4 and Corollary 1, H must be P3-free, i.e., is a
disjoint union of cliques. Since G is K4-free, the cliques are edges or vertices. If there is an
edge uv in H and there is a component w ∈ H consisting of a single vertex then obviously,
uv ∈ M and for any a ∈ N(H), the edge aw cannot be matched - contradiction.
(iii): If x and y are true twins then x, y are contained in a (maximal) homogeneous set.
On the other hand, if x and y with xy ∈ E appear in a P3-free homogeneous set then x
and y are true twins.

The following procedure uses Observation 4 and the fact that for a homogeneous set H
with |N(H)| = 1, say N(H) = {z}, all connected components of H together with z are
leaf blocks in G.

Procedure Hom-1-DIM:

Given: A homogeneous set H in G with N(H) = {z}.
Task: Determine some mandatory edges or find out that G has no d.i.m.
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(a) If H contains a cycle or P4 then STOP - G has no d.i.m.

(b) (Now H is a P4-free forest.) If H contains at least two P3’s then STOP - G has no
d.i.m.

(c) (Now H is a P4-free forest which contains at most one P3.) If H contains exactly
one P3, say abc then M := M ∪{bz}. If another connected component of H contains
an edge then STOP - G has no d.i.m.

(d) (Now H is a P3-free forest, i.e., a disjoint union of edges E′(H) and vertices V ′(H).)
If E′(H) contains at least two edges then M := M∪E′(H). If V ′(H) 6= ∅ then STOP
- G has no d.i.m.

(e) (Now H is a disjoint union of at most one edge and vertices V ′(H).) If there is an
edge ab in H and V ′(H) 6= ∅ then M := M ∪{az} or M := M ∪{bz} (depending on
the better weight).

We postpone the discussion of the two final cases E′(H) = {ab} and V ′(H) = ∅ or
E′(H) = ∅ and V ′(H) 6= ∅. Obviously, the following holds:

Lemma 1. Procedure Hom-1-DIM is correct and can be carried out in linear time.

In the final case of a homogeneous set H with only one neighbor z where H consists of just
one edge ab, abz forms a leaf block. For graph G, let G∗ denote the graph obtained from
G by omitting all such triangle leaf blocks. Obviously, G∗ can be constructed in linear
time. We will need this construction in our algorithm P7-Free-DIM for DIM in section
9. There, we also need the following transformation: For every triangle leaf block abc
with cut-vertex c and corresponding edge weights w(ab), w(ac), w(bc), let Tr(G, abc) be
the graph with the same cut-vertex c where the triangle is replaced by a path a′b′c with
weights w(ab) for edge a′b′ and min(w(ac), w(bc)) for edge b′c. Let Tr(G) be the result of
applying Tr(G, abc) to all triangle leaf blocks abc of G. Obviously, G has a d.i.m. if and
only if Tr(G, abc) has a d.i.m., and the optimal weights of d.i.m.’s in G and Tr(G, abc)
are the same. The only problem is the fact that the new graph is not necessarily P7-free
when G is P7-free. We will apply this construction only in one case, namely when the
internal blocks of G form a distance-hereditary bipartite graph; then Tr(G) is also distance
hereditary bipartite.

Finally we need the following:

Proposition 1. For a given set E′ of edges, it can be tested in linear time whether E′ is

a d.i.m., and likewise, whether E′ is an induced matching.

Proof. For E′ ⊆ E, in an array of all vertices in V , count the numberm(x) of appearances
of each vertex of V in the edges of E′ by going through all edges in E′ once.

1. Two edges of E′ intersect if and only if one of the vertices appears in more than one
edge, i.e., if there is a vertex x with m(x) ≥ 2.

2. Two edges of E′ have distance one if and only if for an edge xy ∈ E \ E′, both
m(x) ≥ 1 and m(y) ≥ 1.
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3. E′ is dominating if and only if for each edge xy ∈ E, m(x) ≥ 1 or m(y) ≥ 1.

Obviously this can be checked in time O(n+m). The first two steps are the test whether
E′ is an induced matching.

4 DIM for Cographs

It is well known that a graph is a cograph if and only if its clique-width is at most two.
Thus, for solving the DIM problem on cographs, one could use the clique-width argument.
However, we give a simple direct way. Obviously, the following holds:

Corollary 3. If G has a d.i.m. and G is not connected then G is a cograph.

For the subsequent characterization of cographs, i.e., P4-free graphs, with d.i.m., we need
the following notion:
G is a super-star if G contains a universal vertex u such that G[V \ {u}] is the disjoint
union of a star and a stable set. Note that every super-star has a d.i.m. M , namely if the
star contains a P3 with central vertex c then M consists of the single edge uc, and if the
star consists of only one edge ab, then {ua} and {ub} are both d.i.m.’s, and the choice of
an optimal d.i.m. depends on the weights. If there is no edge in G[V \ {u}] then any edge
uv is a d.i.m., and the choice of an optimal d.i.m. depends on the weights.
For cographs having a d.i.m., there is the following simple characterization:

Proposition 2. A connected cograph G has a d.i.m. if and only if it is either a super-star

or the join G = G1 1©G2 of a disjoint union of edges G1 and a stable set G2.

Proof. Let G be a connected cograph with a d.i.m. M . Then, since G is K4-free,
G = G1 1©G2 for some triangle-free (i.e., bipartite) subgraphs G1 and G2.

Case 1. G1 (or G2) contains only one vertex; without loss of generality say V (G1) = {u}.
Then by Observation 4, G2 is a disjoint union of at most one star with P3, of edges
and vertices. If exactly one of the connected components of G2 contains a P3 then this
component is a star, say with central vertex c, and uc ∈ M . Now the other components
of G2 must be single vertices since in every triangle, exactly one edge is in M . This shows
that in this case, G is a super-star, and an optimal d.i.m. can be chosen as described
above.
If none of these connected components contain P3 then the connected components of G2

are edges and vertices. If at least two such edges exist then all the connected components
are edges, otherwise there is no d.i.m. This corresponds to the second case in Proposition
2.
If exactly one of the connected components is an edge, say ab, and all the others are
vertices then ua and ub are possible d.i.m.’s. This is again a special super-star. If there is
no edge in G2 then G is simply a star.

Case 2. G1 and G2 contain at least two vertices.
If none of G1, G2 contains an edge then if both G1 and G2 contain at least two vertices,
every edge is in a C4 and therefore not in M - contradiction.
If G1 contains an edge then by Corollary 2 (i), G2 is edgeless and by Corollary 2 (ii), G1

is a disjoint union of edges. In this case, the uniquely determined d.i.m. of G is the set of
edges in G1.
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Conversely, it is easy to see that any super-star has a d.i.m., and likewise any join of a
disjoint union of edges and a stable set has a d.i.m.

Corollary 4. Cographs with d.i.m. can be recognized in linear time.

The following uses Proposition 2:

Procedure Cograph-DIM:

Given: A connected cograph G.
Task: Decide whether G has a d.i.m. and if yes, determine a d.i.m. of G.

(a) Check whether G is either a super-star or the join of a disjoint union of edges and a
stable set. If yes then G has a d.i.m. as described above, and if not then STOP - G
has no d.i.m.

5 Structure of P7-free Graphs With Dominating Induced

Matching

Throughout this section, let G = (V,E) be a connected P7-free graph having a d.i.m.
Recall that if M is a d.i.m. of G then the vertex set V has the partition V = I ∪ V (M)
with independent vertex set I. We suppose that xy ∈ M is an edge in a P3 and consider
the distance levels Ni = Ni(xy), i ≥ 1, with respect to the edge xy. Note that every edge
of an odd hole C5, C7, respectively, is in a P3. For triangles abc, this is not fulfilled if a
and b are true twins. However, true twins with at least two common neighbors will lead to
mandatory edges, and true twins a, b with only one common neighbor c form a leaf block
abc which will be temporarily omitted by constructing G∗ and looking for an odd cycle in
G∗.

5.1 Distance levels with respect to an M-edge

Since we assume that xy ∈ M , clearly, N1 ⊆ I and thus:

N1 is a stable set. (1)

Moreover, no edge between N1 and N2 is in M . Since N1 ⊆ I and all neighbors of vertices
in I are in V (M), we have:

N2 is the disjoint union of edges and vertices in M. (2)

Let M2 denote the set of edges in N2 and let S2 denote the set of isolated vertices in N2;
N2 = V (M2) ∪ S2. Obviously:

M2 ⊆ M and S2 ⊆ V (M). (3)

Let M3 denote the set of M -edges with one endpoint in S2 (and the other endpoint in
N3).
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Since xy is contained in a P3, i.e., there is a vertex r such that y, x, r induce a P3, we
obtain some further properties:

N5 = ∅. (4)

Proof of (4): If there is a vertex v5 ∈ N5 then there is a shortest path (v5, v4, v3, v2,
v1), vi ∈ Ni, i = 1, . . . , 5, connecting v5 and a neighbor v1 of x or y. If v2r ∈ E then
v5, v4, v3, v2, r, x, y is a P7, and if v2 is nonadjacent to any personal neighbor of x with
respect to y then v5, v4, v3, v2, v1, x, r is a P7 or v5, v4, v3, v2, v1, y, x is a P7 - a contradiction
which shows (4). ⋄

This kind of argument will be used later again - we will say that the subgraph induced by
x, y,N1, v2, v3, v4, v5 contains an induced P7.
Obviously, by (3) and the distance condition, the following holds:

No edge in N3 and no edge between N3 and N4 is in M. (5)

Furthermore the following statement holds.

N4 is the disjoint union of edges and vertices. (6)

Proof of (6): The proof is very similar to the one of (4): Let uv be an edge in N4 and let
w ∈ N3 see u; then w must see also v since G is P7-free (recall the existence of r in a P3

with x and y). Then N4 must be P3-free - otherwise any neighbor w ∈ N3 of a P3 abc in
N4 would induce a diamond w, a, b, c and then edge wb is mandatory in contradiction to
Observation 2 and condition (5). Moreover, N4 is triangle-free (otherwise there is a K4

in contradiction to Corollary 1). Then N4 is a disjoint union of edges and vertices which
shows (6). ⋄

Let M4 denote the set of edges in N4 and let S4 denote the set of isolated vertices in N4;
N4 = V (M4) ∪ S4. Note that by (4) and (5), S4 ⊆ I.
Since every edge ab in N4 together with a predecessor c in N3 forms a triangle, and
ac, bc /∈ M , by (5) necessarily:

M4 ⊆ M. (7)

By Observation 1 (i), in every odd cycle C3, C5 and C7 of G, exactly one edge must be in
M . Thus, (5) implies:

N3 ∪ S4 is bipartite. (8)

Note that in general, N3 is not a stable set.

Let Tone := {t ∈ N3 : |N(t) ∩ S2| = 1}, and Ttwo := {t ∈ N3 : |N(t) ∩ S2| ≥ 2}. Note that
if uv is an edge with u ∈ Ttwo then uv 6∈ M and uv must be matched by an M -edge at v
since it cannot be matched at u because of the distance condition; in particular, Ttwo ⊆ I.
In general, (5) will lead to some forcing conditions since the edges in N3 and between N3

and N4 have to be matched. If an edge uv ∈ E cannot be matched at u then it has to be
matched at v - in this case, as described later, we color the vertex v green if it has to be
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matched by an M3 edge. (For an algorithm checking the existence of a d.i.m., it is useful
to observe that if vertices in distance one get color green then no d.i.m. exists.)
Let S3 := (N(M2)∩N3)∪ (N(M4)∩N3)∪Ttwo. Then S3 ⊆ N3 and S3 ⊆ I. Furthermore,
since S4 ⊆ I, one obtains:

S3 ∪ S4 is a stable set. (9)

Let T ∗
one := Tone \ S3. Then N3 = S3 ∪ T ∗

one is a partition of N3. In particular, T ∗
one

contains the M -mates of the vertices of S2. Recall that M3 denotes the set of M -edges
with one endpoint in S2 (and the other endpoint in T ∗

one).

5.2 Edges in and between Ti and Tj, i 6= j

Let S2 = {u1, u2, . . . , uk}, and let Ti := T ∗
one∩N(ui), i = 1, . . . , k. Then T ∗

one = T1∪. . .∪Tk

is a partition of T ∗
one. The following condition is necessary for the existence of M3:

For all i = 1, . . . , k, Ti 6= ∅, and exactly one vertex of Ti is in V (M3). (10)

Recall that by Observation 4, G[Ti] is the disjoint union of at most one star with P3, and
of edges and vertices. Furthermore, G[Ti] cannot contain two edges, i.e., the following
statement holds for all i = 1, . . . , k:

G[Ti] is a disjoint union of vertices and at most one star Yi with an edge. (11)

Proof of (11): Assume that there are two edges, say ab and a′b′, in Ti. Then in both
triangles uiab, uia

′b′, exactly one edge has to be in M but both contain ui - contradiction.
⋄

Assume that Ti contains the star Yi with an edge.

For all i, j = 1, . . . , k, i 6= j, Yi sees no vertex of Tj . (12)

Proof of (12): Let t′it
′′
i be an edge of Yi. By contradiction assume that a vertex tj ∈ Tj ,

i 6= j, is adjacent to Yi, say tj sees t′′i . Then, since by (8), G[T ∗
one] is triangle-free, tj is

nonadjacent to t′i, and now x, y,N1, uj , tj , t
′′
i , t

′
i induce a subgraph of G containing a P7. ⋄

Claim 1. For all i = 1, . . . , k, there is at most one j 6= i such that a vertex in Ti sees a

vertex in Tj .

Proof of Claim 1: By contradiction assume that there are two indices j 6= h such that
some vertices in Ti see vertices in Tj and Th.
Case 1. If there is a vertex ti ∈ Ti which sees a vertex tj ∈ Tj and th ∈ Th then, since
there is no triangle in N3, tj misses th, and then x, y,N1, uh, th, tj , ti induce a subgraph of
G containing a P7 (recall the existence of a P3 with x, y and vertex r ∈ N1).
Case 2. Thus, assume that there are two vertices t′i, t

′′
i ∈ Ti such that t′i sees a vertex

tj ∈ Tj and t′′i sees a vertex th ∈ Th. Clearly, by (12), t′it
′′
i /∈ E, and by Case 1, t′ith /∈ E,

t′′i tj /∈ E. Moreover, tjth /∈ E, otherwise we are in Case 1 again. Now uj , tj, t
′
i, ui, t

′′
i , th, uh

induce a P7 - contradiction. ⋄

Let us say that Ti sees Tj if there are vertices in Ti and Tj which see each other. Now by
Claim 1, for every i = 1, . . . , k, Ti either sees no Tj, j 6= i, and in this case let us say that
Ti is isolated, or sees exactly one Tj , j 6= i, in which case we say that Ti and Tj are paired.
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Claim 2. If Ti and Tj are paired then G[Ti ∪Tj ] contains at most two components among

the four following ones: Yi (defined above), Yj (defined above), Y ′
i which is a star with

center in Ti and the other vertices in Tj , Y
′
j which is a star with center in Tj and the other

vertices in Ti; in particular, at most one from {Yi, Yj} does exist.

Proof of Claim 2: By (10) and since each edge of G must be matched by M , G[Ti ∪ Tj ]
contains at most two components. By (11) and (12) it is enough to focus on the possible
components of G[Ti ∪Tj ] with vertices in both Ti and Tj. In particular, by (11) each such
component is a star with center in Ti (in Tj, respectively) and the other vertices in Tj (in
Ti, respectively); if any of such stars contains a P3 then its center c belongs to V (M3) (in
fact otherwise, c would have have two neighbors in Ti or in Tj , and such neighbors should
belong to V (M), a contradiction to (10)); then if such stars exist and contain P3, their
centers belong to Ti and Tj respectively; then one obtains the stars described in the claim.
Finally, since G[Ti ∪ Tj] contains at most two components, by (12) and by definition of
paired sets one has that at most one from {Yi, Yj} does exist. ⋄

The above claims are useful tools to detect M3. Then let us observe that:

(i) if a vertex ti ∈ Ti sees a vertex of S3 ∪ S4, then uiti ∈ M3;

(ii) if a vertex ti ∈ Ti is the center of the star Yi or Y
′
i (in case of paired sets), with a P3

then uiti ∈ M3.

Let us say that a vertex ti ∈ Ti is green if it enjoys one of the above two conditions (i),
(ii). Then the following statement holds for all i = 1, . . . , k:

G[Ti] contains at most one green vertex, say t∗i (13)

and

G[Ti \N(t∗i )] is edgeless. (14)

6 Procedure Check(xy)

In our algorithm P7-Free-DIM in section 9, we carry out a fixed number of times the
subsequent:

Procedure Check(xy).

Given: A (candidate) edge xy which is in a P3 of G.
Task: Determine a minimum weight d.i.m. M of G with xy ∈ M or return a proof that
G has no d.i.m. with xy or G is not P7-free.

(a) Determine the distance levels N1, N2, . . . with respect to xy.

(b) Check if all the conditions (1)-(12) of subsections 5.1 and 5.2 are fulfilled. If one of
them is not fulfilled then unsuccessfully STOP. Otherwise, set M := {xy}∪M2∪M4.
If S2 = ∅, then successfully STOP - return M .
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(c) Check if Claim 1 of subsection 5.2 holds. If not, then unsuccessfully STOP. Otherwise
classify the Ti sets into isolated ones and paired ones.

(d) Check if Claim 2 of subsection 5.2 holds. If not, then unsuccessfully STOP.

(e) Color green every vertex ti of Ti such that either ti sees a vertex of S3 ∪ S4 or ti is
the center of the star Yi or Y

′
i (in case of paired sets) with Yi or Y

′
i containing P3.

(f) Check if conditions (13)-(14) of subsection 5.2 hold. If not, then unsuccessfully
STOP.

Notation. For any subset T ′
i of any Ti set introduced in subsection 5.2, let us say

that a vertex t′i is a best vertex in T ′
i if w(uit

′
i) ≤ w(uit

′′
i ) for any t′′i ∈ T ′

i . ⋄

(g) For all isolated Ti, proceed as follows. If Ti has a green vertex t∗i , then set M :=
M ∪ {uit

∗
i }. Otherwise set M := M ∪ {uit

′
i} where t′i is a best vertex in Yi (if Yi

does exist) or is a best vertex in Ti (otherwise).

(h) For all paired Ti and Tj , proceed as follows.

(h.1) If Ti and Tj have a green vertex, respectively t∗i and t∗j , then: if t
∗
i misses t∗j , and if

G[(Ti∪Tj)\(N(t∗i )\N(t∗j ))] is edgeless then set M := M ∪{uit
∗
i }∪{ujt

∗
j}; otherwise

unsuccessfully STOP.

(h.2) If Ti has a green vertex t∗i , and if Tj has no green vertex, then: If G[(Ti∪Tj)\N(t∗i )]
has at least one vertex and contains most one component (i.e., Y ′

j or Yj), then set
M := M ∪ {uit

∗
i } ∪ {ujtj} where tj is, in this order, either the vertex in Y ′

j ∩ Tj (if),
or a best vertex in Yj (if), or a best vertex in Tj. Otherwise unsuccessfully STOP.
If Tj has a green vertex t∗j , and if Ti has no green vertex, then proceed similarly by
symmetry.

(h.3) If Tj and Tj has no green vertex (according to Claim 2 and to the above, G[Ti ∪ Tj ]
contains isolated vertices, at most two isolated edges, and at least one isolated edge,
say titj , between Ti and Tj), then proceed as follows:

• If there exists another edge, say pq, in Ti or Tj then: If p, q ∈ Ti (or p, q ∈ Tj)
then set M := M ∪ {uiz} ∪ {ujtj} where z is a best vertex in {p, q} (or M :=
M ∪{uiti}∪{ujz} where z is a best vertex in {p, q}); if p ∈ Ti and q ∈ Tj , then
either set M := M ∪ {uip} ∪ {ujtj} or set M := M ∪ {uiti} ∪ {ujq}, depending
on the best alternative.

• Otherwise: If (Ti\{ti})∪(Tj \{tj}) = ∅, then unsuccessfully STOP; if Ti\{ti} 6=
∅ and Tj \{tj} = ∅, then set M := M ∪{uizi}∪{ujtj} where zi is a best vertex
in Ti \{ti}; if Ti \{ti} = ∅ and Tj \{tj} 6= ∅, then set M := M ∪{uiti}∪{ujzj}
where zj is a best vertex in Tj \ {tj}; if Ti \ {ti} 6= ∅ and Tj \ {tj} 6= ∅, then
either set M := M ∪{uizi}∪ {ujtj} where zi is a best vertex in Ti \ {ti}, or set
M := M ∪ {uiti} ∪ {ujzj} where zj is a best vertex in Tj \ {tj}, depending on
the best alternative.

(j) Successfully STOP - return M .
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Theorem 1. Procedure Check(xy) is correct and runs in linear time.

Proof. Correctness: The correctness of the algorithm follows from the structural analysis
of P7-free graphs with d.i.m. described in subsections 5.1 and 5.2.

Time bound: (a): Determining the distance levels Ni with respect to edge xy can be done
in linear time, e.g. by using BFS.
(b): Likewise, concerning conditions (1)-(12), we can test in linear time if N1 is a stable
set, N2 is a disjoint union of edges and vertices, N5 = ∅, N4 is a disjoint union of edges
and vertices. The assignments can be done in linear time: This is obvious for M,S2 and
S4. Then determine the degree of all vertices in N3 with respect to S2, and assign degree
one vertices to Tone and degree ≥ 2 vertices to Ttwo. Obviously, a vertex in N3 which
misses S2 has a predecessor in M2, and thus S3 and T ∗

one = Tone \ S3 form a partition of
N3. Obviously, it can be checked in linear time whether N3 ∪ S4 is a bipartite subgraph
and whether S3 ∪ S4 is a stable set.
(c)-(j): All these steps can obviously be done in linear time.

In the other case when an edge xy is not in any P3, it follows that x and y are true twins,
and this case will be treated by determining the maximal homogeneous sets of G.

7 DIM for P7-Free Bipartite Graphs

A domino is a bipartite graph having six vertices, say x1, x2, x3, y1, y2, y3 such that (x1, y1, x2, y2, x3)
is a P5 and y3 sees x1, x2 and x3.

Observation 5. Let M be a d.i.m. of a bipartite P7-free graph B.

(i) If C is a C6 in B then exactly two C-edges are in M .

(ii) B is domino-free.

Proof. (i): Assume to the contrary that the statement is not true. Let C be a C6 in
B with vertices v1, . . . , v6 and edges vivi+1, i ∈ {1, . . . , 6} (index arithmetic modulo 6).
Then by Observation 1 (iii), none of the C-edges are in M . Then since every edge of B
is matched by M , exactly three vertices of C, say v1, v3, v5, belong to V \ V (M), while
v2, v4, v6 belong to V (M): let v′2, v

′
4, v

′
6 be respectively their M -mates. Then by definition

of M and since B is bipartite, v′2, v2, v3, v4, v5, v6, v
′
6 induce a P7 - contradiction.

(ii): If D is a domino in B then by Observation 1 (ii), the edges of the two C4’s of D must
be matched from outside but now obviously there is a P7 - contradiction.
If moreover, B is C6-free, it is (6, 2)-chordal bipartite, i.e., distance hereditary and bipartite
(see e.g. [2]). In this case, DIM can be easily solved in linear time by using the clique-
width argument [12, 15] since the clique-width of distance-hereditary graphs is at most
three (and 3-expressions can be determined in linear time). We want to give a robust linear-
time algorithm for P7-free bipartite graphs for solving the DIM problem. If a bipartite
graph B is given, the algorithm either solves the DIM problem optimally or shows that
there is a domino or P7 in B. The algorithm constructs the distance levels starting from
an arbitrarily chosen vertex. Then it checks whether B is distance hereditary as in [2]. If
a domino or P7 is found, the algorithm unsuccessfully stops, and if a C6 C is found, one
of the pairs of opposite edges in C must be in M , say v1v2 and v4v5, and in this case, it is
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checked by Check(v1v2) whether the distance levels starting from v1v2 have the required
properties.

For making this paper self-contained, we repeat Corollary 5 of [2]:

Corollary 5 (Bandelt, Mulder [2]). Let G be a connected graph, and let u be any vertex of

G. Then G is bipartite and distance hereditary if and only if all levels Nk(u) are edgeless,

and for any vertices v,w ∈ Nk(u) and neighbors x and y of v in Nk−1(u), we have

(∗) N(x) ∩Nk−2(u) = N(y) ∩Nk−2(u), and further,

(∗∗) N(v) ∩Nk−1(u) and N(w) ∩Nk−1(u) are either disjoint, or one is contained in the

other.

We have to check level by level beginning with the largest index, whether (∗) and (∗∗) are
fulfilled. If Condition (∗) is violated, we obtain a hole or domino.
This leads to the following procedure for the bipartite case which includes a certifying
recognition algorithm:

Procedure P7-Free-Bipartite-DIM

Given: A connected bipartite graph B with edge weights.
Task: Determine a d.i.m. in B of minimum weight (if existent) or find out that B has no
d.i.m. or is not P7-free.

(a) Choose a vertex a ∈ V and determine the distance levels N1, N2, . . . with respect to
a. If N6 6= ∅ then STOP - B is not P7-free.

(b) For all levels Nk, k ≤ 5, beginning with N5, check whether conditions (∗) and (∗∗)
are fulfilled. If one of them is violated, we obtain an obstruction which is either a
hole C8 or C10 (in the case of a C8 or C10 STOP - B is not P7-free), or a C6 C (in
which case we have to proceed with C) or a domino - STOP - B has no d.i.m. or is
not P7-free.

(c) If in all cases, conditions (∗) and (∗∗) are fulfilled, B is distance hereditary and
bipartite. Apply the clique-width approach for solving the DIM problem.

(d) (Now B is not distance hereditary and C is a C6 in B.) For three consecutive edges
ab of C, carry out Check(ab). If none of them ends successfully, STOP - B has no
d.i.m., otherwise we obtain an optimal d.i.m. (among the at most three solutions).

Check(ab) assumes that ab is in a C6 of the bipartite graph B. In this case we have some
additional properties, and the procedure could be simplified:
Let N1a = N(a) ∩ N1 (N1b = N(b) ∩ N1, respectively). Obviously, the following is a
partition of N1 if B is bipartite:

N1 = N1a ∪N1b (15)

As before, N1 has to be stable, and N2 is a disjoint union of edges M2 and vertices S2.
Since ab is in a C6, we have that M2 6= ∅.
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Since B is P7-free, obviously:

S2 = ∅ and N4 = ∅. (16)

Moreover:

N3 is edgeless. (17)

Finally, since B is P7-free, we obtain:

Vertices in M2 of the same color have the same neighborhood in N1. (18)

Proof of (18). Let ef ∈ M2 and gh ∈ M2 with e and g in the same color class, and suppose
that e sees x ∈ N1a while g misses x. Then there is y ∈ N1b such that yf ∈ E. Since N1

is stable, xy 6∈ E. Since g misses x, there is a neighbor z ∈ N1a of g. Since h, g, z, a, x, e is
no P7, ze ∈ E. Again, since N1 is stable, yz 6∈ E. If hy ∈ E then x, e, z, g, h, y, b is a P7.
Thus, hy 6∈ E but now h, g, z, a, b, y, f is a P7 - a contradiction which shows (18). ⋄

Obviously, {ab} ∪M2 is a d.i.m. of B if all conditions are fulfilled.

Lemma 2. Procedure P7-Free-Bipartite-DIM is correct and runs in linear time.

Proof. The correctness of the procedure follows from the structural analysis of bipartite
P7-free graphs with d.i.m. The time bound follows from the fact that procedure Check(xy)
is carried out only for a fixed number of edges, and each step of the procedure can be done
in linear time.

8 Identifying an Odd Cycle in a Non-Bipartite P7-Free Graph

Let G be a connected non-bipartite graph. The following procedure determines an odd
cycle C3, C5 or C7 or a P7 of G in linear time.

Procedure Find-Odd-Cycle-Or-P7

Given: A connected non-bipartite graph G.
Task: Determine an odd cycle C3, C5 or C7 of G or find out that G is not P7-free.

(a) Choose a vertex x and determine the distance levels N1, N2, . . . with respect to x. If
N6 6= ∅ then STOP - G contains a P7.

(b) If there is an edge ab ∈ E in N1 then xab is a C3. Else N1 is stable.

(c) If there is an edge ab ∈ E in N2 then abc is a C3 for a common neighbor c ∈ N1 of
a, b or for neighbors a′ ∈ N1 of a and b′ ∈ N1 of b, xaba′b′ is a C5. Else N2 is stable.

(d) If there is an edge ab ∈ E in N3 then abc is a C3 for a common neighbor c ∈ N2 of
a, b or for neighbors a′ ∈ N2 of a and b′ ∈ N2 of b, and a common neighbor c ∈ N1

of a′, b′, caba′b′ is a C5 or for neighbors a′′ ∈ N1 of a′ and b′′ ∈ N1 of b′, xa′′b′′a′b′ab
is a C7. Else N3 is stable.
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(e) If there is an edge ab ∈ E in N4 then abc is a C3 for a common neighbor c ∈ N3 of
a, b or for neighbors a′ ∈ N3 of a and b′ ∈ N3 of b, and a common neighbor c ∈ N2 of
a′, b′, caba′b′ is a C5 or for neighbors a′′ ∈ N2 of a′ and a′′′ ∈ N1 of a′′, xa′′′a′′a′abb′

is a P7. Else N4 is stable.

(f) (Now N5 must contain an edge, otherwise G is bipartite.) For an edge ab in N5, let
a4 denote a neighbor of a in N4 and let ai−1 ∈ Ni−1 denote a neighbor of ai ∈ Ni,
i = 2, 3, 4. Then either a4ab is a C3 or xa1a2a3a4ab is a P7.

Obviously, the following holds:

Lemma 3. Procedure Find-Odd-Cycle-Or-P7 is correct and runs in linear time.

9 The Algorithm for the General P7-Free Case

In the previous chapters we have analyzed the structure of P7-free graphs having a d.i.m.
Now we are going to use these properties for an efficient algorithm for solving the DIM
problem on these graphs.

Algorithm P7-Free-DIM.

Given: A connected graph G = (V,E) with edge weights.
Task: Determine a d.i.m. in G of finite minimum weight (if existent) or find out that G
has no d.i.m. or is not P7-free.

(a) If G is bipartite then carry out procedure P7-Free-Bipartite-DIM.

(b) (Now G is not bipartite.) If G is a cograph then apply procedure Cograph-DIM. If
G is not a cograph but G is not connected then STOP - G has no d.i.m.

(c) (Now G is not bipartite and G is connected.) Let M := ∅. Determine the maximal
homogeneous sets H1, . . . ,Hk of G. For all i ∈ {1, . . . , k} do the following steps
(c.1), (c.2):

(c.1) If |N(Hi)| = 1 then carry out procedure Hom-1-DIM.

(c.2) In the case when |N(Hi)| ≥ 2 and Hi is not a stable set, check whether N(Hi)
is stable and Hi is a disjoint union of edges; if not then STOP - G has no d.i.m.,
otherwise, for all edges xy in Hi, let M := M ∪ {xy}.

(d) Construct G′ = Reduced(G,M).

(e) For every connected component C of G′, do: If C is bipartite then carry out pro-
cedure P7-Free-Bipartite-DIM for C. Otherwise construct C∗ (where the triangle
leaf blocks are temporarily omitted) and carry out Find-Odd-Cycle-Or-P7 for C∗,
and if an odd cycle is found, carry out Check(ab) in the graph C for all (at most
seven) edges of the odd cycle. Add the resulting edge set to the mandatory edges
from steps (c.1), (c.2), respectively. If however, C∗ is bipartite then with procedure
P7-Free-Bipartite-DIM for C∗, find out if the procedure unsuccessfully stops or if
there is a C6 in C∗; in the last case, do Check(ab) for all edges of the C6. Finally, if
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C∗ is distance hereditary bipartite, construct Tr(C) (the omitted triangle leaf blocks
are attached as P3’s and the resulting graph is distance hereditary bipartite) and
solve DIM for this graph using the clique-width argument (or using the linear time
algorithm for chordal bipartite graphs given in [4]).

(f) Finally check once more whether M is a d.i.m. of G. If not then G has no d.i.m.,
otherwise return M .

Theorem 2. Algorithm P7-Free-DIM is correct and runs in linear time.

Proof. Correctness: The correctness of the algorithm follows from the structural analysis
of P7-free graphs with d.i.m. In particular, if G is bipartite (a cograph, respectively) then
procedure P7-Free-Bipartite-DIM (Cograph-DIM, respectively) correctly solves the DIM
problem.
If G is not connected, i.e., G = G1 1©G2 for some nonempty G1, G2 and G has a d.i.m.
then by Corollary 3, G must be a cograph.
For the maximal homogeneous sets H1, . . . ,Hk of G, there are two cases |N(Hi)| = 1 or
|N(Hi)| ≥ 2. By Corollary 2 and Lemma 1, steps (c.1) and (c.2) are correct, and G can
be correctly reduced by using the obtained set M of forced edges. Since in procedure
Hom-1-DIM, in the last two cases, the corresponding leaf blocks are postponed, in the
reduced graph, every odd cycle contains only edges in P3’s. Thus, it is correct to apply
Check(ab) for the edges of some odd cycle in the (non-bipartite) reduced graph. Finally
one has to add the postponed edges and solve the DIM problem on these graphs.

Time bound: Step (a) can be done in linear time since procedure P7-Free-Bipartite-DIM
takes only linear time. Step (b) can be done in linear time since it can be recognized in
linear time whether G is a cograph (see [8, 11]) and procedure Cograph-DIM can be done
in linear time. Step (c) can be done in linear time since modular decomposition can be
done in linear time and gives the maximal homogeneous sets [23]. There is only a linear
number of true twins, and the corresponding reduced graph can be determined in linear
time.
In the reduced graph G′ = Reduced(G,M), procedure Check(xy) is carried out only for
a fixed number of edges, and the procedures P7-Free-Bipartite-DIM and Find-Odd-Cycle-
Or-P7 can be done in linear time.

10 Conclusion

In this paper we solve the DIM problem in linear time for P7-free graphs which answers an
open question from [9]. Actually, we solve the minimum weight DIM problem in a robust
way in the sense of [24]: Our algorithm either solves the problem correctly or finds out
that the input graph has no d.i.m. or is not P7-free. This avoids to recognize whether the
input graph is P7-free; the known recognition time bound is much worse than linear time.
It is a challenging open question whether for some k, the DIM problem is NP-complete
for Pk-free graphs.
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