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Abstract

Trees are fundamental structures in computer science, being widely used in modeling

and representing different types of data in numerous computer applications. In many cases,

properties of objects being modeled are stored as weights or labels on the nodes of trees.

Thus researchers have studied the preprocessing of weighted trees in which each node is

assigned a weight, in order to support various path queries, for which a certain function

over the weights of the nodes along a given query path in the tree is computed [3, 14, 22, 26].

In this thesis, we consider the problem of supporting several various path queries over

a tree on n weighted nodes, where the weights are drawn from a set of σ distinct values.

One query we support is the path median query, which asks for the median weight on a

path between two given nodes. For this and the more general path selection query, we

present a linear space data structure that answers queries in O(lg σ) time under the word

RAM model. This greatly improves previous results on the same problem, as previous data

structures achieving O(lg n) query time use O(n lg2 n) space, and previous linear space data

structures require O(nε) time to answer a query for any positive constant ε [26].

We also consider the path counting query and the path reporting query, where a path

counting query asks for the number of nodes on a query path whose weights are in a

query range, and a path reporting query requires to report these nodes. Our linear space

data structure supports path counting queries with O(lg σ) query time. This matches

the result of Chazelle [14] when σ is close to n, and has better performance when σ is

significantly smaller than n. The same data structure can also support path reporting

queries in O(lg σ + occ lg σ) time, where occ is the size of output. In addition, we present

a data structure that answers path reporting queries in O(lg σ + occ lg lg σ) time, using

O(n lg lg σ) words of space. These are the first data structures that answer path reporting

queries.
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Chapter 1

Introduction

1.1 Path Queries

Trees are fundamental structures in computer science, being widely used in modeling and

representing different types of data in numerous computer applications. The Unix file

system can be visualized as an ordinal tree (a rooted tree of arbitrary degree with ordered

children) in which internal nodes correspond to folders, and leaf nodes correspond to files

or folders. Deleting a folder in the file system is equivalent to removing the subtree rooted

at the node corresponding to the folder. The tree network is a representative type of

network topology, which contains a central node as the root, and several star networks as

the subtrees of the root. This type of network topology is ideal when workstations are

distributed into groups that occupy relatively small physical regions. XML documents

can be essentially modeled as ordinal trees in which each node is assigned a tag drawn

from a tag set. One can analyze XML documents using navigational operations on the

corresponding tag trees.

In many cases, properties of objects being modeled are stored as weights or labels on

the nodes of trees. Thus researchers have studied the preprocessing of weighted trees in

which each node is assigned a weight, in order to support various path queries, for which

a certain function over the weights of the nodes along a given query path in the tree is

computed [3, 14, 22, 26].

In this thesis, we design data structures to maintain a weighted tree on n nodes such
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that we can support various path queries. The path median query asks for the median

weight on a path between two given nodes, and the path selection query returns the k-th

smallest weight. The path counting query asks for the number of nodes on a query path

whose weights are in a query range, while the path reporting query requires to report these

nodes. When the given tree is a path, the above queries become range median, range

selection, two-dimensional range counting and range reporting queries. Thus the path

queries we consider generalize these fundamental queries to weighted trees.

1.2 Computational Models

We consider three computational models in this thesis. The first one is the pointer machine

model [35], which is very restricted. In this model, a data structure is represented as a

directed graph on nodes, each storing a constant number of data values and containing

a constant number of pointers to other nodes. This model allows algorithms to access a

node by following a pointer to this node, to compare two values or two pointers, and to

create new nodes, values and pointers. In previous formulations [9, 23], algorithms can

perform arithmetic operations on data values but not on pointers. The running time of an

algorithm in this model is measured by the number of accesses to nodes and the number

of operations performed, while the space cost is measured by the number of nodes in the

directed graph.

The word random access machine (word RAM) model [1, 17], is a realistic model for

modern computers. In this model, data is stored in an array of memory locations, or

machine words. Each word consists of w = Ω(lg n) bits 1, where n is the size of the input

instance. A word can be addressed by its subscript, and can be read or rewritten in O(1)

time. This model also allows algorithms to perform arithmetic and bitwise operations on

a constant number of words in O(1) time. The running time of an algorithm in this model

is measured by the number of memory accesses and the number of operations performed

on words, while the space cost is measured by the number of words used.

It is not surprising that the word RAM model is stronger than the pointer machine

model. Pointers under the pointer machine model can be regarded as subscripts of memory

locations under the word RAM model. Thus, the word RAM model is able to simulate

1In this thesis we use lg n to denote log2 n.
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algorithms on pointer machines, and to further perform arithmetic and bitwise operations

on pointers, which are not allowed under the pointer machine model.

The two-dimensional version of the orthogonal range reporting problem, which is intro-

duced later in Section 1.3.1, serves as an example to show the advantage of the word RAM

model. Under the pointer machine model, Chazelle [16] proved that any data structure for

the two-dimensional range reporting problem using O(lgO(1) n + occ) query time requires

Ω(n lg n/ lg lg n) space, where occ is the size of output. However, this lower bound was

“surpassed” by Alstrup et al. [4] under the word RAM model, who obtained a data struc-

ture that occupies O(n lgε n) words of space for any constant ε > 0, and supports queries

in O(lg lg n+ occ) time.

Finally, the cell probe model [36] is the strongest model of computation we consider.

This model is similar to the word RAM model, except that there is no charge for computa-

tion on words. The running time under this model is measured by the number of memory

accesses only. Since this model is strictly stronger than the other two models, lower bounds

obtained under this model also apply to the pointer machine model and the word RAM

model. Unfortunately, it is very hard to prove meaningful lower bounds under this model,

even for simple data structure problems.

1.3 Previous Work

In this section, we review the previous work related to the path queries introduced in

Section 1.1. We start with the special cases of these queries, which are two-dimensional

orthogonal range counting and reporting queries, and range median and selection queries.

We survey these range queries in Sections 1.3.1 and 1.3.2. Then, we review the results of

path counting queries, and the ones of path median and selection queries in Sections 1.3.3

and 1.3.4, respectively. We do not have a section for path reporting queries. As far as we

know, they have not been studied before.

1.3.1 Two-Dimensional Orthogonal Range Searching

As a fundamental problem in computational geometry, the two-dimensional orthogonal

range searching problem arises from databases and geographic information system (GIS)
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applications. In this problem, we maintain N , a set of points on an n× n grid, such that

we can support the following range queries:

• Range Counting Query: Given R, a rectangle whose edges are parallel to the axes,

return the cardinality of N ∩R.

• Range Reporting Query: Given R, a rectangle whose edges are parallel to the axes,

return the points in N ∩R.

Two-dimensional orthogonal range counting and reporting queries are special cases of path

counting and reporting queries, where the input trees are paths.

The time-space tradeoff of the two-dimensional orthogonal range counting problem has

been extensively studied. The standard range tree [6, 28, 27] requires O(n lg n) words of

space, and supports queries in O(lg n) time. Later, Chazelle [15] designed a linear space

data structure that achieves the same query time. The query time has been further re-

duced to O(lg n/ lg lg n), preserving the same space cost [24, 8, 12]. These linear space data

structures are optimal, since Pǎtraşcu [31, 32] has proven that any data structure using

O(n lgO(1) n) bits of space requires Ω(lg n/ lg lg n) query time.

Chan and Pǎtraşcu [12] also studied the construction time. Their data structure sup-

ports queries in O(lg n/ lg lg n) time with linear space, and takes only O(n
√

lg n) time

in preprocessing, while the earlier data structures with logarithmic query time require

O(n lg n) construction time. The results on the two-dimensional orthogonal range count-

ing problem are summarized in Table 1.1.

Reference Model Space Query Time Construction Time

[6, 28, 27] Pointer Machine O(n lg n) O(lg n) O(n lg n)

[15] RAM O(n) O(lg n) O(n lg n)

[24, 8] RAM O(n) O(lg n/ lg lg n) O(n lg n)

[12] RAM O(n) O(lg n/ lg lg n) O(n
√

lg n)

[31, 32] Cell Probe O(n lgO(1) n) Ω(lg n/ lg lg n) –

Table 1.1: Results on the two-dimensional orthogonal range counting problem.

The two-dimensional orthogonal range reporting problem has also been studied heavily.

Here we denote by occ the size of output. Under the pointer machine model, the standard
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range tree [6, 28, 27] implies a solution using O(n lg n) space and O(lg n+ occ) query time.

Chazelle [13] provided a data structure that answers queries in O(lg n + occ) time using

O(n lg n/ lg lg n) space. This is optimal due to a lower bound later proved by Chazelle [16],

which indicates that any data structure for this problem using O(lgO(1) n+occ) query time

requires Ω(n lg n/ lg lg n) space.

Under the word RAM model, the best time-space tradeoff for this basic problem is

still open. Chazelle [15] presented a linear space data structure that supports queries in

O(lg n+ occ lgε n) time for any constant ε > 0, which was later reduced to O(lg n/ lg lg n+

occ lgε n) by Nekrich [29]. Overmars [30] gave a method using O(n lg n) words of space and

O(lg lg n+ occ) query time. The query time is optimal under the cell probe model for the

data structures using O(n lgO(1) n) bits of space. This is proved by a reduction from the

colored predecessor search problem [33]. Alstrup et al. [4] presented two data structures.

The first one occupies O(n lgε n) space for any constant ε > 0, and achieves the optimal

O(lg lg n+occ) query time. The second one requires O(n lg lg n) space, and answers queries

in O(lg2 lg n+ occ lg lg n) time. The latest results were obtained by Chan et al. [11], whose

first solution achieves O(lg lg n + occ lg lg n) query time with O(n lg lg n) space, and the

second solution supports queries in O(lgε n+ occ lgε n) time using linear space. The results

on the two-dimensional orthogonal range reporting problem are summarized in Table 1.2.

Reference Model Space Query Time

[6, 28, 27] Pointer Machine O(n lg n) O(lg n+ occ)

[13] Pointer Machine O(n lg n/ lg lg n) O(lg n+ occ)

[16] Pointer Machine Ω(n lg n/ lg lg n) O(lgO(1) n+ occ)

[15] RAM O(n) O(lg n+ occ lgε n)

[29] RAM O(n) O(lg n/ lg lg n+ occ lgε n)

[30] RAM O(n lg n) O(lg lg n+ occ)

[4] RAM O(n lgε n) O(lg lg n+ occ)

[4] RAM O(n lg lg n) O(lg2 lg n+ occ lg lg n)

[11] RAM O(n lg lg n) O(lg lg n+ occ lg lg n)

[11] RAM O(n) O(lgε n+ occ lgε n)

[33] Cell Probe O(n lgO(1) n) Ω(lg lg n+ occ)

Table 1.2: Results on the two-dimensional orthogonal range reporting problem.
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1.3.2 Range Median and Selection

The range median and selection problem was first proposed by Krizanc et al. [26]. In this

problem, an unsorted array of n elements is given, and a query asks for the median or

the k-th smallest element in a range. These queries are special cases of path median and

selection queries.

Krizanc et al. [26] presented the earliest time-space tradeoffs for this problem. The first

one supports queries in O(lg n) time, and occupies O(n lg2 n/ lg lg n) space. The second one

answers queries in constant time, using O(n2 lg lg n/ lg n) space. The third one requires

O(b lg2 n/ lg b) query time and O(n lgb n) space, for any 2 ≤ b ≤ n. If b is set to be

nε/ lg n for a small constant ε > 0, then the space cost becomes linear, but the query time

grows to O(nε). The second solution of Krizanc et al.’s [26] has been slightly improved

by Petersen and Grabowski [34], whose data structure with constant query time requires

O(n2 lg2 lg n/ lg2 n) words of space. The first and the third solutions of Krizanc et al.’s [26]

have been significantly improved by the linear space data structures developed recently.

Gfeller and Sanders [20] presented a solution to answer a query in O(lg n) time. Gagie

et al. [18] considered this problem in terms of σ, the number of distinct weights, and

designed a data structure based on wavelet trees that supports range selection queries in

O(lg σ) time. The best upper bound was achieved by Brodal et al. [9, 10], which requires

O(lg n/ lg lg n) query time. Later, Jørgensen and Larsen showed that Brodal et al.’s result

is optimal by proving a lower bound of Ω(lg n/ lg lg n) on query time, providing that data

structures for the static range selection problem use O(n lgO(1) n) bits of space [25]. The

results on the range median and selection problem are summarized in Table 1.3.

1.3.3 Path Counting

The problem of supporting path counting queries was studied by Chazelle [14]. In his

formulation, weights are assigned to edges instead of nodes, and a query asks for the

number of edges on a given path whose weights are in a given range. Chazelle designed

a linear space data structure to support queries in O(lg n) time, which is based on tree

partition. He proved that any tree T containing at least two edges can be partitioned into

two subtrees that contain at least one-third of the edges of T . Based on this lemma, an

emulation dag of the input tree can be constructed, in which each edge corresponds to a

canonical path in the tree. Chazelle further showed that any path in the input tree can
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Reference Model Space Query Time Restrictions

[26] Pointer Machine O(n lg2 n/ lg lg n) O(lg n) –

[26] Pointer Machine O(n2 lg lg n/ lg n) O(1) –

[26] Pointer Machine O(n lgb n) O(b lg2 n/ lg b) 2 ≤ b ≤ n

[26] Pointer Machine O(n) O(nε) –

[34] RAM O(n2 lg2 lg n/ lg2 n) O(1) –

[20] RAM O(n) O(lg n) –

[18] RAM O(n) O(lg σ) –

[9, 10] RAM O(n) O(lg n/ lg lg n) –

[25] Cell Probe O(n lgO(1) n) Ω(lg n/ lg lg n) –

Table 1.3: Results on the range median and selection problem.

be partitioned into O(lg n) canonical paths. He finally obtained the data structure by a

generalized range tree, along with a compaction technique in [15]. The bottleneck of the

time cost is due to the number of canonical paths in partitions of query paths, so this

approach requires O(lg n) time for an arbitrary set of weights.

1.3.4 Path Median and Path Selection

The path median and selection problem introduced in Section 1.1 was also proposed by

Krizanc et al. [26], who presented two solutions for this problem. The first one supports

queries in O(lg n) time, and occupies O(n lg2 n) words of space. The second one requires

O(b lg3 n/ lg b) query time and O(n lgb n) space, for any 2 ≤ b ≤ n. If b is set to be nε/ lg2 n

for some small constant ε > 0, then the space cost becomes linear, but the query time is

O(nε). These are the best known results for the path median and selection problem. We

summarize their results in Table 1.4, along with our improvements.

The approach of Krizanc et al.’s [26] is also based on tree partition. Their data struc-

tures maintain a set of subpaths in which the weights of the nodes are sorted, such that

any query path can be divided into the disjoint union of two or more subpaths in the set.

Thus the answer to the query can be obtained by performing a binary search on these

subpaths. The time and space cost is determined by the number of subpaths required to

partition a query path.
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Reference Model Space Query Time Restrictions

[26] Pointer Machine O(n lg2 n) O(lg n) –

[26] Pointer Machine O(n lgb n) O(b lg3 n/ lg b) 2 ≤ b ≤ n

[26] Pointer Machine O(n) O(nε) –

new Pointer Machine O(n lg σ) O(lg σ) –

new RAM O(n) O(lg σ) –

Table 1.4: Results on the path median and selection problem.

1.4 Our Contributions

The primary contribution of this thesis is the technique of tree extraction, which plays a

central role in developing the data structures for path queries. This technique is inspired

by the deletion operation of tree edit distance [7], though its usage is completely different

from computing the edit distance between two labeled ordinal trees. The basic idea of

tree extraction is to extract a subset of nodes from an ordinal tree or an ordinal forest,

retaining some relative properties among the nodes in this subset. This technique allows

us to perform divide-and-conquer approaches, in a space-efficient way, on the set of the

weights rather than the structure of the input tree, which is completely different from the

tree partition based approaches used in [14, 26]. Following this technique, we obtain the

results as follows:

For path median and path selection queries, under the pointer machine model, our data

structure requires O(lg σ) query time and O(n lg σ) words of space (Chapter 3). Under the

word RAM model, the space cost can be reduced to O(n), preserving the same query time

(Section 4.1). The word RAM result significantly improves the best known result [26], in

which the data structure achieving O(lg n) query time uses O(n lg2 n) space, and the linear

space data structure requires O(nε) query time for any positive constant ε.

For path counting queries, our data structure under the pointer machine model supports

queries in O(lg σ) time, using O(n lg σ) words of space (Chapter 3). Our data structure

under the word RAM model also supports queries in O(lg σ) time, using linear space only

(Section 4.1). The best previous result for the path counting problem is due to Chazelle [14],

which requires linear space and O(lg n) query time. He showed that any path in a tree

on n nodes can be partitioned into O(lg n) canonical paths. Thus, even if the size of the

set of weights is very small, Chazelle’s data structure still requires O(lg n) time to answer
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a query. Our word RAM result matches the result of Chazelle when σ is close to n, and

improves it when σ is much smaller than n. In addition, our techniques are conceptually

simple.

To the best of our knowledge, path reporting queries have never been studied before.

Assuming that occ is the size of output, we give three solutions in this thesis. The first

one, under the pointer machine model, requires O(n lg σ) words of space and O(lg σ+ occ)

query time (Chapter 3). The second one, under the word RAM model, requires O(n) words

of space and O(lg σ+ occ lg σ) query time (Section 4.1). The last one, also under the word

RAM model, requires O(n lg lg σ) words of space but only O(lg σ + occ lg lg σ) query time

(Section 4.2).

To achieve the above results, we generalize powerful techniques such as the wavelet trees

[21] and the technique for the ball-inheritance problem [11]. Previously, these techniques

were applied to arrays and two-dimensional point sets only. Our work is the first that

successfully generalizes them to answer path queries, and we expect these to be useful for

other similar queries over trees in the future.

The rest of this thesis is organized as follows: Chapter 2 presents the technique of tree

extraction, and analyzes path queries using this technique. Chapter 3 describes our data

structures for path queries under the pointer machine model. Chapter 4 shows how to

optimize the data structures under the word RAM model. Finally, Chapter 5 concludes

this thesis with a summarization and some open problems.

The results presented in this thesis have been published in ISAAC’11 [23].
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Chapter 2

Supporting Path Queries Using Tree

Extraction

In this chapter, we present the main technique used in this thesis, tree extraction. This

technique is defined in terms of the deletion operation of tree edit distance [7]. First of all,

in Section 2.1, we give the formal definitions of the path queries we consider in this thesis.

In Section 2.2, we review several concepts related to ordinal trees and ordinal forests. We

then define and analyze tree extraction in Section 2.3, and finally apply this technique to

the path queries in Section 2.4.

2.1 The Path Query Problems

In the path query problems introduced in Section 1.1, we maintain a given tree on n

weighted nodes, where the weights are drawn from a set of σ distinct values, such that we

can support the following path queries.

• Path Median Query: Given two nodes u and v, return the median weight on the

path from u to v. If there are m nodes on this path, then the median weight is the

dm/2e-th smallest one in the multiset of the weights of these nodes.

• Path Selection Query: This type of queries is a natural extension of path median

queries. We are given two nodes u and v, and an integer k > 0, and we need return
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the k-th smallest weight in the multiset of the weights of the nodes on the path from

u to v. We assume that k is not larger than the number of nodes on this path.

• Path Counting Query: Given two nodes u and v, and a range [p, q], return the number

of nodes on the path from u to v whose weights are in this range.

• Path Reporting Query: Given two nodes u and v, and a range [p, q], return the set

of nodes on the path from u to v whose weights are in this range.

As mentioned in Section 1.1, these queries generalize range median, range selection, two-

dimensional range counting and range reporting queries.

Note that σ is the number of distinct weights, clearly σ ≤ n. Without loss of generality,

we assume that weights are drawn from [1..σ], or rank space. Thus any query range is an

integral one, denoted by [p..q] in the rest of this thesis. We later analyze the time and

space cost in terms of n and σ.

2.2 Ordinal Trees and Forests

In this thesis, we take the given tree as an ordinal one. That is, the tree is rooted, and a

left-to-right order is defined among siblings. The preorder traversal sequence of an ordinal

tree is defined recursively as follows.

Definition 2.2.1. The preorder traversal sequence of a subtree rooted at a leaf node consists

of the leaf node only. The preorder traversal sequence of a subtree rooted at an internal node

v is a sequence of nodes that starts with v, followed by the left-to-right ordered concatenation

of the preorder traversal sequences of the subtrees rooted at the children of v.

For example, the preorder traversal sequence of the ordinal tree T shown in Figure 2.1(a)

is abcdefg.

We also consider ordinal forests. An ordinal forest F is defined to be a left-to-right

ordered list of ordinal trees. As a special case, an ordinal tree is an ordinal forest containing

only a single ordinal tree. For any node u in F , the depth of u in F is equivalent to the

depth of u in the ordinal tree containing u. Similarly, a node v is an ancestor of u in F if

and only if they are in the same ordinal tree, and v is an ancestor of u in that tree. Note
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that we assume a node is its own ancestor. In addition, the preorder traversal sequence

of F is defined to be the left-to-right ordered concatenation of the preorder traversal se-

quences of the ordinal trees in F .

An ordinal forest can be regarded as an ordinal tree in which the root is a non-removable

dummy node, and the list of children of the dummy node is exactly the list of roots of

the ordinal forest. To be consistent, the dummy node is not taken into account for the

preorder traversal sequence of the tree rooted at the dummy node, or the depths of the

nodes in that tree. In the rest of this thesis, we make use of both views of ordinal forests

interchangeably.

c

d

a

b f

g

e

(a) (b)

T T ′

(c)

F ′′

d e

g g

a

b b ff c

ed

Figure 2.1: (a) An ordinal tree T whose nodes are identified by the letters on them. (b)

The ordinal tree T ′ obtained by deleting a non-root node c from T . (c) The ordinal forest

F ′′ obtained by deleting the root node a from T .

We introduce the deletion operation of tree edit distance [7]. Unlike the original defi-

nition, here we can delete any node from an ordinal forest, besides the roots of the ordinal

trees in the forest. The formal definition is shown as follows.

Definition 2.2.2. Suppose we would like to delete a node u from an ordinal forest F ,

where u is contained in an ordinal tree T .

• Case 1: u is a non-root node of T . Let v be the parent node of u. To delete u, we

insert its children in place of u into the list of children of v, preserving the original

12



left-to-right order.

• Case 2: u is the root node of T . If T contains u only, we simply dispose T , and

remove it from the list of ordinal trees of F . Otherwise, we insert the subtrees rooted

at the children of u in place of T into the list of ordinal trees of F , preserving the

original left-to-right order.

For example, the ordinal tree T ′ shown in Figure 2.1(b) is obtained by deleting a non-

root node c from T , while the ordinal forest F ′′ in Figure 2.1(c) is obtained by deleting the

root node a. Note that in both examples, the remaining nodes are identified by the same

letters as the corresponding nodes in T .

We have the following properties of the deletion operation.

Proposition 2.2.3. The deletion operation preserves (a) the ancestor-descendant relation-

ship, and (b) the relative positions in preorder among the remaining nodes.

As shown in Figure 2.1, node a is an ancestor of node d in both T and T ′, node c is an

ancestor of node e in both T and F ′′, and node f is ancestor of node g in all these trees

and forests. In addition, the preorder traversal sequence of T ′, abdefg, is the one of T with

c being removed, while the preorder traversal sequence of F ′′, bcdefg, is the one of T with

a being removed.

2.3 Tree Extraction

We first give the formal definition of tree extraction, which is based on the deletion oper-

ation described in Definition 2.2.2.

Definition 2.3.1. Let F be an ordinal forest and let V (F ) be the set of nodes in F . For

any set X ⊆ V (F ), we denote by FX the ordinal forest obtained by deleting all the nodes

that are not in X from F , where the nodes are deleted from bottom to top. FX is called the

X-extraction of F .

To clarify notation, the nodes in F are denoted by lowercase letters, while the nodes

in FX are denoted by lowercase letters with a subscript X. To illustrate the one-to-one

13



mapping between the nodes in X and the nodes in FX , we denote by uX a node in FX if

and only if its corresponding node in F is denoted by u.

We further define enhanced depth and ancestor operators with respect to sets of nodes.

For any node u ∈ V (F ), and any set of nodes X ⊆ V (F ), we define dX(F, u), or the X-

depth of u in F , to be the number of ancestors of u that belong to X. The V (F )-depth of u

is equivalent to the depth of u in F , which is denoted by d(F, u). Also, we define ancX(F, u)

to be the nearest ancestor of u that belongs to X. If u has no such ancestor, then ancX(F, u)

returns dummy, which is the dummy node. For completeness, we define dX(F, dummy) = 0

and ancX(F, dummy) = dummy. An obvious fact is that dX(F, u) = dX(F, ancX(F, u)), for

any node u ∈ V (F ), and any set of nodes X ⊆ V (F ).

Based on the concepts of depths, ancestors and preorder traversal sequences, the fol-

lowing lemmas capture some essential properties of tree extraction.

Lemma 2.3.2. For any set of nodes X ⊆ V (F ), if F contains an ordinal tree T only, and

the root of T is contained in X, then FX contains an ordinal tree only.

Proof. Let u be the root of T , clearly u is the ancestor of the other nodes in F . uX is

also the ancestor of the other nodes in FX , since u is in X, and the deletion operation

does not change the ancestor-descendant relationship among the remaining nodes. Thus

FX contains a single ordinal tree only, which is rooted at uX .

Lemma 2.3.3. For any node u ∈ V (F ), and any set of nodes X ⊆ V (F ), the following

equation holds:

dX(F, u) = d(FX , vX),

where vX is the node in FX that corresponds to v = ancX(F, u).

Proof. Because dX(F, u) = dX(F, ancX(F, u)) for any node u ∈ V (F ), we need only prove

the lemma for u ∈ X. In this case, v is equal to u. Observe that deleting a node not in

X does not change the X-depth of any other node. By induction on the number of the

deletion operations, we can show that, for any node u ∈ X, dX(F, u) is equal to the depth

of uX in FX .

Lemma 2.3.4. For any node u ∈ V (F ), and any two sets of nodes X ⊆ Y ⊆ V (F ),

ancX(F, u) corresponds to node ancXY (FY , vY ) in FY , where XY is the set of nodes in
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FY that correspond to the nodes in X, and vY is the node in FY that corresponds to

v = ancY (F, u).

Proof. Let w = ancX(F, u) and zY = ancXY (FY , vY ). Our lemma clearly holds if w =

dummy. Otherwise, wY must be an ancestor of vY in FY , and wX must be an ancestor of

zX in FX . By the definition of ancX(F, u), the depth of zX in FX cannot be larger than

wX . Hence, zX is equal to wX and z is equal to w.

Lemma 2.3.5. A sequence of nodes is corresponding to another if they have the same

length, and the nodes at the same position correspond to the same node in F . For any set

of nodes X ⊆ V (F ), the preorder traversal sequence of FX is corresponding to the sequence

of nodes obtained by removing the nodes that are not in X from the preorder traversal

sequence of F .

Proof. Since FX is obtained by deleting nodes from F , by applying Proposition 2.2.3(b)

multiple times, we can show that our lemma holds.

2.4 Applying Tree Extraction to Path Queries

Now let us apply the lemmas described in Section 2.3 to the path queries defined in

Section 2.1. Let T be the given tree on n nodes, each having a weight drawn from [1..σ].

For any integral range [a..b] ⊆ [1..σ], we define Ra,b to be the set of nodes in T that have

a weight in [a..b]. We denote by Fa,b the Ra,b-extraction of T , which is a forest containing

exactly |Ra,b| nodes. Note that the nodes in Fa,b are not weighted, though they may

correspond to weighted nodes in T . Thus, F1,σ has the same structure as T , but the nodes

in F1,σ are not weighted. An example on constructing F1,1 and F3,4 for an weighted ordinal

tree with n = 10 and σ = 4 is illustrated in Figure 2.2.

For any ordinal forest FX that is extracted from T , and any node uX in FX , we

define da,b(FX , uX), the [a..b]-depth of uX in FX , to be the number of ancestors of uX
that correspond to a node in Ra,b. Also, we define anca,b(FX , uX), the [a..b]-ancestor of

uX in FX , to be the nearest ancestor of uX that corresponds to a node in Ra,b. If no

such an ancestor exists, then anca,b(FX , uX) is defined to be dummy. We further generalize

these definitions to T . That is, da,b(T, u) is equivalent to da,b(F1,σ, uR1,σ), anca,b(T, u) is
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Figure 2.2: An example with n = 10 nodes and σ = 4. The integer on each node of F1,1

and F3,4 is the weight of its corresponding node in T .

equivalent to the node in T that corresponds to anca,b(F1,σ, uR1,σ), where uR1,σ is the node

in F1,σ that corresponds to u.

For any nodes u and v in T , let Pu,v denote the set of nodes on the path from u to v.

If u and v are the same node, then Pu,v contains this node only. For any node u in T and

its ancestor w, we define Au,w to be the set of nodes on the path from u to w, excluding

the top node w. Thus, Au,u is a valid but empty set. It is clear that, for any nodes u and

v in T , Pu,v is the disjoint union of Au,w, Av,w and {w}, where w is the lowest common

ancestor (LCA) [2] of u and v.

Consider how to compute the intersection of Ra,b and Pu,v. Providing that w is the

lowest common ancestor of u and v, we have

Ra,b ∩ Pu,v = Ra,b ∩ (Au,w ∪ Av,w ∪ {w})
= (Ra,b ∩ Au,w) ∪ (Ra,b ∩ Av,w) ∪ (Ra,b ∩ {w}); (2.1)

and its cardinality is

|Ra,b ∩ Pu,v| = |(Ra,b ∩ Au,w) ∪ (Ra,b ∩ Av,w) ∪ (Ra,b ∩ {w})|
= |Ra,b ∩ Au,w|+ |Ra,b ∩ Av,w|+ |Ra,b ∩ {w}|
= da,b(T, u)− da,b(T,w) + da,b(T, v)− da,b(T,w) + 1Ra,b(w), (2.2)

where 1Ra,b(w) is equal to 1 if w ∈ Ra,b, or equal to 0 if not. In order to compute the

cardinality efficiently, we need a fast way to compute da,b(T, u)’s. A naive solution is to

16



store the value of d1,b(T, u) for any 1 ≤ b ≤ σ and any node u in T . This method requires

O(σ) words for each node in T so that the overall space cost would be O(nσ). To save

space, we apply the results in Lemmas 2.3.3 to 2.3.5 with ranges of weights. The following

lemmas are obtained by replacing X and Y with Ra,b and Ra′,b′ in Lemmas 2.3.3 to 2.3.5.

Corollary 2.4.1. For any node u in T and its arbitrary ancestor w, and any range [a..b] ⊆
[1..σ], we have

da,b(T, u)− da,b(T,w) = d(Fa,b, xRa,b)− d(Fa,b, zRa,b),

where xRa,b and zRa,b are nodes in Fa,b that correspond to x = anca,b(T, u) and z =

anca,b(T,w), respectively.

Corollary 2.4.2. For any node u in T , and any two nested ranges [a..b] ⊆ [a′..b′] ⊆ [1..σ],

anca,b(T, u) corresponds to node anca,b(Fa′,b′ , vRa′,b′ ) in Fa′,b′, where vRa′,b′ is the node in

Fa′,b′ that corresponds to v = anca′,b′(T, u).

Corollary 2.4.3. For any range [a..b] ⊆ [1..σ], the preorder traversal sequence of Fa,b is

corresponding to the sequence of nodes obtained by removing the nodes that are not in Ra,b

from the preorder traversal sequence of T .
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Chapter 3

Data Structures under the Pointer

Machine Model

In this chapter, we present our data structure under the pointer machine model, for the

path queries defined in Section 2.1. The data structure is based on the technique of tree

extraction presented in Chapter 2. It requires O(n lg σ) words of space to support path

median, selection and counting queries in O(lg σ) time, and path reporting queries in

O(lg σ + occ) time, where occ is the size of output.

3.1 Basic Structures

Our basic idea is to build a conceptual range tree on [1..σ]: Starting with [1..σ], we keep

splitting each range into two child ranges that differ by at most 1 in length. Formally,

providing that a < b, the range [a..b] will be split evenly into child ranges [a1..b1] and

[a2..b2], where a1 = a, b1 = b(a+ b)/2c, a2 = b1 + 1 and b2 = b. This procedure stops when

[1..σ] has been split into σ leaf ranges of length 1, each of which corresponds to a single

value in [1..σ]. These leaf ranges may not occur at the same level of the range tree, as

shown in the example illustrated in Figure 3.1. Several important properties of range trees

are summarized in Lemma 3.1.1, which can be found in earlier work on the topic [6, 28, 27].
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Lemma 3.1.1 ([6, 28, 27]). A range tree on [1..σ] has exactly dlg σe+1 levels, and contains

exactly 2σ − 1 ranges. At each level, each value in [1..σ] is included in at most one range.

In addition, any range [p..q] ⊆ [1..σ] can be represented as the union of at most 2dlg σe+ 1

disjoint ranges in the range tree.

[1..3]

[1..2] [3]

[1] [2]

[4..6]

[4..5] [6]

[4] [5]

[1..6]

Figure 3.1: A conceptual range tree on [1..6].

For each range [a..b] in the range tree, we construct and store Fa,b explicitly. For the

sake of convenience, we explicitly add a dummy root to each Fa,b, and denote by Ta,b the

new ordinal tree rooted at the dummy node. The dummy root is omitted for the preorder

traversal sequence of Ta,b and the depths of the nodes in Ta,b, so Fa,b and Ta,b can be

used interchangeably for the depth and ancestor operators, and the corollaries listed in

Section 2.4 still hold for Ta,b’s. Figure 3.2 gives an example on constructing all the Ta,b’s

for the ordinal tree T in Figure 2.2.

On each node in Ta,b we store its depth, and a pointer linking to the corresponding

node in T . For each non-leaf range [a..b], let [a1..b1] and [a2..b2] be the child ranges of [a..b].

For each node x in Ta,b, we pre-compute and store the value of d(Ta,b, x), and the pointer

to the node in Tai,bi that corresponds to ancai,bi(Ta,b, x) for i = 1, 2, which is denoted by

pointera,b(x, i) for simplicity.
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Figure 3.2: An example with n = 10 nodes and σ = 4. The integer on each non-dummy

node is the weight of its corresponding node in T .
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3.2 Answering Queries

We now describe how to support the path queries defined in Section 2.1 using the above

data structure. In the following proofs, we make use of the notation defined in Section 2.4.

Lemma 3.2.1. The data structure described in Section 3.1 supports path counting queries

in O(lg σ) time, and path reporting queries in O(lg σ + occ) time, where occ denotes the

output size of the query.

Proof. Let u and v be the endpoints of the query path, and let [p..q] be the query range.

In the path counting and reporting problems, our objective is to compute Rp,q ∩ Pu,v and

its cardinality. We first consider how to compute the cardinality for path counting queries.

By Lemma 3.1.1, each query range [p..q] ⊆ [1..σ] can be represented as the union of m

disjoint ranges in the range tree, say [a1..b1], · · · , [am, bm], where m = O(lg σ). Because

Rp,q ∩ Pu,v =
⋃

1≤i≤m(Rai,bi ∩ Pu,v), we need only compute the cardinality of |Rai,bi ∩ Pu,v|
efficiently, for 1 ≤ i ≤ m.

The algorithm is shown in Algorithm 1. Providing that [a..b] is a range in the conceptual

range tree, x, y, and z are nodes in Ta,b that correspond to anca,b(T, u), anca,b(T, v) and

anca,b(T,w), the procedure Search([a..b], x, y, z, [p..q]) returns the cardinality of Pu,v ∩
Ra,b ∩Rp,q, and reports the nodes in the intersection if the given query is a path reporting

query. To compute Pu,v ∩Rp,q, we need only call Search([1..σ], u, v, w, [p..q]).

Our algorithm accesses the range tree from top to bottom, ending at the ranges com-

pletely included in [p..q]. Line 8 computes |Ra,b∩Pu,v| in O(1) time when [a..b] ⊆ [p..q]. In

line 12, the algorithm iteratively computes the nearest ancestors of x, y, z for child ranges.

Finally, in line 16, the algorithm recurses on child ranges that intersect with [p..q].

For path reporting queries, as shown in lines 4 to 7, our algorithm traverses from x to

y, reporting all the nodes on this path except z. Note that for each node being reported,

we report the node in T that corresponds to it by following the pointer saved on this node.

Finally, we report node w if its weight is in this range.

Now we analyze the time cost of Algorithm 1. First of all, the LCA queries can be sup-

ported in constant time and linear space (for a simple implementation, see [5]). We thus

need only consider our range tree. For path counting queries, Algorithm 1 accesses O(lg σ)

ranges, and it spends constant time on each range. For path reporting queries, Algorithm

1 uses O(1) additional time to report each occurrence. Hence, the query time of path
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counting queries is O(lg σ), and the query time of path reporting queries is O(lg σ + occ),

where occ is the output size.

Algorithm 1 The algorithm for path counting and reporting queries.

1: procedure Search([a..b], x, y, z, [p..q])

2: . x, y and z correspond to anca,b(T, u), anca,b(T, v) and anca,b(T,w), respectively.

3: if [a..b] ⊆ [p..q] then

4: if the given query is a path reporting query then

5: report all nodes on the path from x to y except z;

6: report node w if its weight is in [a..b];

7: end if

8: return d(Ta,b, x) + d(Ta,b, y)− 2d(Ta,b, z) + 1Ra,b(w);

9: . |Ra,b ∩ Pu,v|, by Corollary 2.4.1 and Equation 2.2.

10: end if

11: Let [a1..b1] and [a2..b2] be the child ranges of [a..b];

12: δi ← pointera,b(δ, i) for δ = {x, y, z} and i = 1, 2; . By Corollary 2.4.2.

13: count← 0;

14: for i← 1, 2 do

15: if [ai..bi] ∩ [p..q] 6= φ then

16: count← count+ Search([ai..bi], xi, yi, zi, [p..q]);

17: end if

18: end for

19: return count;

20: end procedure

Lemma 3.2.2. The data structure in this section supports path median and selection

queries in O(lg σ) time.

Proof. It suffices to consider path selection queries only. Let u and v be the nodes given

in the query, and let k be the rank of the weight to select. Our algorithm for the path

median and selection problem is shown in Algorithm 2. Providing that [a..b] is a range in

the conceptual range tree, x, y, and z are nodes in Ta,b that correspond to anca,b(T, u),

anca,b(T, v) and anca,b(T,w), the procedure Select([a..b], x, y, z, s) returns the s-th small-

est weight among the weights of the nodes in Ra,b ∩ Pu,v. To compute the given query, we
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only need call Select([1..σ], u, v, w, k).

Now let us analyze the procedure Select. If a = b, the weight to return must be a.

Otherwise, let [a1..b1] and [a2..b2] be the child ranges of [a..b], where b1 < a2. The algorithm

computes count = |Ra1,b1 ∩ Pu,v| and compares it with s in line 8. If s is not larger than

count, then the algorithm recurses on [a1..b1] in line 11; otherwise the algorithm deducts

count from s and recurses on [a2..b2] in line 13. Algorithm 2 traverses the range tree from

top to bottom, visiting at most O(lg σ) ranges, and finally ending at some range of length

1. It also spends only constant time on each visited range. This algorithm thus takes

O(lg σ) time to answer a path median or selection query.

Algorithm 2 The algorithm for path median and selection queries.

1: procedure Select([a..b], x, y, z, s)

2: . x, y and z correspond to anca,b(T, u), anca,b(T, v) and anca,b(T,w), respectively.

3: if a = b then

4: return a;

5: end if

6: Let [a1..b1] and [a2..b2] be the child ranges of [a..b], where b1 < a2;

7: δi ← pointera,b(δ, i) for δ = {x, y, z} and i = 1, 2; . By Corollary 2.4.2.

8: count← d(Ta1,b1 , x1) + d(Ta1,b1 , y1)− 2d(Ta1,b1 , z1) + 1Ra1,b1
(w);

9: . |Ra1,b1 ∩ Pu,v|, by Corollary 2.4.1 and Equation 2.2.

10: if s ≤ count then

11: return Select([a1..b1], x1, y1, z1, s);

12: else

13: return Select([a2..b2], x2, y2, z2, s− count);
14: end if

15: end procedure

With Lemmas 3.2.1 and 3.2.2, we can present our result on supporting path queries

under the pointer machine model.

Theorem 3.2.3. Under the pointer machine model, a tree on n weighted nodes can be

represented in O(n lg σ) words of space to support path median, selection and counting

queries in O(lg σ) time, and path reporting queries in O(lg σ+occ) time, where the weights

are drawn from [1..σ], and occ is the output size of the path reporting query.
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Proof. The claim of query time follows from Lemma 3.2.1 and Lemma 3.2.2. It suffices to

analyze the space cost of our data structure. For a range [a..b] in the range tree, our data

structure uses O(|Ra,b|) words of space to store Ta,b, depths of nodes, and the pointers to

T and the child ranges of [a..b]. Thus the adjunct data structures constructed for each

level of the range tree occupy O(n) words in total, and the overall space cost of our data

structure is O(n lg σ).
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Chapter 4

Data Structures under the Word

RAM Model

In this chapter we show how to reduce the space cost of the data structure presented in

Chapter 3. We adopt the word RAM model of computation with word size w = Ω(lg n).

For the path median, selection and counting problems, we achieve O(lg σ) query time with

linear space. For the path reporting problem, we either require O(lg σ + occ lg σ) query

time with linear space, or O(lg σ + occ lg lg σ) query time with O(n lg lg σ) words of space.

4.1 Linear Space, but Slower Reporting

Our starting point for space optimization is the succinct representation of labeled ordinal

trees. As shown in Lemma 4.1.1, there exists a data structure that encodes a tree on n

labeled nodes in O(n) bits of space when the number of distinct labels is a constant, and

supports a set of basic operations in constant time. We list in Lemma 4.1.1 only a small

subset of operations provided by the succinct representation of labeled ordinal trees, which

are sufficient for our data structures.

Lemma 4.1.1 ([19]). Let S be an ordinal tree on n nodes, each having a label drawn

from an alphabet Σ. S can be represented in n(lg |Σ|+ 2) +O(|Σ|n lg lg lg n/ lg lg n) bits to

support the following operations in constant time. We assume that node x is contained in

S, and α ∈ Σ.
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• Pre-Rank(S, x): Return the number of nodes that precede x in preorder;

• Pre-Rankα(S, x): Return the number of nodes that are labeled with α and precede

x in preorder;

• Pre-Select(S, i): Return the ith node in preorder;

• Pre-Selectα(S, i): Return the ith node in preorder that is labeled with α;

• Depth(S, x): Return the depth of x;

• Ancestorα(S, x): Return the lowest ancestor of node x that is labeled with α.

We now present our linear space data structure.

Theorem 4.1.2. Under the word RAM model with word size w = Ω(lg n), a tree on n

weighted nodes can be represented in O(n) words of space to support path median, selection

and counting queries in O(lg σ) time, and path reporting queries in O(lg σ+ occ lg σ) time,

where the weights are drawn from [1..σ], and occ is the output size of the path reporting

query.

Proof. For our new data structure, we still build a conceptual range tree as in Section 3.1.

Unlike the previous data structure, we store only the succinct representation of Ta,b for

each range [a..b] in the range tree. We assign a label to each node in Ta,b if range [a..b] is

not a leaf range. Let [a1..b1] and [a2..b2] be child ranges of [a..b], where b1 < a2. We assign

label 0 to the dummy root in Ta,b. For each non-root node x in Ta,b, we assign it label i if x

corresponds to a node in Rai,bi for i = 1 or 2. By Lemma 4.1.1, the succinct representation

for range [a..b] occupies O(|Ra,b|) bits. Thus, the space cost of our new data structure is

O(n lg σ/w) = O(n) words.

Now consider how to answer path queries. Note that the nodes in the succinct represen-

tation are indexed by their ranks in preorder. Let [a..b] be a non-leaf range, and let [a1..b1]

and [a2..b2] be the child ranges of [a..b], where b1 < a2. Suppose node x is in Ta,b, and

node xi is the node in Tai,bi that corresponds to x for i = 1 or 2. We show that, once the

preorder rank of x in Ta,b is known, the preorder of xi in Tai,bi can be computed in constant

time, and vice versa. By the construction of our linear space data structure, Tai,bi contains

the nodes that correspond to the nodes in Ta,b that have a label i. By Lemma 2.3.5, these

26



nodes have the same relative positions in the preorder traversal sequences of Tai,bi and Ta,b.

We thus have that

Pre-Ranki(Ta,b, x) = Pre-Rank(Tai,bi , xi),

xi = Pre-Select(Tai,bi ,Pre-Ranki(Ta,b, x)), (4.1)

x = Pre-Selecti(Ta,b,Pre-Rank(Tai,bi , xi)). (4.2)

Applying this formula, it takes constant time to convert the preorder rank of two corre-

sponding nodes between two adjacent levels in the range tree.

Since Depth is provided, we need only consider how to compute pointera,b(δ, i) for child

ranges (Line 12 in Algorithm 1 and line 7 in Algorithm 2). For δ = {x, y, z} and i = 1, 2,

we can compute the node in Ta,b that corresponds to pointera,b(δ, i) by Ancestori(Ta,b, δ),

and convert it to the corresponding node in Tai,bi using Equation 4.1. If δ has no ancestor

with label i in Ta,b, then pointera,b(δ, i) would be the dummy root of Tai,bi .

It is more complicated to deal with path reporting queries. Unlike the data structure

described in Section 3, given a node x in some Ta,b that need be reported, we cannot di-

rectly find its corresponding node in T by following an appropriate pointer, as we cannot

afford to store these pointers. Instead, we compute the preorder rank of the node in the

tree constructed for the parent range of [a..b] that corresponds to x using Equation 4.2,

and repeat this process until we reach the root range in the range tree. This procedure

takes O(lg σ) time for each node to report.

To analyze the query time, we observe that, for path median, selection and count-

ing queries, our linear space data structure still uses constant time on each visited range.

Hence, these queries can be answered in O(lg σ) time. For path reporting queries, this data

structure requires O(lg σ) additional time for each node to report. Thus, path reporting

queries can be answered in O(lg σ + occ lg σ) time, where occ is the output size.

4.2 Slightly More Space, Much Faster Reporting

As shown above, the bottleneck of path reporting queries in our linear space data structure

is that it requires O(lg σ) time to find the corresponding node in T for each node in the

answer. We apply the technique in [11] to speed up this process, which requires the

following space-efficient representation of arrays.
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Lemma 4.2.1 (Lemma 2.3 in [11]). An array A[1..n] of elements from an alphabet Σ can

be represented in O(n lg |Σ|) bits to support query Partial-Rank(i) in constant time,

which returns the number of elements in A[1..i] that equal to A[i].

Now we give the proof for Theorem 4.2.2.

Theorem 4.2.2. Under the word RAM model with word size w = Ω(lg n), a tree on n

weighted nodes can be represented in O(n lg lg σ) words of space to support path reporting

queries in O(lg σ+occ lg lg σ) time, where the weights are drawn from [1..σ], and occ is the

output size of the path reporting query.

Proof. Without loss of generality, we assume that σ is equal to a power of 2. In this case,

the range tree we constructed is a perfect binary tree that has exactly lg σ + 1 levels. We

maintain a second index for the nodes in T . For each node x in T , we index x by its weight

c and its preorder rank in Tc,c. Suppose the algorithm decides to report x when accessing

range [a..b]. We need only find the leaf range corresponding to the weight and the node in

the tree constructed for this leaf range that corresponds to x.

Consider the ranges at levels l and l + ∆, where 1 ≤ l < l + ∆ ≤ lg σ + 1. A

range [a..b] at level l has exactly 2∆ descendent ranges at level l + ∆. Let them be

[a1..b1], [a2..b2], · · · , [a2∆ ..b2∆ ]. We have that, for i = 1, 2, 3, · · · , 2∆,

ai = a+ (i− 1) · b− a+ 1

2∆
,

bi = a+ i · b− a+ 1

2∆
− 1.

For each range [a..b] at level l, we define Sa,b,∆[1..|Ra,b|] to be a sequence of integers in

which Sa,b,∆[j] = i if and only if the j-th node in the preorder traversal sequence of Ta,b
corresponds to a node in Tai,bi .

Now we show how to “jump” from level l to level l + ∆ using the sequence Sa,b,∆. Let

x be a node in Ta,b. We first access i = Sa,b,∆[j] for j = Pre-Rank(Ta,b, x), such that

we know x corresponds node xi in Tai,bi . By Corollary 2.4.3, we can further compute the

preorder rank of xi in Tai,bi by the equation

Pre-Rank(Tai,bi , xi) = Ranki(Sa,b,∆, j) = Partial-Rank(Sa,b,∆, j).

For positive integer l, we define f(l) to be the position in the binary representation of l

such that the (f(l)+1)-th least significant bit is the rightmost 1-bit. For example, we have
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f(3) = 0 and f(8) = 3. For level 1 ≤ l ≤ lg σ, we construct Sa,b,∆ with ∆ = 2f(lg σ+1−l)

for each range [a..b] at this level. Then we concatenate the sequences for all the ranges at

level l in increasing order of their start positions, and maintain the concatenated sequence

using the space-efficient representation presented in Lemma 4.2.1. It is easy to see that the

concatenated sequence has n integers, each being drawn from [1..2∆]. Thus, this sequence

occupies O(n∆) bits of space. The space cost of the concatenated sequences for all levels

is at most 1
w

∑
1≤l≤lg σ O(n · 2f(lg σ+1−l)) = O(n lg lg σ) words.

With the auxiliary data structures described above, for any node x in Ta,b that is decided

to report, we can reach the node at a leaf range that corresponds to x by jumping. Since

each jump increases f(lg σ + 1 − l) by 1, and each jump takes constant time only, this

process uses O(lg lg σ) time for each node to report.
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Chapter 5

Conclusions and Open Problems

We have presented tree extraction, a creative technique for maintaining labeled or weighted

trees. This technique supports data structures that recursively split the set of the weights

of nodes, while previous divide-and-conquer approaches on trees [14, 26] only partition the

structure of the input tree. Following this technique, the path queries with respect to the

weights of nodes are supported efficiently.

We have obtained new and improved upper bounds for path queries. Under the pointer

machine model, our data structures require O(n lg σ) space, supporting path median, se-

lection and counting queries in O(lg σ) time, and path reporting queries in O(lg σ + occ)

time, where occ is the size of output. Under the word RAM model, the space cost of

the data structures for path median, selection and counting queries can be reduced to

O(n), preserving the same query time. Also, we obtain two more time-space tradeoffs for

path reporting queries: The linear space data structure answers path reporting queries in

O(lg σ + occ lg σ) time, and the data structure using O(n lg lg σ) words of space achieves

O(lg σ + occ lg lg σ) query time.

Any data structure for path queries can support the corresponding range queries with

the same time and space cost, thus the lower bounds for range queries [31, 32, 33, 25] also

apply to the corresponding path queries. In fact, there are still gaps between the data

structures obtained in this thesis and the best known upper bounds for the range queries.

Let us focus on the case in which σ is close to n. Under the word RAM model, our lin-

ear space data structures for path median, selection and counting queries require O(lg n)

time, while the optimal data structures for range median and selection queries [9, 10]
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and the ones for two-dimensional orthogonal range counting queries [24, 8, 12] require

O(lg n/ lg lg n) time only. In addition, our data structures for path reporting queries re-

quire O(n) words of space and O(lg n+ occ lg n) query time, or O(n lg lg n) words of space

and O(lg n+occ lg lg n) query time, where occ is the output size. However, the best known

results for two-dimensional orthogonal range reporting queries [11], using the same amount

of space, achieveO(lgε n+occ lgε n) andO(lg lg n+occ lg lg n) query time, respectively. Thus

we have the first open problem: Can we improve the query time of the data structures for

path queries while preserving the space cost?

Let us examine the space cost of the data structures for range queries more carefully.

Brodal et al.’s [9, 10] data structures for range median and selection queries and Bose et

al.’s [8] data structures for two-dimensional range counting and reporting queries require

n lg n + o(n lg n) bits of space only, while our data structures support path queries using

Ω(n lg n) bits of space, where the coefficient is much larger than one. Thus our second

open problem is: Can we design data structures for path queries with n lg n+o(n lg n) bits

of space and efficient query time?

The technique of tree extraction gives us a new direction to maintain labeled or weighted

trees. We believe that the usage of this technique is not limited to the path queries we have

considered in this thesis. Thus our final open problem is: Can we apply this technique to

other types of queries on labeled or weighted trees?
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