Skip to main content

Fast Fréchet Queries

  • Conference paper
Book cover Algorithms and Computation (ISAAC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7074))

Included in the following conference series:

Abstract

Inspired by video analysis of team sports, we study the following problem. Let P be a polygonal path in the plane with n vertices. We want to preprocess P into a data structure that can quickly count the number of inclusion-minimal subpaths of P whose Fréchet Distance to a given query segment Q is at most some threshold value ε. We present a data structure that solves an approximate version of this problem: it counts all subpaths whose Fréchet Distance is at most ε, but this count may also include subpaths whose Fréchet Distance is up to \((2+3\sqrt{2})\varepsilon \). For any parameter n ≤ s ≤ n 2, our data structure can be tuned such that it uses O(s polylog n) storage and has \(O((n/\sqrt{s}){\rm polylog} n)\) query time. For the special case where we wish to count all subpaths whose Fréchet Distance to Q is at most ε·length(Q), we present a structure with O(n polylog n) storage and O(polylog n) query time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Lin, K.-I., Sawhney, H.S., Shim, K.: Fast similarity search in the presence of noise, scaling, and translation in time-series databases. In: 21st International Conference on Very Large Data Bases, pp. 490–501 (1995)

    Google Scholar 

  2. Alt, H., Behrends, B., Blomer, J.: Approximate matching of polygonal shapes. Annals of Mathematics and Artificial Intelligence (3-4), 251–265 (1995)

    Google Scholar 

  3. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Int. Journal of Computational Geometry & Applications 5, 75–91 (1995)

    Article  MATH  Google Scholar 

  4. Alt, H., Guibas, L.: Discrete geometric shapes: Matching, interpolation, and approximation. In: Handbook of Comp. Geom., pp. 121–153. Elsevier (1999)

    Google Scholar 

  5. Alt, H., Knauer, C., Wenk, C.: Comparison of distance measures for planar curves. Algorithmica 38(2), 45–58 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Amisco, http://www.sport-universal.com

  7. Aronov, B., Har-Peled, S., Knauer, C., Wang, Y., Wenk, C.: Frechet distances for curves, revisited. In: European Symposium on Algorithms, pp. 52–63 (2006)

    Google Scholar 

  8. Belogay, E., Cabrelli, C., Molter, U., Shonkwiler, R.: Calculating the Hausdorff distance between curves. Information Processing Letters 64(1), 17–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buchin, K., Buchin, M., Gudmundsson, J.: Constrained free space diagrams: a tool for trajectory analysis. Int. Journal of GIS 24(7), 1101–1125 (2010)

    Google Scholar 

  10. Buchin, K., Buchin, M., Wang, Y.: Exact algorithms for partial curve matching via the Fréchet distance. In: 20th Symp. on Discrete Algorithm, pp. 645–654 (2009)

    Google Scholar 

  11. Chan, T.M.: Optimal partition trees. In: 26th Symposium on Computational Geometry (SoCG), New York, NY, USA, pp. 1–10 (2010)

    Google Scholar 

  12. Clausen, M., Mosig, A.: Approximately matching polygonal curves with respect to the Fréchet distance. Comp. Geom. – Theory & Appl. 30, 113–127 (2005)

    Article  MATH  Google Scholar 

  13. Driemel, A., Har-Peled, S., Wenk, C.: Approximating the Fréchet distance for realistic curves in near linear time. 26th Symp. on Comp. Geom., SoCG (2010)

    Google Scholar 

  14. Kalpakis, K., Gada, D., Puttagunta, V.: Distance measures for effective clustering of arima timeseries. In: 1st IEEE Int. Conf. on Data Mining, pp. 273–280 (2001)

    Google Scholar 

  15. Kolodny, R., Koehl, P., Levitt, M.: Comprehensive evaluation of protein structure alignment: Scoring by geometric measures. Journal of Molecular Biology 346, 1173–1188 (2005)

    Article  Google Scholar 

  16. Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and-group framework. In: ACM SIGMOD International Conference on Management of Data, pp. 593–604 (2007)

    Google Scholar 

  17. Gunopulos, D., Vlachos, M., Kollios, G.: Discovering similar multidimensional trajectories. In: 18th Int. Conf. on Data Engineering, pp. 673–684 (2002)

    Google Scholar 

  18. Wenk, C., Salas, R., Pfoser, D.: Addressing the need for map-matching speed: Localizing global curve-matching algorithms. In: 18th Conference on Scientific and Statistical Database Management (SSDBM), pp. 379–388 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Berg, M., Cook, A.F., Gudmundsson, J. (2011). Fast Fréchet Queries. In: Asano, T., Nakano, Si., Okamoto, Y., Watanabe, O. (eds) Algorithms and Computation. ISAAC 2011. Lecture Notes in Computer Science, vol 7074. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25591-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25591-5_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25590-8

  • Online ISBN: 978-3-642-25591-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics