
ar
X

iv
:1

01
2.

17
49

v2
 [

cs
.C

G
]

 1
2

Se
p

20
11

Treemaps with Bounded Aspect Ratio✩

Mark de Berga, Bettina Speckmanna, Vincent van der Weeleb

aDepartment of Mathematics and Computer Science, TU Eindhoven, The Netherlands
bMax-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract

Treemaps are a popular technique to visualize hierarchical data. The input is
a weighted tree T where the weight of each node is the sum of the weights
of its children. A treemap for T is a hierarchical partition of a rectangle into
simply connected regions, usually rectangles. Each region represents a node of
T and its area is proportional to the weight of the corresponding node. An
important quality criterion for treemaps is the aspect ratio of its regions. One
cannot bound the aspect ratio if the regions are restricted to be rectangles. In
contrast, polygonal partitions, that use convex polygons, have bounded aspect
ratio. We are the first to obtain convex partitions with optimal aspect ratio
O(depth(T)). However, depth(T) still depends on the input tree. Hence we
introduce a new type of treemaps, namely orthoconvex treemaps, where regions
representing leaves are rectangles, L-, and S-shapes, and regions representing
internal nodes are orthoconvex polygons. We prove that any input tree, ir-
respective of the weights of the nodes and the depth of the tree, admits an
orthoconvex treemap of constant aspect ratio. We also obtain several special-
ized results for single-level treemaps, that is, treemaps where the input tree has
depth 1.

1. Introduction

Treemaps are a very popular technique to visualize hierarchical data [14].
The input is a tree T where every leaf is associated with a weight and where
the weight of an internal node is the sum of the weights of its children. A
treemap for T is a hierarchical partition of a simple polygon, usually a rectan-
gle, into simply connected regions, often rectangles as well. Each such region
represents a node of T and the area of each region is proportional to the weight
of the corresponding node. To visualize the hierarchical structure the region
associated with a node must contain the regions associated with its children.
Shneiderman [15] and his colleagues were the first to present an algorithm for the
automatic creation of rectangular treemaps. Treemaps have since been used to

✩Bettina Speckmann was supported by the Netherlands’ Organisation for Scientific Re-
search (NWO) under project no. 639.022.707.

Preprint submitted to Elsevier July 30, 2018

http://arxiv.org/abs/1012.1749v2

visualize hierarchical data from a variety of application areas, for example, stock
market portfolios [10], tennis competitions trees [9], large photo collections [3],
and business data [16].

Figure 1: Treemaps constructed by our drawing al-
gorithms: orthoconvex and convex.

One of the most important
quality criteria for treemaps is the
aspect ratio of its regions; users
find it difficult to compare regions
with extreme aspect ratios [11].
Hence several approaches [3, 4]
try to “squarify” the regions of
a rectangular treemap. However,
one cannot bound the aspect ratio
if the regions are restricted to be
rectangles. (Consider a tree con-
sisting of two leaves and a root and let the weight of one leaf tend to zero.) As a
consequence, several types of treemaps using region shapes other than rectangles
have been proposed. Balzer and Deussen [1, 2] use centroidal Voronoi tessella-
tions. Their algorithm is iterative and can give no guarantees on the aspect ratio
of the regions (nor on their exact size). Wattenberg [17] developed treemaps
whose regions follow a space filling curve on a grid, so called Jigsaw maps. Jig-
saw maps assume that the leaves have integer weights which add up to a square
number. The regions of the maps are rectilinear, but highly non-(ortho)convex.
However, they do have aspect ratio 4. Onak and Sidiropoulos [13] introduced
polygonal partitions, which use convex polygons. They proved an aspect ratio
of O((depth(T) · logn)17) for a tree T with n leaves. In cooperation with De
Berg, this bound has since been improved to O(depth(T)+log n) [5]. The latter
paper also gives a lower bound of Ω(depth(T)).

This leaves two open questions. First, is the O(log n) term in the upper
bound on convex treemaps necessary, or can we guarantee a O(depth(T)) aspect
ratio? Second, is there a type of treemap that has constant aspect ratio for
any input tree, irrespective of its depth and of the number of nodes and their
weights?

Figure 2: An L- and an S-
shape (two reflex corners).

Results and organization. We answer the two
questions above affirmatively. First of all, in Sec-
tion 3, we show how to construct convex partitions
with optimal aspect ratio O(depth(T)). Second, we
introduce orthoconvex treemaps, where the regions
representing internal nodes of the input tree are ortho-
convex polygons, while the regions representing leaves are rectangles, L-shapes,
and S-shapes (see Fig. 2). Thus our orthoconvex treemaps retain some of the
schematized flavor of rectangular treemaps. In Section 4 we prove that any in-
put tree admits an orthoconvex treemap of constant aspect ratio. Fig. 1 shows
two treemaps constructed by our drawing algorithms. The hierarchy is empha-
sized by line thickness and color: thicker, darker lines delimit nodes higher in
the hierarchy.

2

We also consider the special case that depth(T) = 1, that is, single-level
treemaps. For rectangular treemaps, minimizing the aspect ratio is NP-hard
for single-level treemaps. This result was claimed without proof in [4], but was
in fact only a conjecture of the authors1. For completeness, we give a formal
proof in Section 5.1. In Section 5.2 we describe a drawing procedure that uses
L-shapes in addition to rectangles. The resulting treemap has aspect ratio at
most 2 + 2

√
3/3 ≈ 3.15. We also give a construction which forces a maximal

aspect ratio of ≈ 3.13 for such treemaps in Section 5.3.
Instead of using L-shapes we can also draw a single-level treemap using four

different convex octilinear shapes. The resulting treemap has aspect ratio at
most ≈ 4.79. However, since the principle of the construction is very similar to
that in Section 3 and the aspect ratio bound is far from tight, we do not include
any further details on this construction.

2. Preliminaries

Our input is a rooted tree T . Following [5] we say that T is properly weighted
if each node ν of T has a positive weight weight(ν) that equals the sum of the
weights of the children of ν. We assume that the weights are normalized, that
is, weight(root(T)) = 1. A treemap for T associates a region R(ν) with each
node ν ∈ T such that (i) R(root(T)) is the unit square, (ii) for every node we
have area(R(ν)) = weight(ν), and (iii) for any node ν, the regions associated
with the children of ν form a partition of R(ν).

R σ(R)

The aspect ratio of a treemap is the maximum aspect ratio of
any of its regions. To simplify our calculations, we use a different
definition of aspect ratio for orthoconvex and for convex regions.
Let R be a region and σ(R) its smallest enclosing axis-aligned
square. Furthermore, let area(R) be its area and diam(R) its
diameter. For orthoconvex regions, we define the aspect ratio of R as asp(R) :=
area(σ(R))/ area(R). For convex regions, we define it in accordance with [5]
as asp(R) := diam(R)2/ area(R). Note that area(σ(R)) ≤ diam(R)2 ≤ 2 ·
area(σ(R)), so the aspect ratios obtained by the two definitions differ by at
most a factor 2.

The following two lemmas deal with partitioning the children of a node
according to weight and with partitioning a rectangular region. We denote the
set of children of a node ν by children(ν).

Lemma 1. Suppose all children of node ν have weight at most t ·weight(ν), for
some 3/10 ≤ t ≤ 2/3. Then we can partition children(ν) into two subsets H1

and H2, such that

weight(H2) ≤ weight(H1) ≤
{

2t · weight(ν) if 3/10 ≤ t < 1/3;
2/3 · weight(ν) if 1/3 ≤ t ≤ 2/3.

1Personal communication with J.J. van Wijk and K. Huizing, Nov 2010.

3

Proof. We partition the children using the longest processing time (LPT) algo-
rithm [8]. The algorithm works as follows: given a list of weights [w1, w2, . . . wn]
in non-increasing order, and two bins H1, H2, repetitively place the highest
weight left in the bin with least total weight. Consider the last weight w∗ put
in bin H1. By LPT, H1 was the emptiest bin before w∗ was put in, hence
weight(H1)− w∗ ≤ weight(H2) and thus weight(H1) ≤ (weight(ν) + w∗)/2.

If 1/3 ≤ t ≤ 2/3, we distinguish two cases. If 1/2 ≤ w1/weight(ν) ≤ 2/3,
then it is clear that weight(H1) = w1 ≤ 2/3·weight(ν). If 1/3 ≤ w1/weight(ν) <
1/2, then w3 is the first weight that can cause weight(H1) ≥ 1/2 · weight(ν).
The weights are in non-increasing order, hence wi ≤ weight(ν)/i. Therefore,
w∗ ≤ weight(ν)/3 and weight(H1) ≤ 2/3 · weight(ν).

If 3/10 ≤ t < 1/3, we distinguish three cases. If w2 + w3 ≥ weight(ν)/2,
then H1 = {w2, w3}. It is not hard to see that H1 has maximal weight if w3 =
w2 = w1 = t, hence weight(H1) ≤ 2t · weight(ν). If w2 + w3 < weight(ν)/2 but
w1 +w4 ≥ weight(ν)/2, then weight(H1) < weight(ν)/3 + weight(ν)/4 = 7/12 ·
weight(ν) < 2t·weight(ν). If w2+w3 < weight(ν)/2 and w1+w4 < weight(ν)/2,
then w∗ ≤ weight(ν)/5, hence weight(H1) ≤ 3/5 · weight(ν) ≤ 2t · weight(ν). ✷

Lemma 2. Let R be a rectangle and w1 ≥ w2 be weights such that w1 + w2 =
area(R). Then we can partition R into two subrectangles R1, R2, such that
asp(Ri) ≤ max(asp(R), area(R)/wi), for i ∈ {1, 2}.

Proof. Ri has aspect ratio max(wi · asp(R)/ area(R), area(R)/(wi · asp(R)),
for i ∈ {1, 2}. The claim follows from wi/ area(R) ≤ 1 and 1/ asp(R) ≤ 1. ✷

3. Convex Treemaps

We describe a recursive algorithm for computing a convex treemap (polygo-
nal partition) of aspect ratio O(depth(T)) for a properly weighted tree T . Our
algorithm has two phases. We first convert T into a binary tree T ∗ and then
construct a partition for T ∗. Roughly speaking, at every step our algorithm
finds a line to split a given convex polygon with “good” aspect ratio according
to the weights of the two children of the current node. Both sub-polygons have
good aspect ratio again. We cut with axis-aligned lines whenever we can. In
fact we can ensure that we introduce new cutting directions only when encoun-
tering a new level of the original input tree instead of on every level of the
binary tree. This is the key to obtaining O(depth(T)) aspect ratio, rather than
O(log n+ depth(T)).

Converting to a binary tree. We recursively convert T into a strictly binary
tree T ∗, replacing each node with k > 2 children in T by a binary subtree with
k − 1 new internal nodes. Since a binary tree with k − 1 internal nodes can
accommodate exactly k leaves, the children of the original internal node can all
become a child of one of the new internal nodes. During this process we assign a
label d(ν) to each node ν, which corresponds to the depth of ν in T . In a generic
step, we treat a node ν with label d(ν), and our task is to convert the subtree
rooted at ν. Initially ν = root(T) with d(root(T)) = 0. If ν is a leaf there is

4

nothing to do. If ν has two children we recurse on these children and assign
them label d(ν) + 1. Otherwise ν has k children, children(ν) = {ν1, . . . , νk}, for
some k > 2. We distinguish two cases, depending on their weight.

If there is a “heavy” child, say ν1, such that weight(ν1) ≥ weight(ν)/2, then
we proceed as follows. We turn ν into a binary node whose children are ν1 and
a new node µ1; the children of µ1 are ν2, . . . , νk. We recurse on ν1 and on µ1,
with d(ν1) = d(ν)+ 1 and d(µ1) = d(ν). Otherwise all children have weight less
than weight(ν)/2, and hence there is a partition of children(ν) into two subsets
S1 and S2 such that weight(Si) ≤ 2/3 ·weight(ν) for i ∈ {1, 2}. We turn ν into a
binary node with children µ1 and µ2, with children from S1 and S2, respectively,
and we recurse on µ1 and µ2 with d(µ1) = d(µ2) = d(ν).

Drawing a binary tree. Generalizing φ-separated polygons [5], we define a
(k, φ)-polygon, with k ≥ 1, to be a convex polygon P such that

(i) P does not have parallel edges, except possibly two horizontal edges and
two vertical edges. Moreover, each non-axis-parallel edge e makes an angle
of at least φ with any other edge and also with the x-axis and the y-axis.

(ii) If P has two horizontal edges, then width(P)/ height(P) ≤ k.
(iii) If P has two vertical edges, then height(P)/width(P) ≤ k.

A φ-separated polygon can only have axis-parallel edges if these are parts of its
axis-aligned bounding square [5]. Therefore, a (k, φ)-polygon P is a φ-separated
polygon, if it respects the following:

(a) if P has two horizontal edges, then height(P) ≥ width(P);
(b) if P has two vertical edges, then width(P) ≥ height(P).

Note that a (k, φ)-polygon P is φ-separated if its bounding box is square.

Lemma 3. Any (k, φ)-polygon has aspect ratio O(max(k, 1/φ)).

w

h

x

e1

e2

X

Proof. Consider a (k, φ)-polygon P . For brevity, we
write w = width(P) and h = height(P). Assume, with-
out loss of generality, that w ≥ h. Let e1 and e2
be the horizontal edges (possibly of length 0) and let
x = min(|e1|, |e2|). Let X be the shaded parallellogram
of width x. We distinguish two cases.

Case 1: x > w/2. P has two horizontal edges, so h ≥ w/k. Clearly, area(P) ≥
area(X) which is xh > w2/(2k). The diameter of P is at most the diameter of
the enclosing rectangle, hence diam(P)2 ≤ w2 + h2 ≤ 2w2. Combined:

asp(P) =
diam(P)2

area(P)
≤ 2w2

w2/(2k)
= 4k = O(k) .

Case 2: x ≤ w/2. We obtain polygon P ′ from P by reducing the length of
e1 and e2 by min(x,w − h). Clearly, area(P ′) ≤ area(P). Observe that P ′

is a φ-separated polygon since either it has at most 1 horizontal edge (a) and
w−x ≥ h (b), or the bounding box of P ′ is square. Therefore, asp(P ′) = O(1/φ)

5

[5]. Using diam(P) ≤ w
√
2 and diam(P ′) ≥ w −min(x,w − h) ≥ w − x ≥ w/2,

we calculate

asp(P) =
diam(P)2

area(P)
≤ 2w2

area(P)
≤ 8 · diam(P ′)2

area(P ′)
= 8 · asp(P ′) = O(1/φ) . ✷

We construct the partition for T ∗ in a top-down manner. Suppose we arrive at
a node ν in T ∗, with associated region R(ν); initially ν = root(T ∗) and R(ν)
is the unit square. We write n(ν) for the number of non-axis-parallel edges in
R(ν). We maintain the following invariants:

(Inv-1) n(ν) ≤ d(ν) + 4;
(Inv-2) R(ν) is a (k, φ(ν))-separated polygon for k = 4 and φ(ν) =
π/(2(d(ν) + 6)).

Note that the invariant is satisfied for ν = root(T ∗). Now consider a node ν
that is not the root of T ∗. If ν is a leaf, there is nothing to do. Otherwise,
let ν1 and ν2 be the two children of ν. Assume without loss of generality that
weight(ν1) ≥ weight(ν2). We distinguish two cases.

Case 1: d(ν1) = d(ν) + 1. We consider the lines parallel to the edges of R(ν)
through the origin. Moreover, we add the x- and y-axis. Since R(ν) has at most
d(ν) + 4 non-axis-parallel edges, we have at most d(ν) + 6 lines in total. Hence,
the biggest gap between two subsequent lines is at least π/(d(ν)+6). Therefore,
there is a line ℓ that makes an angle of at least π/(2(d(ν) + 6)) with each of
the edges of R(ν) and with the x- and the y-axis. Imagine placing the line ℓ
such that it splits R(ν) into two halves of equal area, and define R′ to be the
half with the smallest number of non-axis-parallel edges. Now partition R(ν)
into subpolygons R(ν1) and R(ν2) of the appropriate area with a cut c that is
parallel to ℓ such that R(ν2) ⊂ R′. (Thus c lies inside R′.) We claim that both
R(ν1) and R(ν2) satisfy the invariant.

Clearly R(ν1) uses at most one edge more than R(ν). Since d(ν1) = d(ν)+1,
this implies that (Inv-1) is satisfied for R(ν1). Now consider the number of
non-axis-parallel edges of R(ν2). This is no more than the number of non-axis-
parallel edges of R′. At most two non-axis-parallel edges are on both sides of ℓ,
hence this number is bounded by

n(ν2) ≤
⌊

n(ν) + 2

2

⌋

+1 ≤
⌊

d(ν) + 6

2

⌋

+1 =

⌊

d(ν)

2

⌋

+4 ≤ d(ν)+4 ≤ d(ν2)+4.

Given the choice of ℓ, and because d(νi) ≥ d(ν) and R(ν) satisfies (Inv-2),
we know that the minimum angle between any two non-parallel edges of R(νi)
(i ∈ {1, 2}) is at least π/(2(d(νi) + 6)). To show that R(ν1) and R(ν2) satisfy
(Inv-2), it thus suffices to prove the following lemma.

Lemma 4. If R(νi) has two horizontal edges, then width(R(νi))/ height(R(νi))
≤ k and if R(νi) has two vertical edges, then height(R(νi))/width(R(νi)) ≤ k,
for i ∈ {1, 2}.

6

Proof. We prove only the first claim, the second proof is similar. Assume
R(νi) has two horizontal edges e1 and e2. Cut c is neither horizontal nor vertical,
hence e1 and e2 show also up as (parts of) edges in R(ν). Hence, height(R(νi)) =
height(R(ν)). Since R(νi) ⊂ R(ν), we know width(R(νi)) ≤ width(R(ν)). Thus
width(R(νi))/ height(R(νi)) ≤ width(R(ν))/ height(R(ν)) ≤ k. ✷

Case 2: d(ν1) = d(ν). By construction of T ∗, 1/3 · weight(ν) ≤ weight(ν1) ≤
2/3 ·weight(ν). We now partition R(ν) into two subpolygons of the appropriate
area with an axis-parallel cut orthogonal to the longest side of the axis-parallel
bounding box of R(ν). The possible positions of this cut are limited by convex-
ity, as specified in the following lemma.

Lemma 5. Let P be a convex polygon with width(P) ≥ height(P). We can
partition P with a vertical cut into two subpolygons P1, P2, where area(P)/3 ≤
area(Pi) ≤ 2/3 · area(P) (for i ∈ {1, 2}), such that width(P)/4 ≤ width(Pi) ≤
3/4 · width(P).

l c r

P
l

Pr

Proof. Assume, without loss of generality, that area(P) = 1.
We cut the axis-parallel smallest enclosing rectangle of P into
three vertical slices l, c and r of relative widths 1/4, 1/2 and
1/4, respectively. Let Px be the intersection of P with slice
x ∈ {l, c, r}. Without loss of generality, we assume area(Pl) ≥
area(Pr). The lemma then follows from area(Pl) ≤ 1/2 and
area(Pr) ≤ 1/3, since we can always let the left subpolygon
be the larger. It is not hard to see that the relative area of
Pl is maximal if P is a triangle and the relative area of Pr

is maximal if P is a rectangle, as shown. In the first case,
area(Pl) = 7/16 < 1/2. In the latter, area(Pr) = 1/4 < 1/3.✷

Clearly the number of non-axis-parallel edges of R(ν1) and R(ν2) is no more
than the number of non-axis-parallel edges of R(ν). Since d(νi) ≥ d(ν), this
implies R(ν1) and R(ν2) satisfy (Inv-1). As for (Inv-2), note that the cut does
not introduce any new non-axis-parallel edges. It thus remains to prove the
following lemma:

Lemma 6. If R(νi) has two horizontal edges, then width(R(νi))/ height(R(νi))
≤ 4 (for i ∈ {1, 2}). Similarly, if R(νi) has two vertical edges, height(R(νi))/
width(R(νi)) ≤ 4.

Proof. We write h for height(R(ν)) and w for width(R(ν)) and define hi and
wi similarly for R(νi). Assume, without loss of generality, that h ≤ w, hence
R(νi) is obtained from R(ν) by a vertical cut. Clearly, hi ≤ h. Moreover, by
Lemma 5 we have wi ≥ w/4, hence hi/wi ≤ 4h/w ≤ 4.

If R(νi) has two horizontal edges, then so has R(ν), since no horizontal edges
are introduced by the cut. Therefore w/h ≤ 4. We know hi = h and obviously,
wi ≤ w, hence wi/hi ≤ w/h ≤ 4. ✷

Lemma 3, together with the fact that maxν∈T ∗ d(ν) = depth(T) and (Inv-2),
implies the result.

7

Theorem 7. Every properly weighted tree of depth d can be represented by a
convex treemap (polygonal partition) which has aspect ratio O(d).

4. Ortho-convex Treemaps

We describe a recursive algorithm for computing an orthoconvex treemap
of constant aspect ratio for a properly weighted binary tree T . If our original
input tree is not binary, we can simply replace each node of degree k > 2 by a
binary subtree with k − 1 new internal nodes. Roughly speaking, at every step
our algorithm partitions the tree under consideration into several “well-sized”
pieces which can be drawn inside rectangles, L-, and S-shapes of constant aspect
ratio. The main difficulty is that subtrees may be split over several such pieces.
We have to make sure that the fragments corresponding to the same subtree
end up bordering each other so that the region corresponding to the subtree
is orthoconvex. We solve this problem by marking certain corners and nodes
during the recursive process, and letting our drawing algorithm be guided by
the marked corners and nodes.

Our algorithm uses staircases : polygons defined by a horizontal edge uv, a
vertical edge vw, and an xy-monotone chain of axis-parallel edges connecting u
to w. The vertex v is called the anchor of the staircase. At each recursive step
we are given a rectangle R with aspect ratio at most 8 and a tree T . Exactly one
node µ in T and exactly one corner of R is marked. Initially T is the input tree,
R is the unit square, and the root of T and the bottom-right corner of R are
marked. We compute a treemap for T inside R with the following properties:

(i) every leaf is drawn as a rectangle of aspect ratio at most 8, or as an L- or
S-shape of aspect ratio at most 32;

(ii) every internal node is drawn as an orthoconvex polygon of aspect ratio at
most 64;

(iii) the marked node µ as well as its ancestors are drawn as staircases whose
anchors coincide with the marked corner of R.

The third property is not a goal in itself, but it is necessary to guarantee the
other two. We now describe how to draw T inside R. Our algorithm distin-
guishes cases depending on the relative weights of certain nodes. The relative
weight rel(ν) of a node ν is its weight as a fraction of the weight of the tree
T currently under consideration. We partition the relative weights into four
categories:

• tiny nodes : nodes ν such that rel(ν) < 1/8;
• small nodes nodes ν such that 1/8 ≤ rel(ν) < 1/4;
• large nodes : nodes ν such that 1/4 ≤ rel(ν) ≤ 7/8;
• huge nodes : nodes ν such that rel(ν) > 7/8.

For a node ν we use Tν to denote the subtree rooted at ν. Moreover, we write
p(ν) for the parent of ν and s(ν) for the sibling of ν.

8

Lemma 8. Let ν be a non-tiny node in T . Then Tν contains a non-tiny leaf
or a node that is small or large.

Proof. All weights are relative to T . If ν is small or large we are done, so
assume ν is huge. Walk from ν down Tν , always proceeding to the heavier child
(breaking ties arbitrarily) until we reach a leaf or a non-huge node. Since the
heavier child of a huge node is huge or large, this ends in a huge leaf or a large
node. ✷

We now discuss the various cases that we distinguish, show how the algorithm
handles them, and prove (using induction) that each case is handled correctly.
In the base case T consists of a single leaf node, so its region is simply the
rectangle R. This trivially satisfies conditions (i)–(iii). So now assume T has
more than one node. In the following, whenever we mark a node in a tree that
already has a marked node µ, we implicitly assume that the mark is removed
from µ. In the description below—in particular in the figures illustrating our
approach—we assume without loss of generality that the bottom-right corner of
container R is marked and that width(R) ≥ height(R).

T :

p(ν)

s(ν)
ν

µ

s(ν)

µ

T
′:

Tν : ν

Case (a): T has a non-tiny
marked node µ. By Lemma 8, Tµ
contains a node ν that is either a non-
tiny leaf or a small or large internal
node. Let T ′ be the tree obtained
from T by removing Tν and contract-
ing s(ν) into p(ν). In T ′ we mark s(ν)
and in Tν we mark ν. We distinguish
two subcases.

If rel(ν) ≤ 7/8 then we splitR into
two subrectangles R′ and R(ν), one for T ′ and one for Tν . We put R(ν) to the
right of R′ and mark the bottom-right corner of both. Note that R′ and R(ν)
have aspect ratio at most 8, according to Lemma 2. We recursively draw the
trees in their respective rectangles.

orTν Tν
T

′
T

′

If rel(ν) > 7/8 then ν must be a leaf. We then
draw ν as an L-shape R(ν) and recursively draw
T ′ inside a rectangle R′ which is similar to R,
whose top-left corner coincides with the top-left
corner of R, and whose bottom-right corner is marked.

In both subcases properties (i)–(iii) hold. The recursive calls only draw leaf
regions having property (i) and the L-shaped leaf in the second subcase has
aspect ratio at most 64/7.

Also, all internal nodes have property (ii). For the nodes that are not an
ancestor of ν this follows by induction. For the ancestors of ν, orthoconvexity
follows from the fact that the recursive call on T ′ has property (iii), and the
relative positions of R(ν) and the marked corner of R′. That is, every ancestor
of ν is drawn as a staircase with its anchor ‘glued’ to the rectangle or L-shape
R(ν). Since ν is non-tiny, we know area(ν̂) ≥ area(R)/8, for all ancestors ν̂ of

9

ν. Moreover, since asp(R) ≤ 8, we have area(R) ≥ area(σ(R))/8. Therefore,
the regions for the ancestors of ν have aspect ratio at most 64.

The marked node µ and all of its ancestors are ancestors of the marked node
s(ν) in T ′. Therefore, these are drawn as staircases in R′, by induction. The
subtrees rooted at these nodes contain Tν in T . A staircase whose anchor is
‘glued’ to the rectangle or L-shape R(ν) is a staircase again, with its anchor in
the marked corner of R. Therefore, µ and all of its ancestors have property (iii).

Case (b): T has a tiny marked node µ with an ancestor that is small
or large. Let µ∗ be the lowest huge ancestor of µ—since the root is huge, µ∗

must exist—and let µ̂ be the child of µ∗ on the path to µ. Then µ̂ is small or
large. We obtain T ′ by removing Tµ̂ and contracting s(µ̂) into its parent. We
mark s(µ̂) in T ′ and µ remains marked in Tµ̂.

µ

T :

µ∗

µ̂
s(µ̂)

s(µ̂)

T
′:

µ

µ̂Tµ̂:

We split R into two rectangles R′

and R(µ̂), one for T ′ and one for Tµ̂.
Since µ̂ is small or large, the aspect
ratios of R′ and R(µ̂) are at most 8,
according to Lemma 2. We put R(µ̂)
to the right of R′, mark the bottom-
right corner in both, and recursively
draw T ′ in R′ and Tµ̂ in R(µ̂).

The leaf regions have property (i)
by induction. Property (ii) holds as
well. For the nodes that are not an ancestor of µ̂ this follows by induction. For

Tµ̂T
′

the ancestors of µ̂, orthoconvexity follows from the fact that the
recursive call on T ′ has property (iii), and the relative positions
of R′ and the marked corner of R(µ̂). Because µ̂ is non-tiny, the
regions for the ancestors of µ̂ have aspect ratio at least 64. Property (iii) follows
from the fact that the recursive calls on T ′ and Tµ̂ have property (iii) and from
the relative position of R′ and the marked corners of R(µ̂) and R′.

T :

µ∗

µ̂
s(µ̂)

p(λ)

λ
s(λ)

s(λ)

s(µ̂)

T
′:

λλ:

µ̂Tµ̂:

Case (c): T has a tiny marked
node µ without small or large
ancestors, but T has a large or
huge leaf λ. Define µ∗ and µ̂ as in
Case (b). Note that µ̂ must be tiny,
since µ does not have small or large
ancestors and µ∗ is the lowest huge
ancestor. Also note that λ must be in
the other subtree of µ∗ (the one not
containing µ̂ and µ). Now we get T ′

from T by removing Tµ̂ and λ, and
contracting s(µ̂) and s(λ) into their parents. We mark s(λ) in T ′ and keep µ
marked in Tµ̂. We draw Tµ̂ in a rectangle R(µ̂) similar to R, in the bottom-right
of R, with its bottom-right corner marked.

10

or
T

′

Tµ̂

λ T
′

Tµ̂

λIf T ′ is tiny we draw it as a rectangleR′ similar
to R, in the top-left of R; otherwise T ′ is drawn
as a rectangle R′ on the left side of R. Note that
in the latter case the aspect ratio of R′ is at most 8. In both cases we mark the
bottom-right corner of R′. The region R(λ) for λ is drawn in between R′ and
R(µ̂), which means it is either an S-shape or an L-shape.

All leaves in T ′ and Tµ̂ have property (i) by the induction hypothesis. Since λ
is large or huge, the aspect ratio of R(λ) is at most 32. Properties (ii) and (iii)
follow using the induction hypothesis on T ′ and Tµ̂, similarly as before.

Case (d): T has a tiny marked node µ without small or large ancestors,
and T has no large or a huge leaf. Define µ∗ and µ̂ as in Case (b) and (c).
As in Case (c), µ̂ is tiny, so T \ Tµ̂ has relative weight at least 7/8. We search
for a node ν̂ such that rel(ν̂) ≤ 6/8. This can be done by descending from µ∗,
always proceeding to the heavier child, until we reach such a node. Observe

T :

µ∗

µ̂
s(µ̂)

p(ν̂)

ν̂

p(ν)

ν
s(ν)

s(ν̂)

ν

s(ν̂)

s(µ̂)

T
′:

ν̂T
′

ν̂
:

ννµ̂

rTr:

s(ν)

that rel(ν̂) ≥ 3/8. Let T ′ be ob-
tained by removing Tµ̂ and Tν̂ ,
marking s(ν̂) and contracting it
in its parent. By construction,
T ′ is not tiny. Let ν in Tν̂ be a
small node; such a node ν exists
since there are no large or huge
leaves and the relative weight of
ν̂ is at least 3/8. Let T ′

ν̂ be the
tree obtained from Tν̂ by remov-
ing Tν , marking s(ν) and con-
tracting it into its parent. Let Tr
be constructed by joining Tµ̂ and
Tν with a new root r, as shown.

We partition R into three
rectangles, one for T ′, one for T ′

ν̂ ,
and one for Tr. We mark them as shown in the figure below, and recurse. Since
all three subtrees are non-tiny the rectangles on which we recurse have aspect
ratio at most 8.

T
′ T

′

ν̂
Tr

All leaf regions have property (i) by induction. Moreover, all
internal nodes have property (ii). For the nodes that are not
an ancestor of ν this follows by induction. For nodes on the
path from ν̂ to ν we can argue as follows. R(µ̂) is a staircase
anchored at the bottom-right corner of the rectangle of Tr, and so R(ν) is a
staircase anchored at the opposite corner. Because the top-right corner of the
rectangle of T ′

ν̂ is marked, this implies that the nodes from ν̂ to ν are drawn as
orthoconvex polygons. A similar argument applies to the ancestors of ν̂. The
nodes that are not an ancestor of ν have aspect ratio at most 64 by induction.
The ancestors of ν are not tiny, since ν is not tiny, and asp(R) ≤ 8, hence all
the regions have aspect ratio at most 64.

It remains to argue that µ as well as all of its ancestors have property (iii).

11

For µ and its ancestors in Tµ̂ this follows by induction. For µ∗ and its ancestors
this follows from the fact that the regions of each of these nodes contain the
rectangle of T ′

ν̂ and Tr, and the induction hypothesis on T ′.

Theorem 9. Every properly weighted tree can be represented by an orthoconvex
treemap in which all leaves are drawn as rectangles, L-shapes, or S-shapes, all
internal nodes are drawn as orthoconvex polygons, and the aspect ratio of any
of these regions is O(1).

5. Single-level Treemaps

Here we consider the special case that depth(T) = 1, that is, single-level
treemaps. We first show that if we restrict the regions to be rectangles, min-
imizing the aspect ratio is NP-hard. Moreover, in that case even the optimal
drawing can have unbounded aspect ratio: consider a single-level tree with two
leafs and let the weight of one of the leafs tend to zero. Then, its region is a
very skinny rectangle.

Therefore, we describe a drawing procedure in which we also allow regions
to be drawn as L-shapes. We show that the aspect ratio bound we obtain is
nearly tight and much better than for the general case.

5.1. Tree mapping is NP-hard

In this section we prove that tree mapping is strongly NP-hard. Tree map-
ping is the problem of finding, for a given properly weighted single-level tree T , a
treemap such that all regions R1, R2, . . . , Rn are rectangles and max(1 ≤ i ≤ n :
asp(Ri)) is minimized. Our reduction is from square packing which was proven
to be strongly NP-complete by Leung et al. [12]. Square packing is the problem
of deciding for a given packing square S and a set of squares S, each having in-
teger side lengths, if there is an orthogonal (i.e. axis-aligned) packing of S in S.
Assume that we are given a square packing instance SP: (S,S = {s1, s2, . . . , sl}).
We create a tree mapping instance TM: T = {w1, w2, . . . , wn} with

n = l + area(S)−
l

∑

i=1

area(si) and wi =

{

area(si)/ area(S) if 1 ≤ i ≤ l,
1/ area(S) if l < i ≤ n.

Lemma 10. SP has a solution if and only if TM has aspect ratio 1.

Proof. Assume that TM has aspect ratio 1. Then all weights are drawn as
squares. Leaving out the lowest n− l weights immediately gives a solution for
SP. Now, assume that SP has a solution. Since all squares have integer side
lengths, we can align all squares with the unit grid. The lowest n− l weights of
TM occupy exactly one grid cell each. Therefore, these can be drawn as squares
as well and TM has aspect ratio 1. ✷

Theorem 11. Tree mapping is strongly NP-hard.

12

Proof. By Lemma 10 we have a solution to a square packing instance iff we
have a tree mapping solution of aspect ratio 1. Since square packing is strongly
NP complete, we may assume that the size of S is polynomial in l. Then, n
is polynomial in l as well. Therefore, the reduction can be done in polynomial
time. ✷

5.2. Allowing L-shapes

We show that for single-level orthoconvex treemaps we can obtain even nicer
shapes and better aspect ratio than in the general case. Specifically, in the fol-
lowing we describe a recursive drawing procedure that uses L-shapes in addition
to rectangles. The resulting treemap has aspect ratio at most 2+2

√
3/3 ≈ 3.15.

Unlike for hierarchies, we cannot convert our input into a binary tree as a pre-
processing step, since the desired structure of a subtree rooted at node ν depends
on the aspect ratio of R(ν). Hence, we construct a binary tree T ′ on-the-fly.
We draw a treemap for T ′ inside the unit square with the following properties:

(i) every leaf is drawn as a rectangle or an L-shape and has aspect ratio at
most 2 + 2

√
3/3 ≈ 3.15;

(ii) every internal node is drawn as a rectangle and has aspect ratio at most
1 +

√
3 ≈ 2.73.

Property (ii) is not a goal by itself, but is necessary to guarantee the first. In a
generic step, we are given a node ν with associated region R(ν). If ν is a leaf,
we are done, so assume that ν has k ≥ 2 children ν1, ν2, . . . , νk. Then, R(ν) is a
rectangle by (ii). Assume that ν1 is the heaviest child. We distinguish 3 cases:

T :

R:

Case 1: rel(ν1) < (3−
√
3)/4. Since (3−

√
3)/4 <

1/3, we can partition children(ν) into subsets
H1, H2, such that weight(H2) ≤ weight(H1) ≤
(3 −

√
3) · weight(ν)/2 (Lemma 1). We turn ν

into a binary node with children µ1, µ2, with children from H1 and H2, re-
spectively. We partition R(ν) into two rectangles R(µ1) and R(µ2) by cutting
the longer side of R(ν), according to the weights of µ1 and µ2. We know
weight(H2) ≥

(

1− (3−
√
3)/2

)

·weight(ν). With Lemma 2 it follows that both
R(µ1) and R(µ2) meet (i) or (ii).

T :

R:

Case 2: (3−
√
3)/4 ≤ rel(ν1) < asp(R(ν)) · (3−√

3)/4. We turn ν into a binary tree with children
ν1 and a new node µ, having children children(ν)\
ν1. We partition R(ν) into two rectangles R(ν1) and R(µ) by cutting the longer
side of R(ν), according to the weights of ν1 and µ. By Lemma 2 R(ν1) meets
(i) and R(µ) meets (i) or (ii).

T :

R:

Case 3: rel(ν1) ≥ asp(R(ν)) · (3 −
√
3)/4. We

turn ν into a binary tree with children ν1 and
a new node µ, having children children(ν) \ ν1.
We partition R(ν) into a rectangle R(µ), similar

13

to R(ν) and with area proportional to weight(µ),
and an L-shape R(ν1), with area proportional to weight(ν1). Since R(µ) is
similar with R(ν), it trivially meets (i) or (ii). By definition, the aspect ratio of
R(ν1) is at most asp(R(ν))/ rel(ν1). A standard calculation shows that R(ν1)
meets (i).

Property (i) now implies the following theorem.

Theorem 12. Every properly weighted single-level tree T can be represented by
an orthoconvex treemap which uses only rectangles and L-shapes and has aspect
ratio at most 2 + 2

√
3/3 ≈ 3.15.

This result is nearly tight, a lower bound of ≈ 3.13 is given in the following
section.

5.3. Lower bound

Consider a single-level tree T = {w1, w2, w3, w4}, where w1 = w2 = w3 = x
for some x < 1/3. As a result, w4 = 1 − 3x. We are particularly interested in
the cases where x ≈ 1/3, that is, three regions are large and one is small. Then,
we can make a few observations:

• If a region corresponding to any of the high weights touches two opposite
sides of the container, its aspect ratio is 1/x, since the container is the
smallest enclosing square.

• We only allow L-shapes whose remainder is a rectangle, as
shown in the top figure. The bottom two figures show L-
shapes that are disallowed. Therefore, an allowed L-shape
always touches all sides of the container C it is in. Con-
sider such a subcontainer C and let T ′ be the set of weights
that are not drawn in C. Then, |T ′| ≤ 2, since at least two
weights are drawn in C. The entire container has four cor-
ners, so at least C or one of the weights in T ′ touches two
opposite sides of the container, by the pigeon hole principle.

• As a result of the previous two items, if we use an L-shape,
at least one of the regions touches two opposite sides of the
container and the aspect ratio is at least 1/x. Hence, the
only way of getting an aspect ratio better than 1/x is by not
using L-shapes and with no rectangle touching two opposite
sides of C. This drawing has aspect ratio (1−2x)2/(1−3x).

w1

w2

w3

w4

In order to find a worst-case optimal solution, we want to maximize the mini-
mum of 1/x and (1− 2x)2/(1− 3x). That is, we solve the equation 1/x = (1−
2x)2/(1−3x), which gives aspect ratio 6/(2+

3

√

3
√
57− 1− 3

√

3
√
57 + 1) ≈ 3.13.

6. Conclusions and Open Problems

14

Treemaps are a popular visualization tool for hierar-
chical data and aspect ratio is an important quality crite-
rion for them. We have settled two main theoretical ques-
tions concerning treemaps: First, we presented an algo-
rithm for computing convex treemaps whose aspect ratio is
O(d), where d is the depth of the input hierarchy; this is
asymptotically optimal. Second, we showed that any input
hierarchy admits an orthoconvex treemap of constant aspect ratio. We also im-
plemented the algorithms. Preliminary experiments show that the aspect ratios
remain significantly below their provable worst-case bounds, and that orthocon-
vex treemaps hardly ever use S-shapes. (The figure on the right was carefully
constructed to illustrate S-shapes.)

References

[1] M. Balzer and O. Deussen. Voronoi treemaps. In Proc. IEEE Symp. Infor-
mation Visualization, pages 7–14, 2005.

[2] M. Balzer, O. Deussen, and C. Lewerentz. Voronoi treemaps for the visu-
alization of software metrics. In Proc. ACM Symp. Software Vis., pages
165–172, 2005.

[3] B. B. Bederson, B. Shneiderman, and M. Wattenberg. Ordered and quan-
tum treemaps: Making effective use of 2d space to display hierarchies. ACM
Transactions on Graphics, 21(4):833–854, 2002.

[4] M. Bruls, K. Huizing, and J. van Wijk. Squarified treemaps. In Proc. Joint
Eurographics and IEEE TCVG Symp. Visualization, pages 33–42. Springer,
2000.

[5] M. de Berg, K. Onak, and A. Sidiropoulos. Fat polygonal parti-
tions with applications to visualization and embeddings. In preparation.
http://arxiv.org/abs/1009.1866v1, 2010.

[6] C.A. Duncan. Balanced Aspect Ratio Trees. Thesis, (PhD). John Hopkins
University, 1999.

[7] C.A. Duncan, M.T. Goodrich, and S.G. Kobourov. Balanced aspect ratio
trees: Combining the advantages of k-d trees and octrees. In Proc. 10th
Ann. ACM-SIAM Sympos. Discrete Algorithms, pages 300–309, 1999.

[8] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM J.
Appl. Math., 17:263–269, 1969.

[9] L. Jin and D. C. Banks. Tennisviewer: A browser for competition trees.
IEEE Computer Graphics and Applications, 17(4):63–65, 1997.

[10] W. Jungmeister and D. Turo. Adapting treemaps to stock portfolio visu-
alization. Technical report UMCP-CSD CS-TR-2996, University of Mary-
land, 1992.

15

http://arxiv.org/abs/1009.1866v1

[11] N. Kong, J. Heer, and M. Agrawala. Perceptual guidelines for creating
rectangular treemaps. IEEE Trans. Vis. and Comp. Graphics, 16(6):990–
998, 2010.

[12] J. Y.-T. Leung, T. W. Tam, C. Wong, G. H. Young, and F. Y. L. Chin.
Packing squares into a square. J. Parallel and Distributed Computing,
10:271–275, 1990.

[13] K. Onak and A. Sidiropoulos. Circular partitions with applications to visu-
alization and embeddings. In Proc. 24th Symp. Computational Geometry,
pages 28–37, 2008.

[14] B. Shneiderman. Treemaps for space-constrained visualization of hierar-
chies. http://www.cs.umd.edu/hcil/treemap-history/index.shtml.

[15] B. Shneiderman. Tree visualization with tree-maps: 2-d space-filling ap-
proach. ACM Transactions on Graphics, 11(1):92–99, 1992.

[16] R. Vliegen, J. van Wijk, and E.-J. van der Linden. Visualizing business
data with generalized treemaps. IEEE Trans. Vis. and Comp. Graphics,
12(5):789–796, 2006.

[17] M. Wattenberg. A note on space-filling visualizations and space-filling
curves. In Proc. IEEE Symp. Information Visualization, pages 181–185,
2005.

16

	1 Introduction
	2 Preliminaries
	3 Convex Treemaps
	4 Ortho-convex Treemaps
	5 Single-level Treemaps
	5.1 Tree mapping is NP-hard
	5.2 Allowing L-shapes
	5.3 Lower bound

	6 Conclusions and Open Problems

