
ar
X

iv
:1

10
6.

62
61

v1
 [

cs
.D

S]
 3

0
Ju

n
20

11

External Memory Orthogonal Range Reporting with Fast Updates

Yakov Nekrich∗

Abstract

In this paper we describe data structures for orthogonal range reporting in external memory
that support fast update operations. The query costs either match the query costs of the best
previously known data structures or differ by a small multiplicative factor.

1 Introduction

In the orthogonal range reporting problem a set of points is stored in a data structure so that for any
d-dimensional query range Q = [a1, b1]× . . . × [ad, bd] all points that belong to Q can be reported.
Due to its fundamental nature and its applications, the orthogonal range reporting problem was
studied extensively; we refer to e.g. [10, 9, 19, 4, 8] for a small selection of important publications.
In this paper we address the issue of constructing dynamic data structures that support fast update
operations in the external memory model.

External memory data structures for orthogonal range reporting also received significant atten-
tion, see e.g., [16, 17, 19, 6, 1, 14, 2, 15]. We refer to [18] for the definition of the external memory
model and a survey of previous results. In particular, dynamic data structures for d = 2 dimensions
are described in [16, 17, 6]. The best previously known data structure of Arge, Samoladas, and
Vitter [6] uses O((N/B) log2 N/ log2 logB N) blocks of space, answers queries in O(logB N +K/B)
I/Os and supports updates in O(logB N(log2 N/ log2 logB N)) I/Os; in [6], the authors also show
that the space usage of their data structure is optimal. Recently, the first dynamic data structure
that supports queries in O(log2B N +K/B) I/Os in d = 3 dimensions was described [15].

All previously described external memory data structures with optimal or almost-optimal query
cost need Ω((logB N log2 N)/ log2 logB N) I/Os to support an insertion or a deletion of a point; see
Table 1. This compares unfavorably with significantly lower update costs that can be achieved by in-
ternal memory data structures. For instance, the two-dimensional data structure of Mortensen [12]

supports updates in O(logf2 N) time for any constant f > 7/8. Moreover, the update costs of
previously described external structures contain an O(log2N) factor. Since block size B can be
large, achieving update cost that only depends on logB N would be desirable. High cost of updates
is also a drawback of the three-dimensional data structure described in [15]. Reducing the cost
of update operations can be important in the dynamic scenario when the data structure must be
updated frequently.

Our Results. We describe several data structures for orthogonal range reporting queries in
d = 2 dimensions that achieve lower update costs. We describe two data structures that sup-
port queries in O(logB N + K/B) I/Os. These data structures support updates in O(log1+ε

B N)

∗Department of Computer Science, University of Chile. Email yakov.nekrich@googlemail.com

1

http://arxiv.org/abs/1106.6261v1

Source Query Update Space
Cost Cost Usage

[16] O(logB N + k
B) O(logB N log2 N log22B) O((N/B) log2 N log2B log2 log2 B)

[17] O(logB N + k
B + ilog(B)) O(log2 N(logB N + (log2B N)/B)) O((N/B) log2 N)

[6] O(logB N + k
B) O(logB N log2 N/ log2 logB N) O((N/B) log2N/ log2 logB N)

* O(logB N + k
B) O(log1+ε

B N) † O((N/B) log2 N)

* O(logB N + k
B) O(log2B N) O((N/B) log2N/ log2 logB N)

* O(logB N(log2 logB N)2 + k
B) O(logB N(log2 logB N)2) O((N/B) log2 N)

Table 1: New data structures and some previous results for d = 2 dimensions. Our results are
marked with an asterisk; † denotes randomized results. The result in the first row of the table can
be obtained from the result in [16] using a standard technique. The function ilog(x) is the iterated
log∗ function: ilog(x) denotes the number of times we must apply the log∗ function to x before the

result becomes ≤ 2, where log∗(x) = min{t | log
(t)
2 (x) < 2 }, and log

(t)
2 (x) denotes the log2 function

repeated t times.

I/Os with high probability and in O(log2B N) deterministic I/Os respectively. Henceforth ε
denotes an arbitrarily small positive constant. We also describe a data structure that uses
O((N/B) log2N) blocks of space, answers queries in O(logB N(log2 logB N)2) I/Os, and supports
updates in O(logB N(log2 logB N)2) I/Os. All our results are listed in Table 1.

Overview. The situations when the block size B is small and when B is not so small are
handled separately. If the block size is sufficiently large, B = Ω(log42N) for an appropriate choice
of constant, our construction is based on the bufferization technique. We show that a batch of
O(B1/4) queries can be processed with O(logB N) I/Os. Hence, we can achieve constant amortized
update cost for sufficiently large B. In the case when B is small, B = O(log42 N), we construct the
base tree with fan-out logε2N or the base tree with constant fan-out. Since B = polylog2(N), the
height of the base tree is bounded by O(logB N) or O(logB N log2 logB N). Hence, we can reduce
a two-dimensional query to a small number of simpler queries.

In section 2 we describe a data structure that supports three-sided reporting queries in
O(logB N + K

B) I/Os and updates in O(1
Bδ) I/Os if B = Ω(log4B N). Henceforth δ denotes an

arbitrary positive constant, such that δ ≤ 1/4. In Appendix A, we generalize this result and obtain
a data structure that supports updates in O(1) I/Os and orthogonal range reporting queries in
O(logB N + K

B) I/Os if B = Ω(log42N). Thus if a block size is sufficiently large, there exists a data
structure with optimal query cost and O(1) amortized update cost. We believe that this result is
of independent interest. Data structures for B = O(log42N) are described in section 3.

2 Three-Sided Range Reporting for B = Ω(log4B N)

Three-sided queries are a special case of two-dimensional orthogonal range queries. The range of
a three-sided query is the product of a closed interval and a half-open interval. In this section
we assume that the block size B ≥ 4h log4B N for a constant h that will be defined later in this
section. Our data structure answers three-sided queries with O(logB N +K/B) I/Os and updates
are supported in O(1/Bδ) amortized I/Os.

Our approach is based on a combination of external priority tree [6] with buffering technique [5].
Buffering was previously used to answer searching and reporting problems in one dimension. In this
section we show that buffering can be applied to three-sided range reporting problem in the case

2

when B = Ω(log4B N). At the beginning, we describe the external priority tree [6] data structure.
Then, we show how this data structure can be modified so that a batch of Bδ updates can be
processed in constant amortized time. Finally, we describe the procedure for reporting all points
in a three-sided range Q = [a, b]× [c,+∞).

The following Lemma is important for our construction.

Lemma 1 A set S of O(B1+δ) points can be stored in a data structure that supports three-sided
reporting queries in O(K/B) I/Os, where K is the number of points in the answer; this data
structure can be constructed with O(Bδ) I/Os.

Proof : We can use the data structure of Lemma 1 from [6]. �

External Priority Tree. Leaves of the external priority tree contain the x-coordinates of
points in sorted order. Every leaf contains Θ(B) points and each internal node has Θ(Bδ) children.
We assume throughout this section that the height of an external priority tree is bounded by
h logB N . The range rng(v) of a node v is the interval bounded by the minimal and the maximal
coordinates stored in its leaves; we say that a point p belongs to (the range of) a node v if its
x-coordinate belongs to the range of v. Each node is associated with a set S(v), |S(v)| = Θ(B),
defined as follows. Let L(v) denote the set of all points that belong to the range of v. The set S(v)
contains B points with largest y-coordinates among all points in L(v) that do not belong to any
set S(w), where w is an ancestor of v. Thus external priority tree is a modification of the priority
tree with node degree BO(1), such that each node contains Θ(B) points.

The data structure F (v) contains points from ∪S(vi) for all children vi of v. By Lemma 1,
F (v) supports three-sided queries in O(1) I/O operations. Using F (v), we can answer three-sided
queries in O(logB N +K/B) I/Os; the search procedure is described in [6].

Supporting Insertions and Deletions. Now we describe a data structure that supports
both insertions and deletions. We will show below how a batch of inserted or deleted points can
be processed efficiently. The main idea is to maintain buffers with inserted and deleted points in
all internal nodes. The buffer D(v), v ∈ T , contains points that are stored in descendants of v and
must be deleted. The buffer I(v), v ∈ T , contains points that must be inserted into sets S(u) for
a descendant u of v. A buffer can contain up to B3δ elements. When a buffer I(v) or D(v) is full,
we flush it into the children vj of v; all sets I(vj), D(vj), and S(vj) are updated accordingly.

Definitions of S(v) and F (v) are slightly modified for the dynamic structure. Every set S(v)
contains at most 2B points. If S(v) contains less than B/2 points than S(vi) = ∅ for each child
vi of v. The data structure F (v) contains all points from S(vj) ∪ I(vj) for all children vj of v.
We store an additional data structure R(v) in each internal node. R(v) contains all points from
∪S(vi) for all children vi of v. R(v) can be constructed in O(Bδ) I/Os; we can obtain B3δ points
with highest y-coordinates stored in R(v) in O(1) I/Os. Implementation of R(v) is very similar to
implementation of F (v); details will be given in the full version.

Suppose that all points from the set D, |D| = O(Bδ), must be deleted. We remove all points
from D∩S(vr) and D∩I(vr) from S(vr) and I(vr) respectively. We set D(vr) = D(vr)∪(D\S(vr)).
When D(v) for an internal node v is full, |D(v)| = B3δ, we distribute the points of D(v) among the
children vj of v. Let Dj(v) be the points of D(v) that belong to the range of vj and update S(vj),
D(vj) as described above: We remove all points from Dj(v) ∩ S(vj) and Dj(v) ∩ I(vj) from S(vj)
and I(vj) respectively. All points of Dj(v) \S(vj) are inserted into D(vj). Finally, we update F (v)
and R(v).

3

We can insert a batch I of Bδ points using a similar procedure. Initially, all points from
I are inserted into buffer I(vr) or S(vr) and points of I ∩ D(vr) are removed from D(vr). Let
S′(vr) = S(vr) ∪ I and let S′′(vr) be the set of B points with highest y-coordinates in S′(vr). We
set S(vr) = S′′(vr) and I(vr) = I(vr) ∪ (S′(vr) \ S′′(vr)). When the buffer I(v) in an internal
node v is full, |I(v)| ≥ B3δ, we update the sets S(vj) and I(vj) in the children vj of v. Let Ij(v)
be the set of points in I(v) that belong to the range of vj . Let S′(vj) = S(vj) ∪ Ij(v) and let
S′′(vj) be the set of B points with the highest y-coordinates in S′(vj). We set S(vj) = S′′(vj),
D(vj) = D(vj) \ (D(vj) ∩ Ij(v)), and I(vj) = I(vj) ∪ (S′(vj) \ S

′′(vj)). The data structures F (v)
and R(v) are updated accordingly.

When a buffer I(v) is full, we can re-build all I(vj), D(vj), S(vj) and the data struc-
tures F (v), R(v) in O(Bδ) I/Os. Each inserted point is inserted in O(logB N) buffers I(v).
Hence, an amortized cost of re-building secondary data structures caused by an insertion is
O(Bδ logB N/B3δ) = O(1/Bδ). The cost of a deletion can be analyzed in the same way.

We also take care that the number of points stored in sets S(u) is not too small. Suppose
that the number of points in some S(w) is smaller than B/2 when D(parent(w)) is emptied. If w
is a leaf or S(wj) = ∅ for all children wj, we do not need to rebuild S(w). Otherwise, we move
some points from S(wj) into S(w). Using the data structure R(w), we identify B − |S(w)| points
with the highest y-coordinates in ∪jS(wj). These points are removed from R(w), F (w), S(wj)
and inserted into S(w). We also update F (parent(w)) and R(parent(w)). For every child wj of w,
we recursively call the same procedure. The total cost of updating all data structures in a node
is O(B1−3δ). Using standard analysis, we can show that maintaining the size of S(w) incurs an
amortized cost O(1/Bδ).

Besides that, we should take care that each leaf contains x-coordinates of at most 2B points.
To maintain this invariant, the external priority tree is implemented as a WBB-tree [7]. The
branching parameter of our WBB-tree equals to Bδ and the leaf parameter equals to B. When the
total number of points stored in all descendants of a node u equals to 2Bℓδ ·B, we split the node u
into u′ and u′′. A node on level ℓ is split at most once after a series of Θ(Bℓδ ·B) insertions. When
a node is split, we assign each element of S(u), I(u), and D(u) to the corresponding set in u′ or
u′′. As a result, either S(u′) or S(u′′) may contain less than B/2 elements. In this case, we move
the points from descendants of u′ into u′ (from descendants of u′′ into u′′) as described above. The
total amortized cost of splitting a node is O(1/Bδ).

Answering Queries. Consider a query Q = [a, b]× [c,+∞). Let π denote the set of all nodes
that lie on the path from the root to la or on the path from the root to lb, where la and lb are
the leaves that contain a and b respectively. Then all points inside the range Q are stored in sets
S(v) or I(v), where the node v belongs to π or v is a descendant of a node that belongs to π. Two
following facts play crucial role in the reporting procedure.

Fact 1 Let w be an ancestor of a node v. For any p ∈ S(v) and p′ ∈ S(w), p.y < p′.y. For any
p ∈ I(v) and p′ ∈ S(w), p.y < p′.y.

Fact 2 Suppose that a point p ∈ S(v) is deleted from S (but p is not deleted from S(v) yet). Then,
p belongs to a set D(w) for an ancestor w of v.

We set the value of the constant h so that the height of T does not exceed h logB N . As follows
from the Fact 2, the total number of deleted points in S(v) is bounded by h · B3δ logB N ≤ B/4.
Let DEL(v) = ∪w=anc(v)(D(w) \ ∪w′=anc(w)I(w

′)), where anc(u) denotes an ancestor of a node u.

4

To wit, DEL(v) is the set of all points p, such that p belongs to some set D(w) for an ancestor w
of v, but p does not belong to any I(w′) for an ancestor w′ of w. By Fact 2 all points in S(v)∪ I(v)
that are already deleted from the data structure belong to DEL(v). If the set DEL(v) is known,
then DEL(vi) for a child vi of v can be constructed in O(1) I/Os. Therefore we can construct
DEL(v) for all v ∈ π in O(logB N) I/Os.

We can output all points that belong to Q using the following procedure. Let π1 be the path
from la to the lowest common ancestor vl of la and lb. Let π2 be the path from lb to vl. First, we
examine all nodes v ∈ π and report all points p ∈ (S(v) ∪ I(v)) \DEL(v) that belong to Q; this
can be done with O(logB N) I/Os. All other points in S ∩ Q are stored in a set Su where u is a
descendant of some v ∈ π1 ∪ π2 or u is a descendant of vl.

Consider a node v ∈ π2, such that v 6= vl; we will show how points in S(u)∩Q for all descendants
u of v can be reported. Suppose that the child vi of v also belongs to π2 and rng(vi−1) = [a′, b′].
Let Qv = [a, b′]× [c,+∞). For a point p stored in a descendant u of v such that u 6∈ π2, p belongs
to Q if and only if p belongs to Qv. All p ∈ Qv ∩ S(u) are reported as follows. Initially we set
u = v. We identify all points stored in S(ui)∩Qv or I(ui)∩Qv for some child ui of u using the data
structure F (u). Then, we process the resulting list of points and remove all points that belong to
DEL(u). Finally, we identify all non-leaf children ui of u such that at least B/2 points from S(ui)
are reported. We visit every such ui, compute DEL(ui), and recursively call the same procedure
in ui.

Our procedure reports all points in L(v) ∩Qv. Suppose that we visited a node u, but the child
uj of u was not visited. All points from (S(uj) ∪ I(uj)) ∩ Q were reported when the node u was
visited. Since S(uj) contains at least B/2 points, at least one point pj ∈ S(uj) does not belong
to Q. The x-coordinate of pj belongs to [a, b]; hence, the y-coordinate of pj is smaller than c. By
Fact 1, y-coordinates of all points stored in S(ν)∪ I(ν) for any descendant ν of uj are smaller than
c. Hence, all points p ∈ S(ν) ∪ I(ν) are not relevant for our query.

The search procedure spends O(1) I/Os in every visited node (ignoring the cost of reporting
points). Let Kv be the total number of reported points in L(v) ∩ Qv. A node u is visited if at
least B/4 points from S(u) were reported. Thus we can charge at least B/4 points for every visited
node. We can conclude that the search procedure spends O(Kv/B) I/Os in the descendants of
v. Descendants of nodes v ∈ π1, v 6= vl, and descendants of vl can be processed with a similar
procedure. Therefore the total query cost is O(logB N +K/B). We obtain the following result.

Lemma 2 Suppose that Bδ ≥ 4h logB N for a constant h defined above and some δ ≤ 1/4. Then
there exists a data structure that uses O(N/B) blocks of space and answers three-sided reporting
queries in O(logB N +K/B) I/Os. The amortized cost of inserting or deleting a point is O(1/Bδ).

A similar approach can be used to construct the data structure for general two-dimensional range
reporting queries.

Lemma 3 Suppose that Bδ ≥ 4h1 log2 N for a constant h1 defined in Appendix A and some
δ ≤ 1/4. Then there is a data structure that uses O((N/B) log2N/ log2 logB N) blocks of space
and answers two-dimensional orthogonal range reporting queries in O(logB N +K/B) I/Os. The
amortized cost of inserting or deleting a point is O(1).

Our data structure uses the bufferization technique, but some additional ideas are also needed to
retain the O(logB N + K/B) query cost and achieve the optimal space usage. We provide the
details in the Appendix A.

5

3 Two-Dimensional Range Reporting for small B

It remains to consider the case when the block size B is small. In this section we assume that
B = O(log42 N) and describe several data structures for this case.

Reduction to Three-Sided Queries. We use the base structure that is similar to structures
in [17, 6]. We construct the base tree T with fan-out ρ = Θ(logε2 N) on the set of x-coordinates. In
every node v of T we store the data structures that support three-sided queries [a,+∞)× [c, d] and
(−∞, b] × [c, d] . The data structures for three-sided queries are implemented using the external
priority search tree [6], so that the query and update costs are O(logB N +K/B) and O(logB N).
In every node v, we also store a data structure that supports the following queries: for any c < d
and for any 1 ≤ i ≤ j ≤ ρ, we can report all points p, such that p.y ∈ [c, d] and p is stored in the
child vf of v, i ≤ f ≤ j. In [6] the authors describe a linear space data structure that supports
such queries in O(ρ+K/B) I/Os and updates in O(logB N) I/Os.

To answer a query [a, b] × [c, d], we identify the lowest node v, such that [a, b] ⊂ rng(v).
Suppose that [a, b] intersects with rng(vl), rng(vl+1), . . . rng(vr). We answer three-sided queries
[a,+∞) × [c, d] and (−∞, b] × [c, d] on data structures for nodes vl and vr respectively. Then, we
report all points p with c ≤ p.y ≤ d stored in the nodes vl+1, . . . , vr−1. Since ρ = O(logεN) =
O(logB N), the total query cost is O(logB N + K

B).
Since each point is stored in O(log2 N/ log2 log2 N) data structures, the space usage of structure

is O((N/B) log2N/ log2 log2N) = O((N/B) log2 N/ log2 logB N) because B = O(log42N). The
update cost is O(logB N(log2 N/ log2 log2 N)) = O(log2B N). Combining this result with Lemma 3,
we obtain the following Theorem

Theorem 1 There is a data structure that uses O((N/B) log2 N/ log2 logB N) blocks of space and
answers orthogonal range reporting queries in two dimensions in O(logB N + K

B) I/O operations.
Updates are supported in O(log2B N) amortized I/Os.

Reduction to One-Dimensional Queries. We can obtain further results by reducing a two-
dimensional query to a number of one-dimensional queries. We construct a standard range tree with
constant fan-out on the x-coordinates of points. All points that belong to a range of a node v are
stored in v. For any interval [a, b], we can find O(log2N) nodes ui, such that p.x ∈ [a, b] if and only
if p is stored in a node ui. Hence, all points in the query range Q = [a, b]× [c, d] can be reported by
answering a one-dimensional queryQy = [c, d] in O(log2N) nodes u1, . . . , ut of the range tree. Using
the fractional cascading technique, we can find the predecessor d(ui) of d and the successor c(ui) of
c in all nodes ui in O(log2 N log2 log2N) time; we refer to e.g., [11] for details. When we know c(ut)
and d(ut) we can report all elements stored in the node ut in O(K/B) I/Os. Hence, the query cost is
O(log2N log2 log2N +K/B) = O(logB N(log2 logB N)2+K/B). Each point is stored in O(log2 N)
secondary data structures. As described in [11], the range tree augmented with fractional cascading
data structures can be updated in O(log2N(log2 log2 N)) = O(logB N(log2 logB N)2) time; hence,
an update requires O(logB N(log2 logB N)2) I/O operations.

Theorem 2 There exists a data structure that uses O((N/B) log2N) blocks of space and answers
orthogonal range reporting queries in two dimensions in O(logB N(log2 logB N)2 + K

B) I/O opera-
tions. Updates are supported in O(logB N(log2 logB N)2) amortized I/Os.

Range Trees with BO(1) Fan-Out. Let ε′ = ε/10. If points have integer coordinates, we can
reduce the query cost by constructing a range tree with fan-out Bε′ . For every node v and every pair

6

of indexes i ≤ j, where vi, vj are the children of v, all points that belong to the children vi, . . . , vj of
v belong to a list Lij(v). A data structure Eij(v) supports one-dimensional one-reporting queries
on a set of integers. That is, Eij(v) enables us to find for any interval [c, d] some point p ∈ Lij(v)
such that p.y ∈ [c, d], if such p exists and if all points have integer coordinates. As described in [13],
we can implement Eij(v) so that queries are supported in O(1) time and updates are supported

in O(logε
′

) randomized time. Using Eij(v), it is straightforward to report all p ∈ Lij(v) with
p.y ∈ [c, d] in O(K/B) I/Os. Consider a query Q = [a, b] × [c, d]. We can find in O(logB N) I/O
operations O(logB N) nodes ut and ranges [it, jt], so that the x-coordinate of a point p belongs
to [a, b] if and only if p is stored in some list Litjt(u

t). Hence, all points in Q can be reported
by reporting all points in Litjt(u

t) whose y-coordinates belong to [c, d]. The total query cost is

O(logN/ log logN) = O(logB N). However, the space usage is O((N/B) log1+8ε′

2 N) because each

point is stored in O(B2ε′ logB N) = O(log1+8ε′

2 N) lists Lij(v). We can reduce the space usage if
only parts of lists Lij(v) stored explicitly.

Let L(v) denote the list of all points that belong to a node v sorted by their y-coordinates. We
divide L(v) into groups of points Gs(v), s = O(|L(v)|/B1+2ε′), so that each Gs(v) contains at least
B1+2ε′/2 and at most 2B1+2ε′ points. Instead of Lij(v), we store the list L̃ij(v). The main idea

of our space saving method is that we need to store points of Gs(v) in the list L̃ij(v) only in the
case when Gs(v) contains a few points from Lij(v). Otherwise all relevant points can be found by

querying the set Gs(v) provided that L̃ij(v) contains a pointer to Gs(v). Points and pointers are

stored in each list L̃ij(v) according to the following rules. If |Lij(v) ∩Gs(v)| ≤ B/2, the list L̃ij(v)

contains all points from Lij(v) ∩ Gs(v). If Lij(v) ∩ Gs(v) ≥ 2B, the list L̃ij(v) contains a pointer
ptr s to Gs(v). We also store the minimal and maximal y-coordinates of points in Lij(v) ∩ Gs(v)

with each pointer to Gs(v) from L̃ij(v). If B/2 < |Lij(v) ∩ Gs(v)| < 2B, L̃ij(v) contains either a
pointer to Gs(v) or all points from Lij(v) ∩Gs(v).

Instead of Eij(v), we will use several other auxiliary data structures. A data structure Ẽij(v)

contains information about elements of L̃ij(v). For each point p ∈ L̃ij(v) we store p.y in Ẽij(v);

for every pointer ptr s, Ẽij(v) contains both the minimal and the maximal y-coordinate associated
with ptr s. A data structure E(v) contains the y-coordinates of all points in L(v). Both E(v)
and all Eij(v) support one-reporting queries as described above. A data structure Hs(v) supports
orthogonal range reporting queries on Gs(v). Using the data structure described in Lemma 1
of [6], we can answer three-sided reporting queries in O(K/B) I/Os using O(|Gs(v)|/B) blocks
of space. Using the standard approach, we can extend this result to a data structure that uses
O((|Gs(v)| log2 B)/B) blocks and answers queries in O(K/B) I/Os.

Now we show how we can report all points p ∈ Lij(v) with p.y ∈ [c, d] without storing Lij(v).

We can find an element e of L̃ij(v) with y-coordinate in [c, d]. Suppose that such e is found. Then,

we traverse the list L̃ij(v) in +y direction starting at e until a point p with p.y > d or a pointer

to Gs(v) with the minimal y-coordinate larger than d is found. We also traverse L̃ij(v) in −y
direction until a point p with p.y < c or a pointer to Gs(v) with the maximal y-coordinate smaller
than c is found. For every pointer in the traversed portion of L̃ij(v), we visit the corresponding
group Gs(v) and report all points p ∈ Gs(v) ∩ Lij(v) with p.y ∈ [c, d]. All relevant points in Gs(v)
can be reported in O(Ks/B) I/Os using the data structure Hs(v); here Ks denotes the number
of points reported by Hs(v). By definition of L̃ij(v), a set Gs(v) ∩ Lij(v) contains at least B/2

points if there is a pointer ptr from L̃ij(v) to Gs(v). Unless ptr is the first or the last element in

the traversed portion of L̃ij(v), Gs(v) contains B points from [a, b] × [c, d]. Since B consecutive

7

elements of the list L̃ij(v) contain either B points or at least one pointer to a group Gs(v), the
total cost of reporting all points in Lij(v) with p.y ∈ [c, d] is O(1 +K/B).

Now we consider the situation when there is no e ∈ Ẽj(v), such that e ∈ [c, d]. In this case
Lij(v) may contain some points from the range Q only if all points p ∈ L(v) with p.y ∈ [c, d] belong
to one group Gs(v). Using E(v), we search for a point ps ∈ L(v) such that ps.y ∈ [c, d]. If there is
no such ps, then L(v) ∩Q = ∅. Otherwise ps ∈ Gs(v) and we can report all points in Q ∩Gs(v) in
O(1 +K/B) I/Os using Hs(v). We need to visit O(logB N) nodes of the range tree to answer the
query; hence, the total query cost is O(logB N +K/B) I/Os.

Since the lists Lij(v) are not stored, the space usage is reduced to O((N/B) log2 N): Each

list L̃ij(v) contains less than B points and at most one pointer for each group Gs(v). Since
L(v) is divided into O(|L(v)|/B1+2ε′) groups, the total size of all Lij(v) is O(|L(v)|). All data
structures Hs(v) for all groups Gs(v) use O((|L(v)| log2B)/B) blocks of space. Each point belongs
to O(logB N) nodes; therefore the total space usage is O((N/B) log2N).

When a new point p is inserted, we must insert it into O(logB N) lists L(v). Suppose that p is
inserted into Gs(v) in a node v. We insert p into Hs(v) in O(log2B) I/Os; p is also inserted into up
to B2ε′ = O(log8ε

′

2 N) lists L̃ij(v). The one-dimensional reporting data structure for L̃ij(v) supports

updates in O(logε
′

2 N) I/Os; hence, the total cost of inserting a point is O(log9ε
′

2 N). For each pair
i ≤ j, we check whether the number of points in Lij(v) ∩ Gs(v) equals to 2B. Although the list
Lij(v) is not stored, we can estimate the number of points in Lij(v)∩Gs(v) by a query to the data

structure Hs(v). If |Lij(v) ∩ Gs(v)| = 2B, we remove all points of L̃ij(v) ∩ Gs(v) from Lij(v) and

insert a pointer to Gs(v) into L̃ij(v). Points in a list L̃ij(v) are replaced with a pointer to a group
Gs(v) at most once for a sequence of Θ(B) insertions into Gs(v). Hence, the amortized cost of
updating L̃ij(v) because the number of points from Lij(v) in a group exceeds 2B is O(logε

′

2 N) I/Os.

Each insertion affects O(log8ε
′

2 N) lists Lij(v). If the number of points in Gs(v) equals 2B log1+2ε′

2 N ,

we split the group Gs(v) into G1(v) and G2(v) of B log1+2ε′

2 N points each. Since up to B elements

can be inserted and deleted into every list L̃ij(v), the amortized cost incurred by splitting a group

is O(log9ε
′

2 N). Thus the total cost of inserting a point into data structures associated with a node
v is O(log9ε

′

2 N) I/Os. Since a new point is inserted into O(log2N/ log2 log2N) nodes of the range
tree, the total cost of an insertion is O(log1+9ε′

2 N/ log2 B) = O(log1+ε
B N). Deletions are processed

in a symmetric way.
Combining this result with Lemma 4, we obtain the following Theorem

Theorem 3 Suppose that point coordinates are integers. There exists a data structure that uses
O((N/B) log2N) blocks of space and answers orthogonal range reporting queries in two dimensions
in O(logB N + K

B) I/O operations. Updates are supported in O(log1+ε
B N) amortized I/Os w.h.p.

for any ε > 0.

References

[1] P. Afshani, On Dominance Reporting in 3D, Proc. ESA 2008, 41-51.

[2] P. Afshani, L. Arge, K. D. Larsen, Orthogonal Range Reporting in Three and Higher Dimen-
sions, Proc.FOCS 2009, 149-158.

[3] A. Aggarwal, J. S. Vitter, The Input/Output Complexity of Sorting and Related Problems,
Communications of the ACM 31(9), 1116-1127 (1988).

8

[4] S. Alstrup, G. S. Brodal, T. Rauhe, New Data Structures for Orthogonal Range Searching,
Proc. FOCS 2000, 198-207.

[5] L. Arge, The Buffer Tree: A Technique for Designing Batched External Data Structures, Al-
gorithmica 37, 1-24 (2003).

[6] L. Arge, V. Samoladas, J. S. Vitter, On Two-Dimensional Indexability and Optimal Range
Search Indexing, Proc. PODS 1999, 346-357.

[7] L. Arge, J. S. Vitter, Optimal External Memory Interval Management, SIAM J. Comput.
32(6), 1488-1508 (2003).

[8] T. Chan, Persistent Predecessor Search and Orthogonal Point Location on the Word RAM ,
Proc. SODA 2011, .

[9] B. Chazelle, A Functional Approach to Data Structures and its Use in Multidimensional
Searching, SIAM J. on Computing, 17, 427-462 (1988).

[10] H. N. Gabow, J. L. Bentley, R. E. Tarjan, Scaling and Related Techniques for Geometry
Problems, Proc. STOC 1984, 135-143.

[11] K. Mehlhorn, S. Näher, Dynamic Fractional Cascading, Algorithmica 5, 215-241 (1990).

[12] C. W. Mortensen, Fully Dynamic Orthogonal Range Reporting on RAM, SIAM J. Computing
35(6), 1494-1525 (2006).

[13] C. W. Mortensen, R. Pagh, M. Patrascu, On Dynamic Range Reporting in One Dimension.
Proc. STOC 2005, 104-111.

[14] Y. Nekrich, I/O-Efficient Point Location in a Set of Rectangles. Proc. LATIN 2008, 687-698.

[15] Y. Nekrich, Dynamic Range Reporting in External Memory, Proc. ISAAC 2010, 25-36.

[16] S. Ramaswamy, S. Subramanian, Path Caching: A Technique for Optimal External Searching,
Proc. PODS 1994, 25-35.

[17] S. Subramanian, S. Ramaswamy, The P-range Tree: A New Data Structure for Range Search-
ing in Secondary Memory, Proc. SODA 1995, 378-387.

[18] J. S. Vitter, External Memory Algorithms and Data Structures: Dealing with Massive Data,
ACM Computing Surveys, 33(2), 209-271 (2001).

[19] D. E. Vengroff, J. S. Vitter, Efficient 3-D Range Searching in External Memory, Proc. STOC
1996, 192-201.

Appendix A. Two-Dimensional Range Reporting for B = Ω(log42N)

We maintain a constant fan-out tree T on the set of x-coordinates of all points. An internal node of
T has at most eight children. A point p belongs to an internal node v, if its x-coordinate is stored
in a leaf descendant of v. We assume that the height of T is bounded by h1 log2N . Each node v

9

contains two secondary data structures that support three-sided queries of the form [a,+∞)× [c, d]
and (−∞, b]× [c, d] respectively; both data structures contain all points that belong to v. We also
store all points that belong to v in a B-tree sorted by their y-coordinates, so that all points with
y-coordinates in an interval [c, d] can be reported. The data structures for three-sided queries are
implemented as described in Lemma 2. We implement the B-tree using the result of [5], so that
updates are supported in O(1/Bδ) I/Os. Hence, updates on the secondary data structures are
supported in O(1/Bδ) I/Os.

We say that a node v of T is special if the depth of v is divisible by ⌈δ log2B/3⌉. To facilitate
the query processing, buffers with inserted and deleted elements will be stored in the special nodes
only. A node u is a direct special descendant of v if u is a special node, u is a descendant of v, and
there is no other special node u′ on the path from v to u. We denote by desc(v) the set of direct
special descendants of a node v. The set of nodes subset(v) consists of the node v and all nodes
w, such that w is a descendant of v and w is an ancestor of some node u ∈ desc(v). In other words,
every node w on a path from v to one of its direct special descendants belongs to subset(v); the
node v also belongs to subset(v).

Let I(v) and D(v) denote the buffers of inserted and deleted points stored in a node v ∈ T .
When a point is inserted, we add it to the buffer I(vR), where vR is the root of T . When a
buffer I(v) contains at least B2δ elements, we visit every node w ∈ subset(v) and insert all points
p ∈ I(v) ∩ rng(w) into the secondary data structures of a node w. Then, we examine all nodes
u ∈ desc(v). For every u ∈ desc(v), we insert all points p ∈ I(v) ∩ rng(u) into I(u) and remove
all points p ∈ (I(v) ∩ rng(u)) ∩D(u) from D(u). Finally, we set I(v) = ∅.

The total number of nodes in subset(v) and desc(v) is O(Bδ). Since each point is inserted
into O(log2B) data structures and the total number of points is O(B2δ), all data structures in
subset(v) can be updated in O(B2δ log2 B/Bδ) = O(Bδ log2 B) I/Os. We can also update the
buffers I(u) and D(u) for each u ∈ desc(v) in O(1) I/Os. Hence, a buffer I(v) can be emptied in
O(Bδ log2 B) I/Os. Since a buffer I(v) is emptied once after Θ(B2δ) points were inserted into I(v),
the amortized cost of an insertion into I(v) is O(log2B/Bδ). An insertion of a point p into the data
structure leads to insertions of p into O(logB N) buffers I(v). Hence, the amortized cost of inserting
a point p is O(log2 N/Bδ) = O(1). Deletions can be processed with a simmetric procedure.

Consider a query Q = [a, b] × [c, d]. We identify the node v of T such that [a, b] ⊂ rng(v), but
[a, b] 6⊂ rng(vi) for any child vi of v. Suppose that [a, b] intersects with rng(vl), . . ., rng(vr) where
1 ≤ l ≤ r ≤ 4. All points p ∈ S ∩Q are stored in the secondary structures of nodes vl, . . . , vr or in
buffers of the special ancestors of v (possibly including the node v itself). We start by constructing
sets INS(v) and DEL(v). The set INS(v) contains all points p such that p ∈ I(w) for an ancestor
u of v, but p 6∈ D(u′) for an ancestor u′ of u. The set DEL(v) contains all points p such that
p ∈ D(w) for an ancestor u of v, but p 6∈ I(u′) for an ancestor u′ of u. Only O(logB N) ancestors of
v are special nodes and every buffer stored in a special node contains at most B2δ points. Hence,
both INS(v) andDEL(v) can be constructed in O(logB N) I/Os and contain h1 ·B

2δ logB N ≤ B/4
points. We output all points of p ∈ INS(v) ∩ Q in O(1) I/Os. Let V be the list of all points p,
such that p belongs to Q and p is stored in a child of v. The list V can be generated as follows.
First, we answer three-sided queries [a,+∞)× [c, d] and (−∞, b]× [c, d] on data structures for nodes
vl and vr respectively. Then, we identify all points p stored in a node vj, l < j < r, such that
c ≤ p.y ≤ d. When the list V is constructed, we traverse V and output all points of V that do not
belong to the set DEL. The list V can be generated and traversed in O(logB N + |V|

B) I/Os. Since
the total number of points in the answer is K ≥ |V| −B/4, all points of V \DEL can be identified

10

and reported in O(logB N + |K|
B) I/Os.

Our result is summed up in the following lemma

Lemma 4 Suppose that Bδ ≥ 4 log2N for a constant δ ≤ 1/4. Then there exists a data structure
that uses O((N/B) log2N) blocks of space and answers two-dimensional orthogonal range reporting
queries in O(logB N +K/B) I/Os. The amortized cost of inserting or deleting a point is O(1).

We can slightly improve the space usage by increasing the fan-out of the base tree. Our construction
is the same as above, but every internal node has Θ(logB N) children. We also store an additional
data structure H(v) in every internal node v of T . For any l < r and any c ≤ d, H(v) enables
us to efficiently report all points p, such that p.y ∈ [c, d] and p is also stored in a child vj of v for
l < j < r. The data structure H(v) is described below.

Let L(v) denote the list of all points that belong to v. Let Y (v) be the set that contains y-
coordinates of all points in L(v). For every point p ∈ L(vl) and for all children vl of v, H(v) contains
a “point” τ(p) = (p.y, succ(p.y, Y (vl))). For a query c, H(v) returns all points p ∈ L(v) such that
τ(p) ∈ (−∞, c]× [c,+∞). In other words, we can report all points p ∈ L(v) such that p.y ≤ c and
succ(p.y, Y (vl) ≥ c. An answer to query contains O(logB N) points; at most one point for each
child vl. Using Lemma 2, H(v) supports queries and updates in O(logB N +K) = O(logB N) I/Os
and updates in O(1/Bδ) amortized I/Os respectively.

We can report all points p ∈ L(vj) such that p.y ∈ [c, d] and l < j < r as follows. Using H(v),
we search for all points p, such that p.y ≤ c and succ(p.y, Y (vl) ≥ c. For every found p, l < j < r,
we traverse the list L(vj) and report all points that follow p until a point p′, p′.y > d, is found.
The total query cost is O(logB N +K/B).

The global data structure supports insertions and deletions of points in the same way as shown
in Lemma 4. The query answering procedure is also very similar to the procedure in the proof of
Lemma 4. We identify the node v of T such that [a, b] ⊂ rng(v), but [a, b] 6⊂ rng(vi) for any child
vi of v. We also find the children vl, . . . , vr of v such that [a, b] intersects with rng(vl), . . ., rng(vr).
The sets INS(v), DEL(v), and the list V can be generated as described above. The only difference
is that we identify all points p stored in nodes vj , l < j < r, such that c ≤ p.y ≤ d using the data
structure H(v).

11

	1 Introduction
	2 Three-Sided Range Reporting for B=(logB4 N)
	3 Two-Dimensional Range Reporting for small B

