
ar
X

iv
:1

10
9.

36
51

v1
 [

cs
.C

C
]

 1
6

Se
p

20
11

Optimization, Randomized Approximability, and

Boolean Constraint Satisfaction Problems

Tomoyuki Yamakami∗

Abstract. We give a unified treatment to optimization problems that can be ex-

pressed in the form of nonnegative-real-weighted Boolean constraint satisfaction prob-

lems. Creignou, Khanna, Sudan, Trevisan, and Williamson studied the complexity of

approximating their optimal solutions whose optimality is measured by the sums of out-

comes of constraints. To explore a wider range of optimization constraint satisfaction

problems, following an early work of Marchetti-Spaccamela and Romano, we study the

case where the optimality is measured by products of constraints’ outcomes. We com-

pletely classify those problems into three categories: PO problems, NPO-hard problems,

and intermediate problems that lie between the former two categories. To prove this

trichotomy theorem, we analyze characteristics of nonnegative-real-weighted constraints

using a variant of the notion of T-constructibility developed earlier for complex-weighted

counting constraint satisfaction problems.

keywords: optimization problem, approximation algorithm, constraint satisfaction

problem, PO, APX, approximation-preserving reducibility

1 Maximization by Multiplicative Measure

In the 1980s started extensive studies that have greatly improved our understandings of the exotic

behaviors of various optimization problems within a scope of computational complexity theory.

These studies have brought us deep insights into the approximability and inapproximability of

optimization problems; however, many studies have targeted individual problems by cultivating

different and independent methods for them. To push our insights deeper, we are focused on a

collection of “unified” optimization problems, whose foundations are all formed in terms of Boolean

constraint satisfaction problems (or CSPs, in short). Creignou is the first to have given a formal

treatment to maximization problems derived from CSPs [3]. The maximization constraint satisfac-

tion problems (or MAX-CSPs for succinctness) are, in general, optimization problems in which we

seek a truth assignment σ of Boolean variables that maximizes an objective value† (or a measure) of

σ, which equals the number of constraints being satisfied at once. Creignou presented three criteria

(which are 0-validity, 1-validity, and 2-monotonicity) under which we can solve the MAX-CSPs in

polynomial time; that is, the problems belong to PO.

Creignou’s result was later reinforced by Khanna, Sudan, Trevisan, and Williamson [7], who

gave a unified treatment to several types of CSP-based optimization problems, including MAX-CSP,

MIN-CSP, and MAX-ONE-CSP. With constraints limited to “nonnegative” integer values, Khanna

et al. defined MAX-CSP(F) as the maximization problem in which constraints are all taken

from constraint set F and the maximization is measured by the “sum” of the objective values of

∗Present Affiliation: Department of Information Science, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507,

Japan
†A function that associates an objective value (or a measure) to each solution is called an objective function or (a

measure function).

1

http://arxiv.org/abs/1109.3651v1

constraints. For a later comparison, we call such a measure an additive measure. More formally,

MAX-CSP(F) is defined as:

MAX-CSP(F):

• Instance: a finite set H of elements of the form 〈h, (xi1 , . . . , xik)〉 on Boolean variables

x1, . . . , xn, where h ∈ F , {i1, . . . , ik} ⊆ [n], and k is the arity of h.

• Solution: a truth assignment σ to the variables x1, . . . , xn.

• Measure: the sum
∑

〈h,x′〉∈H h(σ(xi1), . . . , σ(xik)), where x′ = (xi1 , . . . , xik).

For instance, MAX-CSP(XOR) coincides with the optimization problem MAX-CUT, which

is known to be MAX-SNP-complete [9]. Khanna et al. re-proved Creignou’s classification the-

orem that, for every set F of constraints, if F is one of 0-valid, 1-valid, and 2-monotone,

then MAX-CSP(F) is in PO, and otherwise, MAX-CSP(F) is APX-complete ‡ under their

approximation-preserving reducibility. This classification theorem was proven by an extensive use

of a notion of strict/perfect implementation.

From a different and meaningful perspective, Marchetti-Spaccamela and Romano [8] made a

general discussion on max NPSP problems whose maximization is measured by the “products” of

the objective values of chosen (feasible) solutions. From their general theorem follows an early

result of [1] that the maximization problem, MAX-PROD-KNAPSACK, has a fully polynomial(-

time) approximation scheme (or FPTAS). This result can be compared with another result of

Ibarra and Kim [5] that MAX-KNAPSACK (with additive measures) admits an FPTAS. The

general theorem of [8] requires development of a new proof technique, called variable partitioning.

A similar approach was taken in a study of linear multiplicative programming to minimize the

“product” of two positive linear cost functions, subject to linear constraints [6]. In contrast with

the previous additive measures, we call this different type of measures multiplicative measures, and

we wish to study the behaviors of MAX-CSPs whose maximization is taken over multiplicative

measures.

Our approach clearly fills a part of what Creignou [3] and Khanna et al. [7] left unexplored. Let

us formalize our objectives for clarity. To differentiate our multiplicative measures from additive

measures, we develop a new notation MAX-PROD-CSP(·), in which “PROD” refers to a use of

“product” of objective values.

MAX-PROD-CSP(F):

• Instance: a finite set H of elements of the form 〈h, (xi1 , . . . , xik)〉 on Boolean variables

x1, . . . , xn, where h ∈ F and {i1, . . . , ik} ⊆ [n].

• Solution: a truth assignment σ to x1, . . . , xn.

• Measure: the product
∏

〈h,x′〉∈H h(σ(xi1), . . . , σ(xik)), where x′ = (xi1 , . . . , xik).

There is a natural, straightforward way to relate MAX-CSP(F)’s to MAX-PROD-CSP(F)’s.

For example, consider the problem MAX-CUT and its multiplicatively-measured counterpart,

MAX-PROD-CUT. Given any cut for MAX-CUT, we set the weight of each vertex to be 2 if

it belongs to the cut, and set the weight to be 1 otherwise. When the cardinality of a cut is maxi-

mized, the same cut incurs the maximum product value as well. In other words, an algorithm that

“exactly” finds an optimal solution for MAX-CUT also computes an optimal solution for MAX-

PROD-CUT. However, when an algorithm only tries to “approximate” such an optimal solution,

its performance rates for MAX-CUT and for MAX-PROD-CUT significantly differ. In a case of

‡APX is the collection of optimization problems whose optimal solutions can be (deterministically) approximated

to within a fixed constant in polynomial time.

2

geometric programming, a certain type of product objective function is known to be “reduced”

to additive ones if function values are all positive (see an survey [2]). In our setting, a different

complication comes in when some values of h’s accidentally fall into zero and thus the entire prod-

uct value vanishes. Thus, an approximation algorithm using an additive measure does not seem

to lead to an approximation algorithm with a multiplicative measure. This circumstance indicates

that multiplicative measures appear to endow their associated optimization problems with much

higher approximation complexity than additive measures do. We then need to develop a quite

different methodology for a study on the approximation complexity of multiplicatively-measured

optimization problems.

Within the framework of MAX-PROD-CSPs, we can precisely express many maximization

problems, such as MAX-PROD-CUT, MAX-PROD-SAT, MAX-PROD-IS (independent set), and

MAX-PROD-BIS (bipartite independent set), which are naturally induced from their corresponding

additively-measured maximization problems. Some of their formal definitions will be given in

Section 2.2. In a context of approximability, since the multiplicative measures can provide a

richer structure than the additive measures, classification theorems for MAX-CSPs and for MAX-

PROD-CSPs are essentially different. The classification theorem for MAX-PROD-CSPs—our main

result—is formally stated in Theorem 1.1, in which we use an abbreviation, MAX-PROD-CSP∗(F),

to mean a MAX-PROD-CSP whose unary constraints are provided for free§ and other nonnegative-

real-weighted constraints are drawn from F .

Theorem 1.1 Let F be any set of constraints. If either F ⊆ AF or F ⊆ ED, then

MAX-PROD-CSP∗(F) is in PO. Otherwise, if F ⊆ IMopt, then MAX-PROD-CSP∗(F) is

APT-reduced from MAX-PROD-BIS and is APT-reduced to MAX-PROD-FLOW. Otherwise,

MAX-PROD-CSP∗(F) is APT-reduced from MAX-PROD-IS.

Here, “APT” stands for “approximation preserving Turing” in the sence of [4]. Moreover, AF is

the set of “affine”-like constraints, ED is related to the binary equality and disequality constraints,

and IMopt is characterized by “implication”-like constraints. The problem MAX-PROD-FLOW

is a maximization problem of finding a design that maximizes the amount of water flow in a given

direct graph. See Sections 2.1–2.2 for their formal definitions.

The purpose of the rest of this paper is to prove Theorem 1.1. For this purpose, we will introduce

a new notion of Tmax-constructibility, which is a variant of the notion of T-constructibility invented

in [10]. This Tmax-constructibility is proven to be a powerful tool in dealing with MAX-PROD-

CSPs.

2 Formal Definitions and Basic Properties

Let N denote the set of all natural numbers (i.e., nonnegative integers) and let R denote the set

of all real numbers. For convenience, N+ expresses N − {0} and, for each n ∈ N+, [n] denotes the

integer set {1, 2, . . . , n}. Moreover, the notation R≥0 stands for the set {r ∈ R | r ≥ 0}.

2.1 Constraints and Relations

Here, we use terminology given in [10]. A (nonnegative-real-weighted) constraint is a function

mapping from {0, 1}k to R≥0, where k is the arity of f . Assuming the standard lexicographic

§Allowing a free use of arbitrary unary constraints is a commonly used assumption for decision CSPs and counting

CSPs.

3

order on {0, 1}k , we express f as a series of its output values. For instance, if k = 2, then f is

(f(00), f(01), f(10), f(11)). We set EQ = (1, 0, 0, 1), ∆0 = (1, 0), and ∆1 = (0, 1).

A relation of arity k is a subset of {0, 1}k. Such a relation can be also viewed as a function

mapping Boolean variables to {0, 1} (i.e., x ∈ R iff R(x) = 1, for every x ∈ {0, 1}k) and it

can be treated as a Boolean constraint. For instance, logical relations OR, NAND, XOR, and

Implies are all expressed as appropriate constraints in the following manner: OR = (0, 1, 1, 1),

NAND = (1, 1, 1, 0), XOR = (0, 1, 1, 0), and Implies = (1, 1, 0, 1). A relation R is affine if it is

expressed as a set of solutions to a certain system of linear equations over GF (2). An underlying

relation Rf of f is defined as Rf = {x | f(x) 6= 0}.

We introduce the following six special sets of constraints.

1. Let U denote the set of all unary constraints.

2. The notation NZ expresses the set of all non-zero constraints.

3. Denote by DG the set of all constraints that are expressed by products of unary constraints,

each of which is applied to a different variable. Such a constraint is called degenerate.

4. Let ED denote the set of all constraints that are expressed as products of some of unary

constraints, the equality EQ, and the disequality XOR.

5. The set AF is defined as the collection of all constraints of the form

g(x1, . . . , xk)
∏

j:j 6=iRj(xi, xj) for a certain fixed index i ∈ [k], where g is in DG and

each Rj is an affine relation.

6. Define IMopt to be the collection of all constraints that are products of some of the following

constraints: unary constraints and constraints of the form (1, 1, λ, 1) with 0 ≤ λ < 1. This is

different from IM defined in [10].

Lemma 2.1 For any constraint f = (x, y, z, w) with x, y, z, w ∈ R≥0, if xw > yz, then f belongs

to IMopt.

2.2 Optimization Problems with Multiplicative Measures

A (combinatorial) optimization problem P = (I, sol,m) takes input instances of “admissible data”

to the target problem. We often write I to denote the set of all such instances and sol(x) denotes

a set of (feasible) solutions associated with instance x. A measure function (or objective function)

m associates a nonnegative real number to each solution y in sol(x); that is, m(x, y) is an objective

value (or a measure) of the solution y on the instance x. We conveniently assume m(x, y) = 0 for

any element y 6∈ sol(x). The goal of the problem P is to find a solution y in sol(x) that has an

optimum value (such y is called an optimal solution), where the optimality is measured by either

the maximization or minimization of an objective value m(x, y), taken over all solutions y ∈ sol(x).

When y is an optimal solution, we set m∗(x) to be m(x, y).

Let NPO denote the class of all optimization problems P such that (1) input instances and

solutions can be recognized in polynomial time; (2) solutions are polynomially-bounded in input

size; and (3) a measure function can be computed in polynomial time. Define PO as the class of all

problems P in NPO such that there exists a deterministic algorithm that, for every instance x ∈ I,

returns an optimal solution y in sol(x) in time polynomial in the size |x| of the instance x.

We say that, for a fixed real-valued function α with α(n) ≥ 1 for any input size n ∈ N, an
algorithm A for an optimization problem P = (I, sol,m) is an α-approximation algorithm if, for

every instance x ∈ I, A produces a solution y ∈ sol(x) satisfying that 1/α(|x|) ≤ |m(x, y)/m∗(x)| ≤

α(|x|), except that, whenever m∗(x) = 0, we always demand that m(x, y) = 0. Such a y is called

4

an α(n)-approximate solution for input instance x of size n. The class APX (resp., exp-APX)

consists of all problems P in NPO such that there are a constant r ≥ 1 (resp., an exponentially-

bounded¶ function α) and a polynomial-time r-approximation (resp., α-approximation) algorithm

for P . Approximation algorithms are often randomized. A randomized approximation scheme for

P is a randomized algorithm that takes a standard input instance x ∈ I together with an error

tolerance parameter ε ∈ (0, 1), and outputs a 2ε-approximate solution y ∈ sol(x) with probability

at least 3/4.

Of numerous existing notions of approximation-preserving reducibilities, we choose a notion

introduced recently by Dyer, Goldberg, Greenhill, and Jerrum [4], which can be viewed as a ran-

domized variant of Turing reducibility, based on a mechanism of oracle Turing machine. Since the

purpose of Dyer et al. is to solve counting problems approximately, we need to modify their notion

so that we can deal with optimization problems. Given two optimization problems P = (I, sol,m)

and Q = (I ′, sol′,m′), a polynomial-time (randomized) approximation-preserving Turing reduc-

tion (or APT-reduction, in short) from P to Q is a randomized algorithm N that takes a pair

(x, ε) ∈ I × (0, 1) as input, uses an arbitrary randomized approximation scheme (not necessarily

polynomial time-bounded) M for Q as oracle, and satisfies the following conditions: (i) N is a ran-

domized approximation scheme for P for any choice of oracle M for Q; (ii) every oracle call made

by N is of the form (w, δ) ∈ I ′ × (0, 1) satisfying 1/δ ≤ p(|x|, 1/ε), where p is a certain absolute

polynomial, and an oracle answer is an outcome of M on the input (w, δ); and (iii) the running

time of N is bounded from above by a certain polynomial in (|x|, 1/ε), not depending on the choice

of the oracle M . In this case, we write P ≤APT Q and we also say that P is APT-reducible (or

APT-reduced) to Q. Note that APT-reducibility composes. If P ≤APT Q and Q ≤APT P , then P

and Q are said to be APT-equivalent and we use the notation P ≡APT Q.

In the definition of MAX-PROD-CSP(F) given in Section 1, we also write h(xi1 , . . . , xik)

to mean 〈h, (xi1 , . . . , xik)〉 in H. For notational simplicity, we intend to write, for example,

MAX-PROD-CSP(f,F ,G) instead of MAX-PROD-CSP({f} ∪ F ∪ G). In addition, we abbrevi-

ate as MAX-PROD-CSP∗(F) the maximization problem MAX-PROD-CSP(F ∪ U).

For any optimization problem P and any class C of optimization problems, we write P ≤APT C

if there exists a problem Q ∈ C such that P ≤APT Q. Our choice of APT-reducibility

makes it possible to prove Lemma 2.2; however, it is not clear whether the lemma implies that

MAX-PROD-CSP(F) ∈ exp-APX.

Lemma 2.2 MAX-PROD-CSP(F) ≤APT exp-APX for any constraint set F .

Hereafter, we introduce the maximization problems stated in Theorem 1.1.

MAX-PROD-IS: (maximum product independent set)

• Instance: an undirected graph G = (V,E) and a series {wx}x∈V of vertex weights with

wx ∈ R≥0;

• Solution: an independent set A on G;

• Measure: the product
∏

x∈Awx.

This maximization problem MAX-PROD-IS literally coincides with

MAX-PROD-CSP(NAND,G0), where G0 = {[1, λ] | λ ≥ 0}, and it can be easily shown to

be NPO-complete. When all input graphs are limited to bipartite graphs, the corresponding

problem is called MAX-PROD-BIS.

¶This function α must satisfy that there exists a positive polynomial p for which 1 ≤ α(n) ≤ 2p(n) for any number

n ∈ N.

5

MAX-PROD-BIS: (maximum product bipartite independent set)

• In MAX-PROD-IS, all input graphs are limited to bipartite graphs.

Since the above two problems can be expressed in the form of MAX-PROD-CSP∗(·), we can

draw the following important conclusion, which becomes part of the proof of the main theorem.

Lemma 2.3 1. MAX-PROD-IS ≤APT MAX-PROD-CSP∗(OR).

2. MAX-PROD-BIS ≤APT MAX-PROD-CSP∗(Implies).

Next, we introduce a special maximization problem, called MAX-PROD-FLOW, whose intuitive

setting is explained as follows. Suppose that water flows from point u to point v through a one-way

pipe at flow rate ρ(u,v). A value σ(x) expresses an elevation (indicating either the bottom level or

the top level) of point x so that water runs from point u to point v whenever σ(u) ≥ σ(v). More

water is added at influx rate wv at point v for which σ(v) = 1.

MAX-PROD-FLOW: (maximum product flow)

• Instance: a directed graph G = (V,E), a series {ρe}e∈E of flow rates with ρe ≥ 1, and a

series {wx}x∈V of influx rates with wx ≥ 0;

• Solution: a Boolean assignment σ to V ;

• Measure: the product
(

∏

(x,y)∈E,σ(x)≥σ(y) ρ(x,y)

)(

∏

z∈V,σ(z)=1 wz

)

.

From the above definition, it is not difficult to prove the following statement.

Lemma 2.4 For any constraint set F ⊆ IMopt, MAX-PROD-CSP∗(F) is APT-reducible to

MAX-PROD-FLOW.

2.3 Tmax-Constructibility

To pursue notational succinctness, we use the following notations. Let f be any arity-k con-

straint. For any two distinct indices i, j ∈ [k] and any bit c ∈ {0, 1}, let fxi=c denote the

function g satisfying that g(x1, . . . , xi−1, xi+1, . . . , xk) = f(x1, . . . , xi−1, c, xi+1, . . . , xk) and let

fxi=xj be the function g defined as g(x1, . . . , xi−1, xi+1, . . . , xk) = f(x1, . . . , xi−1, xj , xi+1, . . . , xk).

Moreover, we denote by maxy1,...,yd(f) the function g defined as g(x1, . . . , xk) =

max(y1,...,yd)∈{0,1}d {f(x1, . . . , xk, y1, . . . , yd)}, where y1, . . . , yd are all distinct and different from

x1, . . . , xk, and let λ · f denote the function satisfying (λ · f)(x1, . . . , xk) = λ f(x1, . . . , xk).

A helpful tool invented in [10] for counting CSPs is a notion of T-constructibility. For our

purpose of proving the main theorem, we wish to modify this notion and introduce a notion of Tmax-

constructibility. We say that an arity-k constraint f is Tmax-constructible (or Tmax-constructed)

from a constraint set G if f can be obtained, initially from constraints in G, by applying recursively

a finite number (possibly zero) of seven functional operations described below.

1. Permutation: for two indices i, j ∈ [k] with i < j, by exchanging two columns

xi and xj in (x1, . . . , xi, . . . , xj , . . . , xk), transform g into g′, where g′ is defined as

g′(x1, . . . , xi, . . . , xj , . . . , xk) = g(x1, . . . , xj , . . . , xi, . . . , xk).

2. Pinning: for an index i ∈ [k] and a bit c ∈ {0, 1}, build gxi=c from g.

3. Linking: for two distinct indices i, j ∈ [k], build gxi=xj from g.

4. Expansion: for an index i ∈ [k], introduce a new “free” variable, say, y and transform g into

g′ that is defined by g′(x1, . . . , xi, y, xi+1, . . . , xk) = g(x1, . . . , xi, xi+1, . . . , xk).

6

5. Multiplication: from two constraints g1 and g2 of arity k that share the same in-

put variable series (x1, . . . , xk), build the constraint g1 · g2, where (g1 · g2)(x1, . . . , xk) =

g1(x1, . . . , xk)g2(x1, . . . , xk).

6. Maximization: build maxy1,...,yd(g) from g, where y1, . . . , yd are not shared with any other

constraint other than this particular constraint g.

7. Normalization: for a positive constant λ, build λ · g from g.

When f is Tmax-constructible from G, we use the notation f ≤max
con G. In particular, when G is a

singleton {g}, we also write f ≤max
con g instead of f ≤max

con {g}.

It holds that Tmax-constructibility between constraints guarantees APT-reducibility between

their corresponding MAX-PROD-CSP∗(·)’s.

Lemma 2.5 If f ≤max
con G, then MAX-PROD-CSP∗(f,F) is APT-reducible to

MAX-PROD-CSP∗(G,F) for any constraint set F .

3 Proof of the Main Theorem

Our main theorem—Theorem 1.1—states that all maximization problems of the form of

MAX-PROD-CSP∗(·) can be classified into three categories. This trichotomy theorem sheds a

clear contrast with the dichotomy theorem of Khanna et al. [7] for MAX-CSPs. Hereafter, we will

present the proof of Theorem 1.1.

3.1 First Step Toward the Proof

We begin with MAX-PROD-CSP∗(·)’s that can be solved in polynomial time.

Proposition 3.1 If either F ⊆ AF or F ⊆ ED, then MAX-PROD-CSP∗(F) belongs to PO.

Proof Sketch. For every target problem, as in the proof of [10, Lemma 6.1], we can greatly

simplify the structure of each input instance so that it depends only on polynomially many solutions.

By examining all such solutions deterministically, we surely find its optimal solution. Hence, the

target problem belongs to PO.

It thus remains to deal with only the case where F * AF and F * ED. In this case, we first

make the following key claim that leads to the main theorem.

Proposition 3.2 Let f be any constraint and assume that f 6∈ AF ∪ ED. Let F be any set of

constraints.

1. If f ∈ IMopt, then MAX-PROD-CSP∗(Implies,F) is APT-reducible to

MAX-PROD-CSP∗(f,F).

2. If f 6∈ IMopt, then there exists a constraint g ∈ {OR,NAND} such that

MAX-PROD-CSP∗(g,F) is APT-reducible to MAX-PROD-CSP∗(f,F).

We postpone the proof of the above proposition and, meanwhile, we want to prove Theorem

1.1 using the proposition.

Proof of Theorem 1.1. If F ⊆ AF or F ⊆ ED, then Proposition 3.1 implies that

MAX-PROD-CSP∗(F) belongs to PO. Henceforth, we assume that F * AF and F * ED. If

F ⊆ IMopt, then Lemma 2.4 helps APT-reduce MAX-PROD-CSP∗(F) to MAX-PROD-FLOW.

7

Next, we choose a constraint f ∈ F for which f 6∈ AF ∪ ED. Proposition 3.2(1)

then yields an APT-reduction from MAX-PROD-CSP∗(Implies) to MAX-PROD-CSP∗(f).

By Lemma 2.3(2), we obtain MAX-PROD-BIS ≤APT MAX-PROD-CSP∗(Implies). Since

MAX-PROD-CSP∗(f) ≤APT MAX-PROD-CSP∗(F), it follows that MAX-PROD-BIS is APT-

reducible to MAX-PROD-CSP∗(F).

Finally, we assume that F * IMopt. Take a constraint f ∈ F satisfying that

f 6∈ AF ∪ ED ∪ IMopt. In this case, Proposition 3.2(2) yields an APT-reduction

from MAX-PROD-CSP∗(OR) to MAX-PROD-CSP∗(f), since MAX-PROD-CSP∗(OR) ≡APT

MAX-PROD-CSP∗(NAND). From MAX-PROD-CSP∗(f) ≤APT MAX-PROD-CSP∗(F), it im-

mediately follows that MAX-PROD-CSP∗(OR) is APT-reducible to MAX-PROD-CSP∗(F). By

Lemma 2.3(1), MAX-PROD-IS ≤APT MAX-PROD-CSP∗(OR). Therefore, we conclude that

MAX-PROD-IS is APT-reducible to MAX-PROD-CSP∗(F). ✷

3.2 Second Step Toward the Proof

To finish the proof of Theorem 1.1, we still need to prove Proposition 3.2. Proving this proposition

requires three properties. To describe them, we first review two existing notions from [10]. We say

that a constraint f has affine support if Rf is an affine relation and that f has imp support if Rf is

logically equivalent to a conjunction of a certain “positive” number of relations of the form ∆0(x),

∆1(x), and Implies(x, y). The notation AFFINE denotes the set of all affine relations.

In the following three statements, F denotes an arbitrary set of constraints.

Lemma 3.3 If f is a non-degenerate constraint in IMopt and has no imp support, then

MAX-PROD-CSP∗(Implies,F) ≤APT MAX-PROD-CSP∗(f,F).

Proposition 3.4 Let f be any constraint having imp support. If either f has no affine support

or f 6∈ ED, then MAX-PROD-CSP∗(Implies,F) is APT-reducible to MAX-PROD-CSP∗(f,F).

Proposition 3.5 Let f 6∈ NZ be any constraint. If f has neither affine support nor imp sup-

port, then there exists a constraint g ∈ {OR,NAND} such that MAX-PROD-CSP∗(g,F) ≤APT

MAX-PROD-CSP∗(f,F).

With a help of the above statements, we can prove Proposition 3.2 as follows.

Proof Sketch of Proposition 3.2. Let f 6∈ AF ∪ ED be any constraint. We proceed our proof

by induction on the arity k of f . For the proposition’s claims, (1) and (2), the basis case k = 1 is

trivial since ED contains all unary constraints. Next, we prove the induction step k ≥ 3. In the

remainder of this proof, as our induction hypothesis, we assume that the proposition holds for any

arity less than k. The claims (1) and (2) will be shown separately.

(1) Assume that f is in IMopt. If f has imp support, since f 6∈ ED, we can apply Proposi-

tion 3.4 and immediately obtain the desired APT-reduction MAX-PROD-CSP∗(Implies,F) ≤APT

MAX-PROD-CSP∗(f,F). Otherwise, by Lemma 3.3, we have the desired APT-reduction.

(2) Since f has no imp support, if Rf is not affine, then Proposition 3.5 implies that, for a

certain g0 ∈ {OR,NAND}, MAX-PROD-CSP∗(g0,F) ≤APT MAX-PROD-CSP∗(f,F); therefore,

the desired result follows. To finish the proof, we hereafter assume the affine property of Rf .

[Case: f ∈ NZ] Recall that f 6∈ ED and Rf ∈ AFFINE. Since f ∈ NZ, we have |Rf | = 2k,

and thus f should be in clean form (i.e., f contains no factor of the form: ∆0(x), ∆1(x), and

EQ(x, y)). As shown in [10, Lemma 7.5], there exists a constraint p = (1, x, y, z) 6∈ ED with

8

xyz 6= 0, z 6= xy, and p ≤max
con f . When z < xy, we can prove that, for a certain g0 ∈ {OR,NAND},

MAX-PROD-CSP∗(g0,F) ≤APT MAX-PROD-CSP∗(p,F). In the case where z > xy, Lemma 2.1

implies p ∈ IMopt. Since p is obtained from f by pinning operations only, we conclude that

f ∈ IMopt, a contradiction. This finishes the induction step.

[Case: f 6∈ NZ] We first claim that k ≥ 3. Assume otherwise that k = 2. SinceRf ∈ AFFINE,

it is possible to write f in the form f(x1, x2) = ξA(x1, x2)g(x1) after appropriately permuting

variable indices. This places f within AF , a contradiction against the choice of f . Hence, k ≥ 3

holds. Moreover, we can prove the existence of a constraint g 6∈ AF of arity m for which 2 ≤ m < k,

g ≤max
con f , and either g ∈ NZ or Rg 6∈ AFFINE. If we can show that (*) there exists a constraint

g0 ∈ {OR,NAND} satisfying MAX-PROD-CSP∗(g0,F) ≤APT MAX-PROD-CSP∗(g,F), then

the proposition immediately follows from g ≤max
con f . The claim (*) is split into two cases: (i)

Rg ∈ AFFINE and (ii) Rg 6∈ AFFINE. For (i), we apply the induction hypothesis. For (ii), we

apply Propositions 3.4–3.5. Thus, we have completed the induction step. ✷

In this end, we have completed the proof of the main theorem. The detailed proofs omitted

in this extended abstract will be published shortly. We hope that our systematic treatment of

MAX-PROD-CSP∗s would lead to a study on a far wider class of optimization problems.

References

[1] G. Ausiello, A. Marchetti-Spaccamela, and M. Protasi. Full approximability of a class of problems

over power sets. In: Proc. of CAAP 81, LNCS, vol. 112, pp. 76–87. Springer, Berlin (1981)

[2] S. Boyd, S. J. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on geometric programming.

Optm. Eng. 8, 67–127 (2007)

[3] N. Creignou. A dichotomy theorem for maximum generalized satisfiability problems. J. Comput.

System Sci. 51, 511–522 (1995)

[4] M. Dyer, L. A. Goldberg, C. Greenhill, and M. Jerrum. The relative complexity of approximating

counting problems. Algorithmica 38, 471–500 (2003)

[5] O. H. Ibarra and C. E. Kim. Fast approximation for the knapsack and sum of subset problems. J.

ACM 22, 463–468 (1975)

[6] H. Konno and T. Kuno. Linear multiplicative programming. Math. Program. 56, 51–64 (1992)

[7] S. Khanna, M. Sudan, L. Trevisan, and D. P. Williamson. The approximability of constraint

satisfaction problems. SIAM J. Comput. 30, 1863–1920 (2001)

[8] A. Marchetti-Spaccamela and S. Romano. On different approximation criteria for subset product

problems. Inform. Process. Lett. 21, 213–218 (1985)

[9] C. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity classes. J.

Comput. System Sci. 43, 425–440 (1991)

[10] T. Yamakami. Approximate counting for complex-weighted Boolean constraint satisfaction prob-

lems. Available at arXiv:1007.0391. An older version appeared in the Proc. of WAOA 2010, LNCS,

vol. 6534, pp. 261–272. Springer, Heidelberg (2011)

9

http://arxiv.org/abs/1007.0391

	1 Maximization by Multiplicative Measure
	2 Formal Definitions and Basic Properties
	2.1 Constraints and Relations
	2.2 Optimization Problems with Multiplicative Measures
	2.3 Tmax-Constructibility

	3 Proof of the Main Theorem
	3.1 First Step Toward the Proof
	3.2 Second Step Toward the Proof

