Skip to main content

Construct Weak Ranking Functions for Learning Linear Ranking Function

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7097))

Abstract

Many Learning to Rank models, which apply machine learning techniques to fuse weak ranking functions and enhance ranking performances, have been proposed for web search. However, most of the existing approaches only apply the Min – Max normalization method to construct the weak ranking functions without considering the differences among the ranking features. Ranking features, such as the content-based feature BM25 and link-based feature PageRank, are different from each other in many aspects. And it is unappropriate to apply an uniform method to construct weak ranking functions from ranking features. In this paper, comparing the three frequently used normalization methods: Min – Max, Log, Arctan normalization, we analyze the differences among three normalization methods when constructing the weak ranking functions, and propose two normalization selection methods to decide which normalization should be used for a specific ranking feature. The experimental results show that the final ranking functions based on normalization selection methods significantly outperform the original one.

Supported by Natural Science Foundation (60736044, 60903107, 61073071) and Research Fund for the Doctoral Program of Higher Education of China (20090002120005).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chapelle, O., Metlzer, D., Zhang, Y., Grinspan, P.: Expected reciprocal rank for graded relevance. In: Proceeding of the 18th ACM Conference on Information and Knowledge Management, CIKM 2009, pp. 621–630. ACM, New York (2009)

    Google Scholar 

  2. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4, 933–969 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Herbrich, R., et al.: Large margin rank boundaries for ordinal regression. In: Advances in Large Margin Classifiers, pp. 115–132 (2000)

    Google Scholar 

  4. http://research.microsoft.com/enus/projects/mslr/

  5. http://research.microsoft.com/enus/projects/mslr/feature.aspx

  6. http://research.microsoft.com/enus/um/people/letor/

  7. Järvelin, K., Kekäläinen, J.: Ir evaluation methods for retrieving highly relevant documents. In: SIGIR 2000: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 41–48. ACM, New York (2000)

    Google Scholar 

  8. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques, vol. 20, pp. 422–446. ACM, New York (2002)

    Google Scholar 

  9. Joachims, T.: Optimizing search engines using clickthrough data. In: KDD 2002: Proceedings of the Eighth ACM SIGKDD Internatiounal Conference on Knowledge Discovery and Data Mining, pp. 133–142. ACM, New York (2002)

    Google Scholar 

  10. Liu, T.-Y.: Learning to rank for information retrieval. In: Foundation and Trends on Information Retrieval, pp. 641–647 (2009)

    Google Scholar 

  11. Qin, T., Liu, T.-Y., Xu, J., Li, H.: Letor: A benchmark collection for research on learning to rank for information retrieval. Information Retrieval Journal 13, 346–374 (2010)

    Article  Google Scholar 

  12. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res. 6, 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Xia, F., Liu, T.-Y., Wang, J., Zhang, W., Li, H.: Listwise approach to learning to rank: theory and algorithm. In: ICML 2008: Proceedings of the 25th International Conference on Machine Learning, pp. 1192–1199. ACM, New York (2008)

    Chapter  Google Scholar 

  14. Yue, Y., Finley, T., Radlinski, F., Joachims, T.: A support vector method for optimizing average precision. In: SIGIR 2007: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 271–278. ACM, New York (2007)

    Google Scholar 

  15. Zhang, M., et al.: Is learning to rank effective for web search. In: SIGIR 2009 Workshop: Learning to Rank for Information Retrieval, pp. 641–647 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hua, G., Zhang, M., Liu, Y., Ma, S., Yin, H. (2011). Construct Weak Ranking Functions for Learning Linear Ranking Function. In: Salem, M.V.M., Shaalan, K., Oroumchian, F., Shakery, A., Khelalfa, H. (eds) Information Retrieval Technology. AIRS 2011. Lecture Notes in Computer Science, vol 7097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25631-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25631-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25630-1

  • Online ISBN: 978-3-642-25631-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics