Skip to main content

The Relation Between the Gene Network and the Physical Structure of Chromosomes

  • Conference paper
  • First Online:
Book cover Modeling, Simulation and Optimization of Complex Processes

Abstract

Human cells contain 46 chromosomes with a total length of about 5 cm beads-ona- string type of nucleosomal fibre, called chromatin. Packaging this into a nucleus of typically 5–20 μm diameter requires extensive compatification. This packaging cannot be random, as considerable evidence has been gathered that chromatin folding is closely related to local genome function. However, the different levels of compactification are ill understood and not easily accessible by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bohn and D. W. Heermann, J. Chem. Phys., 130(17):174901, 2009.

    Google Scholar 

  2. M. Bohn, D. W. Heermann, and R. van Driel, Phys. Rev. E, 76(5):051805, 2007.

    Google Scholar 

  3. M. Barbi, J. Mozziconacci, and J.-M. Victor, Phys Rev E Stat Nonlin Soft Matter Phys, 71(3 Pt 1):031910, Mar 2005.

    Google Scholar 

  4. P.-G. de Gennes, Ithaca, N.Y., Cornell University Press, 1979.

    Google Scholar 

  5. P. M. Diesinger and D. W. Heermann, Phys. Rev. E, 74, 031904, Sep 2006.

    Google Scholar 

  6. P. M. Diesinger and D. W. Heermann, Biophys. J., 94(11), 4165 – 4172, 2008.

    Google Scholar 

  7. P. M. Diesinger and D. W Heermann. Biophys. J., 97(8), 2146–2153, Oct 2009.

    Google Scholar 

  8. C. A. Davey, D. F. Sargent, K. Luger, A. W Maeder, and T. J Richmond, J Mol Biol, 319(5), 1097–1113, Jun 2002.

    Google Scholar 

  9. P. Fraser and W. Bickmore, Nature, 447(7143), 413–417, May 2007.

    Google Scholar 

  10. P. Fraser, Current Opinion in Genetics & Development, 16(5), 490–495, Oct 2006.

    Google Scholar 

  11. A. Y. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules. AIP Press, 1994.

    Google Scholar 

  12. S. Goetze, J. Mateos-Langerak, H. J. Gierman, W. de Leeuw, Osdilly Giromus, M. H. G. Indemans, J. Koster, V. Ondrej, R. Versteeg, and R. van Driel, Mol. Cell. Biol., 27(12), 4475–4487, 2007.

    Google Scholar 

  13. P. Hahnfeldt, J. E. Hearst, D. J. Brenner, R. K. Sachs, and L. R. Hlatky, PNAS, 90, 7854–7858, August 1993.

    Article  Google Scholar 

  14. S. Jhunjhunwala, M. C. van Zelm, M. M. Peak, S. Cutchin, R. Riblet, J. J. M. van Dongen, F. G. Grosveld, T. A. Knoch, and C. Murre, Cell, 133(2), 265–279, Apr 2008.

    Google Scholar 

  15. K. Luger, A. W. Maeder, R. K. Richmond, D. F. Sargent, and T, J. Richmond, Nature, 389(6648), 251–260, September 1997.

    Google Scholar 

  16. A. Miele and J. Dekker, Mol. BioSyst., 4(11), 1046–1057, Nov 2008.

    Google Scholar 

  17. C. Münkel, R. Eils, S. Dietzel, D. Zink, C. Mehring, G. Wedemann, T. Cremer, and J. Langowski, J. Mol. Biol., 285, 1053–1065, 1999.

    Article  Google Scholar 

  18. B. Mergell, R. Everaers, and H. Schiessel, Phys. Rev. E, 70, 011915, Jul 2004.

    Google Scholar 

  19. D. Marenduzzo, I. Faro-Trindade, and P. R. Cook, Trends Genet., 23(3), 126 – 133, 2007.

    Google Scholar 

  20. J. Mateos-Langerak, M. Bohn, W. de Leeuw, O. Giromus, E. M. M. Manders, P. J. Verschure, M. H. G. Indemans, H. J. Gierman, D. W. Heermann, R. van Driel, and S. Goetze, PNAS, 106(10), 3812–3817, 2009.

    Google Scholar 

  21. R.-J. Palstra, B. Tolhuis, E. Splinter, R. Nijmeijer, F. Grosveld, and W. de Laat, Nat. Genet., 35(2), 190–194, Oct 2003.

    Google Scholar 

  22. H. Schiessel, J. Phys.: Condens. Matter, 15(19), R699–R774, 2003.

    Google Scholar 

  23. E. Segal and J. Widom, Nature Reviews Genetics, 10, 443-456, 2009.

    Article  Google Scholar 

  24. R. K. Sachs, G. V. D. Engh, B. Trask, H. Yokota, and J. E. Hearst, PNAS, 92(7), 2710–2714, 1995.

    Google Scholar 

  25. E. Segal, Y. Fondufe-Mittendorf, L. Chen, A. Thåström, Y. Field, I. K Moore, J.-P. Z. Wang, and J. Widom, Nature, 442(7104), 772–778, Aug 2006.

    Google Scholar 

  26. M. Simonis, P. Klous, E. Splinter, Y. Moshkin, R. Willemsen, E. de Wit, B. van Steensel, and W. de Laat, Nat. Genet., 38(11), 1348–1354, Nov 2006.

    Google Scholar 

  27. K. E. van Holde, Chromatin, New York: Springer-Verlag, 1989.

    Book  Google Scholar 

  28. C. L. Woodcock, S. A. Grigoryev, R. A. Horowitz, and N. Whitaker, PNAS, 90(19), 9021–9025, 1993.

    Google Scholar 

  29. J. Widom, PNAS, 89(3), 1095–1099, Feb 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter W. Heermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heermann, D.W., Bohn, M., Diesinger, P.M. (2012). The Relation Between the Gene Network and the Physical Structure of Chromosomes. In: Bock, H., Hoang, X., Rannacher, R., Schlöder, J. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25707-0_13

Download citation

Publish with us

Policies and ethics