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Summary. This paper proposes real-time sequential convex programming (RTSCP), a method
for solving a sequence of nonlinear optimization problems depending on an online parameter.
We provide a contraction estimate for the proposed method and, as a byproduct, a new proof
of the local convergence of sequential convex programming. The approach is illustrated by an
example where RTSCP is applied to nonlinear model predictive control.

1 Introduction and motivation
Consider a parametric optimization problem of the form:{

min
x

cTx

s.t. g(x) +Mξ = 0, x ∈ Ω,
P(ξ)

where x, c ∈ Rn, g : Rn → Rm is a nonlinear function, Ω ⊆ Rn is a convex set,
the parameter ξ belongs to a given set Γ ⊆ Rp, and M ∈ Rm×p is a given matrix.

This paper deals with the efficient calculation of approximate solutions to a se-
quence of problems of the form P(ξ) where the parameter ξ is varying slowly. In
other words, for a sequence {ξk}k≥1 such that ‖M(ξk+1− ξk)‖ is small, we want to
solve problem P(ξk) in an efficient way without requiring too much accuracy in the
result.

In practice, sequences of problems of the form P(ξ) can be solved in the frame-
work of nonlinear model predictive control (MPC). MPC is an optimal control tech-
nique which avoids computing an optimal control law in a feedback form, which is
often a numerically intractable problem. A popular way of solving the optimization
problem to calculate the control sequence is using either interior point methods [1]
or sequential quadratic programming (SQP) [2, 3, 9]. A drawback of using SQP is
that this method may require several iterations before convergence and therefore the
computation time may be too large for a real-time implementation. A solution to this
problem was proposed in [6], where the real-time iteration (RTI) technique was in-
troduced. Extensions to the original idea and some theoretical results are reported in
[5, 7, 8]. Similar nonlinear MPC algorithms are proposed in [10, 13]. RTI is based

ar
X

iv
:1

10
5.

34
27

v1
  [

m
at

h.
O

C
] 

 1
7 

M
ay

 2
01

1



2 Tran Dinh Quoc, Carlo Savorgnan and Moritz Diehl

on the observation that for several practical applications of nonlinear MPC, the data
of two successive optimization problems to be solved in the MPC loop is numeri-
cally close. In particular, if we express these optimization problems in the form P(ξ),
the parameter ξ usually represents the current state of the system, which, for most
applications, doesn’t change significantly in two successive measurements. The RTI
technique consists of performing only the first step of the usual SQP algorithm which
is initialized using the solution calculated in the previous MPC iteration.
Contribution. Before stating the main contributions of the paper we need to outline
the (full-step) sequential convex programming (SCP) algorithm framework applied
to problem P(ξ) for a given value ξk of the parameter ξ:

1. Choose a starting point x0 ∈ Ω and set j := 0.
2. Solve the convex approximation of P(ξk):

min
x

cTx

s.t. g′(xj)(x− xj) + g(xj) +Mξk = 0,
x ∈ Ω

Pcvx(xj ; ξk)

to obtain a solution xj+1, where g′(·) is the Jacobian matrix of g(·).
3. If the stopping criterion is satisfied then: STOP. Otherwise, set j := j + 1 and

go back to Step 2.

The real-time sequential convex programming (RTSCP) method proposed in this
paper combines the RTI technique and the SCP algorithm: instead of solving with
SCP every P(ξk) to full accuracy, RTSCP solves only one convex approximation
Pcvx(xk−1; ξk) using as a linearization point xk−1, which is the approximate solution
of P(ξk−1) calculated at the previous iteration. Therefore, RTSCP solves a sequence
of convex problems corresponding to the different problems P(ξk). This method is
suitable for the problems that contain a general convex substructure such as nons-
mooth convex cost, second order or semidefinte cone constraints which may not be
convenient for SQP methods.

In this paper we provide a contraction estimate for RTSCP which can be inter-
preted in the following way: if the linearization of the first problem P(ξ0) is close
enough to the solution of the problem and the quantity ‖M(ξk+1 − ξk)‖ is not too
big (which is the case for many problems arising from nonlinear MPC), RTSCP pro-
vides a sequence of good approximations of the sequence of optimal solutions of
the problems P(ξk). As a byproduct of this result, we obtain a new proof of local
convergence for the SCP algorithm.

The paper is organized as follows. Section 2 proposes a description of the RTSCP
algorithm. Section 3 proves the contraction estimate for the RTSCP method. The last
section shows an application of the RTSCP method to nonlinear MPC.

2 The RTSCP method
As mentioned in the previous section, SCP solves a possibly nonconvex optimization
problem by solving a sequence of convex subproblems which approximate the orig-
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inal problem locally. In this section, we combine RTI and SCP to obtain the RTSCP
method. The method consists of the following steps:

Initialization. Find an initial value ξ1 ∈ Γ , choose a starting point x0 ∈ Ω
and compute the information needed at the first iteration such as derivatives,
dependent variables, . . . . Set k := 1.
Iteration.
1. Solve Pcvx(xk−1; ξk) (see Section 3) to obtain a solution xk.
2. Determine a new parameter ξk+1 ∈ Γ , update (or recompute) the information

needed for the next step. Set k := k + 1 and go back to Step 1.

One of the main tasks of the RTSCP method is to solve the convex subproblem
Pcvx(xk−1; ξk) at each iteration. This work can be done by either implementing an
optimization method which exploits the problem structure or relying on one of the
many efficient software tools available nowadays.

Remark 1. In the RTSCP method, a starting point x0 in Ω is required. It can be any
point in Ω. But as we will show later [Theorem 1], if we choose x0 close to the
true solution of P(ξ0) and ‖M(ξ1− ξ0)‖ is sufficiently small, then the solution x1 of
Pcvx(x0, ξ1) is still close to the true solution of P(ξ1). Therefore, in practice, problem
P(ξ0) can be solved approximately to get a starting point x0.

Remark 2. Problem P(ξ) has a linear cost function. However, RTSCP can deal di-
rectly with the problems where the cost function f(x) is convex. If the cost function
is quadratic and Ω is a polyhedral set then the RTSCP method collapses to the real-
time iteration of a Gauss-Newton method (see, e.g. [4]).

Remark 3. In MPC, the parameter ξ is usually the value of the state variables of a
dynamic system at the current time t. In this case, ξ is measured at each sample time
based on the real-world dynamic system (see example in Section 4).

3 RTSCP contraction estimate
The KKT conditions of problem P(ξ) can be written as{

0 ∈ c+ g′(x)Tλ+NΩ(x)

0 = g(x) +Mξ,
(1)

where NΩ(x) :=
{
u ∈ Rn | uT (v − x) ≥ 0,∀v ∈ Ω

}
if x ∈ Ω and NΩ(x) := ∅

if x /∈ Ω, is the normal cone of Ω at x, and λ is a Lagrange multiplier associated
with g. Note that the constraint x ∈ Ω is implicitly included in the first line of (1).
A pair z̄(ξ) := (x̄(ξ), λ̄(ξ)) satisfying (1) is called a KKT point and x̄(ξ) is called a
stationary point of P(ξ). We denote by Λ(ξ) the set of KKT points at ξ.

In the sequel, we use z for a pair (x, λ), z̄k is a KKT point of P(ξ) at ξk and zk is
a KKT point of Pcvx(xk; ξk+1) (defined below) at ξk+1 for k ≥ 0. The symbols ‖ · ‖
and ‖ · ‖F stand for the L2-norm and the Frobenius norm, respectively.
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Now, let us define ϕ(z; ξ) :=

(
c+ g′(x)Tλ
g(x) +Mξ

)
andK := Ω×Rm, then the KKT

system (1) can be expressed as a parametric generalized equation [11]:

0 ∈ ϕ(z; ξ) +NK(z), (2)

where NK(z) is the normal cone of K at z.
Let xk ∈ Ω be a solution of Pcvx(xk−1; ξk) at the k-iteration of RTSCP. We con-

sider the following parametric convex subproblem at Step 1 of the RTSCP algorithm:
min
x

cTx

s.t. g′(xk)(x− xk) + g(xk) +Mξk+1 = 0,
x ∈ Ω.

Pcvx(xk; ξk+1)

If we define ϕ̂(z;xk, ξk+1) :=

(
c+ g′(xk)Tλ

g(xk) + g′(xk)(x− xk) +Mξk+1

)
then the

KKT condition for Pcvx(xk, ξk+1) can also be represented as a parametric general-
ized equation:

0 ∈ ϕ̂(z;xk, ξk+1) +NK(z), (3)

where ηk := (xk, ξk+1) plays a role of parameter. Suppose that the Slater constraint
qualification condition holds for problem Pcvx(xk; ξk+1), i.e.:

ri(Ω) ∩
{
x : g(xk) + g′(xk)(x− xk) +Mξk+1 = 0

}
6= ∅,

where ri(Ω) is the set of the relative interior points of Ω. Then by convexity of Ω, a
point zk+1 = (xk+1, λk+1) is a KKT point of the subproblem Pcvx(xk; ξk+1) if and
only if xk+1 is a solution of Pcvx(xk; ξk+1) with a corresponding multiplier λk+1.

For a given KKT point z̄k ∈ Λ(ξk) of P(ξk), we define a set-valued mapping:

L(z; ξ) := ϕ̂(z; x̄k, ξ) +NK(z), (4)

and L−1(δ; ξ) := {z ∈ Rn+m : δ ∈ L(z; ξ)} for δ ∈ Rn+m is its inverse mapping.
Note that 0 ∈ L(z; ξ) is indeed the KKT condition of Pcvx(x̄k; ξ). For each k ≥ 0,
we make the following assumptions:

(A1) The set of the KKT points Λ0 := Λ(ξ0) is nonempty.
(A2) The function g is twice continuously differentiable on its domain.
(A3) There exist a neighborhood N0 ⊂ Rn+m of the origin and a neighborhood
Nz̄k of z̄k such that for each δ ∈ N0, ψk(δ) := Nz̄k ∩L−1(δ; ξ) is single-valued
and Lipschitz continuous on N0 with a Lipschitz constant γ > 0.
(A4) There exists a constant 0 ≤ κ < 1/γ such that ‖Eg(z̄k)‖F ≤ κ, where
Eg(z̄

k) :=
∑m
i=1 λ̄

k
i∇2gi(x̄

k).

Assumptions (A1) and (A2) are standard in optimization, while Assumption (A3)
is related to the strong regularity concept introduced by Robinson [11] for the
parametric generalized equations of the form (2). It is important to note that the
strong regularity assumption follows from the strong second order sufficient opti-
mality in nonlinear programming when the constraint qualification condition (LICQ)



Real-Time Sequential Convex Programming 5

holds [11] [Theorem 4.1]. In this paper, instead of the generalized linear mapping
LR(z; ξ) := ϕ(z̄k; ξ) + ϕ′(z̄k)(z − z̄k) + NK(z) used in [11] to define strong reg-
ularity, in Assumption (A3) we use a similar form L(z; ξ) = ϕ(z̄k; ξ) +D(z̄k)(z −
z̄k) +NK(z), where

ϕ′(z̄k) =

[
Eg(z̄

k) g′(x̄k)T

g′(x̄k) 0

]
, and D(z̄k) =

[
0 g′(x̄k)T

g′(x̄k) 0

]
.

These expressions are different from each other only at the left-top corner Eg(z̄k),
the Hessian of the Lagrange function. Assumption (A3) corresponds to the stan-
dard strong regularity assumption (in the sense of Robinson [11]) of the subproblem
Pcvx(xk; ξk+1) at the point z̄k, a KKT point of (2) at ξ = ξk.

Assumption (A4) implies that either the function g should be “weakly nonlinear”
(small second derivatives) in a neighborhood of a stationary point or the correspond-
ing Langrage multipliers are sufficiently small in this neighborhood. The latter case
occurs if the optimal value of P(ξ) depends only weakly on perturbations of the
nonlinear constraint g(x) +Mξ = 0.

Theorem 1 (Contraction Theorem). Suppose that Assumptions (A1)-(A4) are sat-
isfied. Then there exist neighborhoods Nτ of ξk, Nρ of z̄k and a single-valued func-
tion z̄ : Nτ → Nρ such that for all ξk+1 ∈ Nτ , z̄k+1 := z̄(ξk+1) is the unique KKT
point of P(ξk+1) inNρ with respect to parameter ξk+1 (i.e. Λ(ξk+1) 6= ∅). Moreover,
for any ξk+1 ∈ Nτ , zk ∈ Nρ we have

‖zk+1 − z̄k+1‖ ≤ ωk‖zk − z̄k‖+ ck‖M(ξk+1 − ξk)‖, (5)

where ωk ∈ (0, 1), ck > 0 are constant, and zk+1 is a KKT point of Pcvx(x
k; ξk+1).

Proof. The proof is organized in two parts and step by step. The first part proves
Λk := Λ(ξk) 6= ∅ for all k ≥ 0 by induction and estimates the norm ‖z̄k+1 − z̄k‖.
The second part proves the inequality (5).

6
z̄(ξ)

-
ξ
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[4] : ‖ξk+1 − ξk‖

Fig. 1. The approximate sequence {zk}k along the manifold z̄(·) of the KKT points.

Part 1: For k = 0, Λ0 6= ∅ by Assumption (A1). Suppose that Λk 6= ∅ for k ≥ 0,
we will show that Λk+1 6= ∅. We divide the proof into four steps.
Step 1.1. We first provide the following estimations. Take any z̄k ∈ Λk. We define

rk(z; ξ) := ϕ̂(z; x̄k, ξk)− ϕ(z; ξ). (6)
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Since γκ < 1 by (A4), we can choose ε > 0 sufficiently small such that γκ +
5
√

3γε < 1. By the choice of ε, we also have c0 := κ +
√

3ε ∈ (0, 1/γ). Since g
is twice continuously differentiable, there exist neighborhoods Nτ ⊆ Nξk of ξk and
Nρ ⊆ Nz̄k of a radius ρ > 0 centered at z̄k such that: rk(z; ξ) ∈ N0, ‖Eg(z) −
Eg(z̄

k)‖F ≤ ε, ‖Eg(z) − Eg(zk)‖F ≤ ε, ‖g′(x) − g′(x̄k)‖F ≤ ε and ‖g′(x) −
g′(xk)‖F ≤ ε for all z ∈ Nρ.

Next, we shrink the neighborhood Nτ of ξk, if necessary, such that:

‖M(ξ − ξk)‖ ≤ ρ(1− c0)/γ. (7)

Step 1.2. For any z, z′ ∈ Nρ, we now estimate ‖rk(z; ξ) − rk(z′; ξ)‖. From (6) we
have

rk(z; ξ)− rk(z′; ξ) = ϕ̂(z; x̄k, ξk)− ϕ̂(z′; x̄k, ξk)− ϕ(z; ξ) + ϕ(z′; ξ)
(8)

=

∫ 1

0

B(zt; x̄
k)(z′ − z)dt,

where zt := z + t(z′ − z) ∈ Nρ and

B(z; x̂) =

[
Eg(z) g′(z)T − g′(x̂)T

g′(x)− g′(x̂) 0

]
. (9)

Using the estimations of Eg and g′ at Step 1.1, it follows from (9) that

‖B(zt; x̄
k)‖ ≤ ‖Eg(z̄k)‖F +

[
‖Eg(zt)− Eg(z̄k)‖2F + 2‖g′(xt)− g′(z̄k)‖2F

]1/2
(10)

≤ κ+
√

3ε ≡ c0.

Substituting (10) into (8), we get

‖rk(z; ξ)− rk(z′; ξ)‖ ≤ c0‖z − z′‖. (11)

Step 1.3. Let us define Φξ(z) := Nz̄k ∩ L(rk(z; ξ); ξk). Next, we show that Φξ(·) is
a contraction self-mapping onto Nρ and then show that Λk+1 6= ∅.

Indeed, since rk(z; ξ) ∈ N0, applying (A3) and (11), for any z, z′ ∈ Nρ, one has

‖Φξ(z)− Φξ(z′)‖ ≤ γ‖rk(z; ξ)− rk(z′; ξ)‖ ≤ γc0‖z − z′‖. (12)

Since γc0 ∈ (0, 1) (see Step 1.1), we conclude that Φξ(·) is a contraction mapping
on Nρ. Moreover, since z̄k = Nz̄k ∩ L−1(0; ξk), it follows from (A3) and (7) that

‖Φξ(z̄k)− z̄k‖ ≤ γ‖rk(z̄k; ξ)‖ = γ‖M(ξ − ξk)‖ ≤ (1− γc0)ρ.

Combining the last inequality, (12) and noting that ‖z − z̄k‖ ≤ ρ we obtain

‖Φξ(z)− z̄k‖ ≤ ‖Φξ(z)− Φξ(z̄k)‖+ ‖Φξ(z̄k)− z̄k‖ ≤ ρ,

which provesΦξ is a self-mapping ontoNρ. Consequently, for any ξk+1 ∈ Nτ ,Φξk+1

possesses a unique fixed point z̄k+1 inNρ by virtue of the contraction principle. This
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statement is equivalent to z̄k+1 is a KKT point of P(ξk+1), i.e. z̄k+1 ∈ Λ(ξk+1).
Hence, Λk+1 6= ∅.
Step 1.4. Finally, we estimate ‖z̄k+1 − z̄k‖. From the properties of Φξ we have

‖z̄k+1 − z‖ ≤ (1− c0γ)−1‖Φξk+1
(z)− z‖, ∀z ∈ Nρ. (13)

Using this inequality with z = z̄k and noting that z̄k = Φξk(z̄k), we have

‖z̄k+1 − z̄k‖ ≤ (1− c0γ)−1‖Φξk+1
(z)− Φξk(z̄k)‖. (14)

Since ‖rk(z̄k; ξk)− rk(z̄k; ξk+1)‖ = ‖M(ξk+1 − ξk)‖, applying again (A3), it fol-
lows from (14) that

‖z̄k+1 − z̄k‖ ≤ (1− c0γ)−1γ‖M(ξk+1 − ξk)‖. (15)

Part 2: Let us define the residual from ϕ̂(z; x̄k, ξk+1) to ϕ̂(z;xk, ξk+1) as:

δ(z;xk, ξk+1) := ϕ̂(z; x̄k, ξk+1)− ϕ̂(z;xk, ξk+1). (16)

Step 2.1. We first provide an estimation for ‖δ(z;xk, ξk+1)‖. From (16) we have

δ(z;xk, ξk+1)=
[
ϕ̂(z; x̄k, ξk+1)− ϕ(z̄k; ξk+1)

]
−
[
ϕ(z; ξk+1)− ϕ(z̄k; ξk+1)

]
−
[
ϕ̂(z;xk, ξk+1)− ϕ(zk; ξk+1)

]
+
[
ϕ(z; ξk+1)− ϕ(zk; ξk+1)

]
=

∫ 1

0

B(zkt ;xk)(z − zk)dt−
∫ 1

0

B(z̄kt ; x̄k)(z − z̄k)dt (17)

=

∫ 1

0

[
B(zkt ;xk)−B(z̄kt ; x̄k)

]
(z − zk)dt−

∫ 1

0

B(z̄kt ; x̄k)(zk − z̄k)dt,

where zkt := zk + t(z−zk), z̄kt := z̄k + t(z− z̄k) and B is defined by (9). Using the
definition of ϕ̂ and the estimations of Eg and g′ at Step 1.1, it is easy to show that

‖B(zkt ;xk)−B(z̄kt ; x̄k)‖ ≤
[
‖Eg(zkt)−Eg(z̄k)‖2F +2‖g′(xkt )− g′(xk)‖2F

]1/2
(18)

+
[
‖Eg(z̄kt)−Eg(z̄k)‖2F +2‖g′(x̄kt )− g′(x̄k)‖2F

]1/2 ≤ 2
√

3ε.

Similar to (10), the quantity B(z̄kt ; x̄k) is estimated by

‖B(z̄kt ; x̄k)‖ ≤ κ+
√

3ε. (19)

Substituting (18) and (19) into (17), we obtain an estimation for ‖δ(z;xk, ξk+1)‖ as

‖δ(z;xk, ξk+1)‖ ≤ (κ+
√

3ε)‖zk − z̄k‖+ 2
√

3ε‖z − zk‖. (20)

Step 2.2. We finally prove the inequality (5). Suppose that zk+1 is a KKT point of
Pcvx(xk; ξk+1), we have 0 ∈ ϕ̂(zk+1;xk, ξk+1)+NK(zk+1). This inclusion implies
δ(zk+1;xk, ξk+1) ∈ ϕ̂(zk+1; x̄k, ξk+1)+NK(zk+1) ≡ L(zk+1; ξk+1) by the defini-
tion (16) of δ(zk+1;xk, ξk+1). On the other hand, since 0 ∈ ϕ̂(z̄k; x̄k, ξk)+NK(z̄k),
which is equivalent to δ1 := M(ξk+1 − ξk) ∈ L(z̄k; ξk+1), applying (A3) we get
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‖zk+1 − z̄k‖ ≤ γ‖δ(zk+1;xk, ξk+1)− δ1‖
≤ γ‖δ(zk+1;xk, ξk+1)‖+ γ‖M(ξk+1 − ξk)‖.

Combining this inequality and (20) with z = zk+1 to obtain

‖zk+1− z̄k‖ ≤ γ(κ+
√

3ε)‖zk−z̄k‖+2
√

3γε‖zk+1−zk‖+γ‖M(ξk+1−ξk)‖.(21)

Using the triangular inequality, after a simple arrangement, (21) implies

‖zk+1 − z̄k+1‖ ≤ γ(κ+ 3
√

3ε)

1− 2
√

3γε
‖zk − z̄k‖+

1 + 2
√

3γε

1− 2
√

3γε
‖z̄k+1 − z̄k‖

(22)
+

γ

1− 2
√

3γε
‖M(ξk+1 − ξk)‖.

Now, let us define ωk := γ(κ+3
√

3ε)

1−2
√

3γε
, ck := γ

1−2
√

3γε

[
2
√

3γε+1
1−c0γ + 1

]
. By the choice

of ε at Step 1.1, we can easily check that ωk ∈ (0, 1) and ck > 0. Substituting (15)
into (22) and using the definitions of ωk and ck, we obtain

‖zk+1 − z̄k+1‖ ≤ ωk‖zk − z̄k‖+ ck‖M(ξk+1 − ξk)‖,

which proves (5). The theorem is proved. �

If Γ ≡ {ξ} then the RTSCP method collapses to the full-step SCP method de-
scribed in Section 1. Without loss of generality, we can assume that ξk = 0 for all
k ≥ 0. The following corollary immediately follows from Theorem 1.

Corollary 1. Suppose that
{
zj
}
j≥1

is the sequence of the KKT points of Pcvx(x
j−1; 0)

generated by the SCP method described in Section 1 and that the assumptions of
Theorem 1 hold for ξk = 0. Then

‖zj+1 − z̄‖ ≤ ω‖zj − z̄‖, ∀j ≥ 0, (23)

where ω ∈ (0, 1) is the contraction factor. Consequently, this sequence converges
linearly to a KKT point z̄ of P(0).

4 Numerical example: control of an underactuated hovercraft
In this section we apply RTSCP to the control of an underactuated hovercraft. We
use the same model as in [12], which is characterized by the following differential
equations: 

mÿ1(t) = (u1(t) + u2(t)) cos(θ),

mÿ2(t) = (u1(t) + u2(t)) sin(θ),

Iθ̈(t) = r(u1(t)− u2(t)),

(24)

where y(t) = (y1(t), y2(t))T is the coordinate of the center of mass of the hovercraft
(see Fig. 2); θ(t) represents the direction of the hovercraft; u1(t) and u2(t) are the fan
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u1

u2r 

θ 
(y1, y2) 

y2

y1

Fig. 2. RC hovercraft and its model [12].

thrusts; m and I are the mass and moment of inertia of the hovercraft, respectively;
and r is the distance between the central axis of the hovercraft and the fans.

The problem considered is to drive the hovercraft from its initial position to the
final parking position corresponding to the origin of the state space while respecting
the constraints

u ≤ u1(t) ≤ ū, u ≤ u2(t) ≤ ū, y
1
≤ y1(t) ≤ ȳ1, y2

≤ y2(t) ≤ ȳ2. (25)

To formulate this problem so that we can use the proposed method, we discretize the
dynamics of the system using the Euler discretization scheme. After introducing a
new state variable ξ := (y1, y2, θ, ẏ1, ẏ2, θ̇)

T and a control variable u := (u1, u2)T ,
we can formulate the following optimal control problem:

min
ξ0,...,ξN

u0,...,uN−1

N−1∑
n=0

[
‖ξn‖2Q + ‖un‖2R

]
+ ‖ξN‖2S

s.t. ξ0 = ξ̄,

ξn+1 = φ(ξn, un) ∀n = 0, . . . , N − 1,

(ξ0, . . . , ξN , u0, . . . , uN−1) ∈ Ω̃,

(26)

where φ(·, ·) represents the discretized dynamics and the constraint set Ω̃ can be
easily deduced from (25). By introducing a slack variable s and using the convex
constraint:

s ≥
N−1∑
n=0

[
‖ξn‖2Q + ‖un‖2R

]
+ ‖ξN‖2S , (27)

we can transform (26) into P(ξ̄) of a variable x := (s, ξT0 , . . . , ξ
T
N , u

T
0 , . . . , u

T
N−1)T

and the objective function cTx = s. Note that ξ̄ is an online parameter. It plays the
role of ξk in the RTSCP algorithm along the moving horizon (see Section 2).

We implemented the RTSCP algorithm using a primal-dual interior point method
for solving the convex subproblem Pcvx(xk−1; ξk). We performed a simulation us-
ing the same data as in [12]: m = 0.974kg, I = 0.0125kg · m2, r = 0.0485m,
u = −0.121N, ū = 0.342N, y

1
= y

2
= −2m, ȳ1 = ȳ2 = 2m, Q =

diag(5, 10, 0.1, 1, 1, 0.01), S = diag(5, 15, 0.05, 1, 1, 0.01), R = diag(0.01, 0.01)
and the initial condition ξ0 = ξ(0) = (−0.38, 0.30, 0.052, 0.0092,−0.0053, 0.002)T .

Figure 3 shows the results of the simulation where a sampling time of ∆t =
0.05s and N = 15 are used. The stopping condition used for the simulation is
‖y(t)‖ ≤ 0.01.
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Fig. 3. Trajectory of the hovercraft after t = 9.5s (left) and control input profile (right).
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