Skip to main content

A Binary-Real-Coded Differential Evolution for Unit Commitment Problem: A Preliminary Study

  • Conference paper
  • 899 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7080))

Abstract

Due to its economical importance, the unit commitment problem has become a matter of concern in power systems, and consequently an important area of research. It is a nonlinear mixed-integer optimization problem, in which a given number of power generating units are to be scheduled in such a way that the forecasted demand is met at minimum production cost over a time horizon. In this paper a binary-real-coded differential evolution along with some repairing mechanisms is investigated as the solution technique of the problem. In the computational experiment carried out with a hypothetical 10-unit power system over 24-hour time horizon, available in the literature, the proposed technique is found outperforming all the existing methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abookazemi, K., Ahmad, H., Tavakolpour, A., Hassan, M.Y.: Unit commitment solution using an optimized genetic system. Electrical Power and Energy Systems 33(4), 969–975 (2011)

    Article  Google Scholar 

  2. Abookazemi, K., Mustafa, M.W., Ahmad, H.: Structured genetic algorithm technique for unit commitment problem. Int. J. Recent Trends in Engineering 1(3), 135–139 (2009)

    Google Scholar 

  3. Balci, H.H., Valenzuela, J.F.: Scheduling electric power generations using particle swarm optimization combined with the Lagrangian relaxation method. Int. J. Applied Mathematics and Computer Science 14(3), 411–421 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Chang, C.S.: An improved differential evolution scheme for the solution of large-scale unit commitment problems. Informatica. 21(2), 175–190 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Cheng, C.P., Liu, C.W., Liu, C.C.: Unit commitment by Lagrangian relaxation and genetic algorithms. IEEE Transactions on Power Systems 15(2), 707–714 (2000)

    Article  Google Scholar 

  6. Cohen, A.I., Yoshimura, M.: A branch-and-bound algorithm for unit commitment. IEEE Transactions on Power Apparatus and Systems PAS 102(2), 444–451 (1983)

    Article  Google Scholar 

  7. Damousis, I.G., Bakirtzis, A.G., Dokopoulos, P.S.: A solution to the unit commitment problem using integer-coded genetic algorithm. IEEE Transactions on Power Systems 19(2), 1165–1172 (2004)

    Article  Google Scholar 

  8. Datta, D., Figueira, J.R.: A real-integer-discrete-coded differential evolution algorithm: A preliminary study. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 35–46. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Deb, K.: An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186, 311–338 (2000)

    Article  MATH  Google Scholar 

  10. Dieu, V.N., Ongsakul, W.: Enhanced augmented Lagrangian hopfield network for unit commitment. IEE Proc. on Generation, Transmission and Distribution 153, 624–632 (2006)

    Article  Google Scholar 

  11. Jeong, Y.W., Lee, W.N., Kim, H.H., Park, J.B., Shin, J.R.: Thermal unit commitment using binary differential evolution. J. Electrical Engg. & Tech. 4(3), 323–329 (2009)

    Article  Google Scholar 

  12. Juste, K.A., Kita, H., Tanaka, E., Hasegawa, J.: An evolutionary programming solution to the unit commitment problem. IEEE Transactions on Power Systems 14(4), 1452–1459 (1999)

    Article  Google Scholar 

  13. Kazarlis, S.A., Bakirtzis, A.G., Petridis, V.: A genetic algorithm solution to the unit commitment problem. IEEE Transactions on Power Systems 11(1), 83–92 (1996)

    Article  Google Scholar 

  14. Keleş, A.: Binary differential evolution for the unit commitment problem. In: Genetic and Evolutionary Computation Conference (GECCO 2007), London, UK, pp. 2765–2768 (2007)

    Google Scholar 

  15. Lee, T.Y., Chen, C.L.: Unit commitment with probabilistic reserve: An IPSO approach. Energy Conversion and Management 48(2), 486–493 (2007)

    Article  Google Scholar 

  16. Mantawy, A.H., Abdel-Magid, Y.L., Selim, S.Z.: Unit commitment by tabu search. IEE Proc. on Generation, Transmission and Distribution. 145, 56–64 (1998)

    Article  Google Scholar 

  17. Ongsakul, W., Petcharaks, N.: Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Transactions on Power Systems 19(1), 620–628 (2004)

    Article  Google Scholar 

  18. Patra, S., Goswami, S.K., Goswami, B.: A binary differential evolution algorithm for transmission and voltage constrained unit commitment. In: Power System Technology and IEEE Power India Conference (POWERCON 2008), New Delhi, pp. 1–8 (2008)

    Google Scholar 

  19. Patra, S., Goswami, S.K., Goswami, B.: Differential evolution algorithm for solving unit commitment with ramp constraints. Electric Power Components and Systems 36(8), 771–787 (2008)

    Article  Google Scholar 

  20. Pavez-Lazo, B., Soto-Cartes, J.: A deterministic annular crossover genetic algorithm optimisation for the unit commitment problem. Expert Systems with Applications 38(6), 6523–6529 (2011)

    Article  Google Scholar 

  21. Senjyu, T., Yamashiro, H., Uezato, K., Funabashi, T.: A unit commitment problem by using genetic algorithm based on unit characteristic classification. In: IEEE Conf. on Power Engineering Society Winter Meeting, vol. 1, pp. 58–63 (2002)

    Google Scholar 

  22. Senjyua, T., Miyagia, T., Sabera, A.Y., Urasakia, N., Funabashib, T.: Emerging solution of large-scale unit commitment problem by stochastic priority list. Electric Power Systems Research 76(5), 283–292 (2006)

    Article  Google Scholar 

  23. Storn, R., Price, K.: Differential evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces. Tech. Rep. TR-95-012, International Computer Science Institute, Berkeley, CA (1995)

    Google Scholar 

  24. Storn, R., Price, K.: Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–354 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Su, C.C., Hsu, Y.Y.: Fuzzy dynamic programming: an application to unit commitment. IEEE Transactions on Power Systems 6(3), 1231–1237 (1991)

    Article  Google Scholar 

  26. Takriti, S., Birge, J.: Using integer programming to refine Lagrangian-based unit commitment solutions. IEEE Transactions on Power Systems 15(1), 151–156 (2000)

    Article  Google Scholar 

  27. Ting, T.O., Rao, M.V.C., Loo, C.K., Ngu, S.S.: Solving unit commitment problem using hybrid particle swarm optimization. J. Heuristics 9(6), 507–520 (2003)

    Article  MATH  Google Scholar 

  28. Uyar, A.S., Türkay, B., Keleş, A.: A novel differential evolution application to short-term electrical power generation scheduling. Electrical Power and Energy Systems 33(6), 1236–1242 (2011)

    Article  Google Scholar 

  29. Valenzuela, J., Smith, A.E.: A seeded memetic algorithm for large unit commitment problems. J. Heuristics 8(2), 173–195 (2002)

    Article  Google Scholar 

  30. Wood, A.J., Wollenberg, B.: Power Generation Operation and Control. John Wiley, New York (1984)

    Google Scholar 

  31. Yuan, X., Su, A., Nie, H., Yuan, Y., Wang, L.: Application of enhanced discrete differential evolution approach to unit commitment problem. Energy Conversion & Management 50, 2449–2456 (2009)

    Article  Google Scholar 

  32. Yuan, X., Su, A., Nie, H., Yuan, Y., Wang, L.: Unit commitment problem using enhanced particle swarm optimization algorithm. Soft Computing 15(1), 139–148 (2011)

    Article  Google Scholar 

  33. Zhuang, F., Galiana, F.D.: Unit commitment by simulated annealing. IEEE Transactions on Power Systems 5(1), 311–318 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dutta, S., Datta, D. (2011). A Binary-Real-Coded Differential Evolution for Unit Commitment Problem: A Preliminary Study. In: Sombattheera, C., Agarwal, A., Udgata, S.K., Lavangnananda, K. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2011. Lecture Notes in Computer Science(), vol 7080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25725-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25725-4_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25724-7

  • Online ISBN: 978-3-642-25725-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics