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Abstract

We present an analysis of the performance of an elitist Evolutionary

algorithm using a recombination operator known as 1-Bit-Swap on the

Royal Roads test function based on a population. We derive complete,

approximate and asymptotic convergence rates for the algorithm. The

complete model shows the benefit of the size of the population and re-

combination pool.

1 Introduction

Evolutionary Algorithms (EA) are a set of heuristic optimization tools, that are
well-suited to problems with poorly-understood landscapes (sometimes known
as black-box optimization). Despite a rich history in application, theoretical
analysis has been lagging behind; while there have been some advances in recent
years, the analysis has mainly been restricted to single-parent algorithms, which
is an extremely limiting assumption.

The algorithm that we analyse is described as a (µ + λ) evolutionary algo-
rithm, where µ and λ are the size of the population from which solutions are
picked, and the size of the mating pool that is created from them, respectively.
The + signifies that the algorithm is elitist, i.e., that the best solution at each
iteration is always reproduced in the next, so that the best fitness in the popu-
lation can never decrease. In this paper we consider the effect that population
has on the expected time when the algorithm finds the optimal solution to the
problem. We model the distribution of elite species in the population using a
static model of a uniform distribution. Most work to date has considered only
(1 + 1) EAs. The operator that we use to recombine solutions is the 1-bit-swap
(1BS) operator that was described in [TSMH10].
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We derive an exact expression for the expected runtime of (µ + λ)EA1BS .
Since this expression does not appear to have a closed form, we then develop
an approximation to it and compute the asymptotic limit. Rather surprisingly,
in the asymptotic expression the size of the population and recombination pool
cancel out, and so they do not appear.

1.1 Royal Roads Function

The Royal Roads (RR) is a test function introduced in [MFH92] and analyzed
in [Mit96], where a population-based Evolutionary Algorithm was found to have
underperformed a simpler heuristic Randomized Local Search (RLS), which con-
tradicted the theoretical findings in the same article. The Royal Road was ini-
tially developed to demonstrate the schemata theory of EAs. A string of length
n is split into K consecutive bins or blocks (which we index as κ1, κ2, . . . , κK).
All bins have the same size, M , so that n = KM . The fitness of the string is the
sum of the fitness for each bin, and the fitness of each bin is M if all the bits in
the bin have value 1, and 0 otherwise. Thus, the possible fitness of strings with
the Royal Road function are 0,M, 2M, . . . ,KM , so the function has plateaus of
fitness, where a large number of strings have the same fitness value. This means
that single bit modifications to the solution string will generally not improve
the fitness function. This means that within the plateau, the solutions created
by the EA are expected to show a random walk behaviour.

1.2 Past Work

RR has not received much attention in recent EA literature, where the focus
has been on the rather simpler OneMax (also known as Counting Ones) fitness
function. However, in [SW03] an upper bound on the expected running time
of O(n6) was found for a version of RR. In [Mit96] the bounds on convergence
for RR were found to be O(2K logn), where n is the length of the string and K
the length of the bin, up to a linear term tighter than the bound for the RLS
(O(2KN logN)), although numerically RLS outperformed EA. This result does
not involve the size of the population or recombination pool in any way.

For the OneMax test function there has been rather more research on EAs,
although (1 + 1), (µ + 1) and (1 + λ) set-ups are still more widespread. In
[HY02] it was shown that the effect of population is problem-specific, i.e., in-
crease in population size may not improve performance at all. Very recently,
in [CTCY11], it was shown that populations of size O(log n) boost performance,
while those of size Ω( n

logn
) impair the progress of the algorithm (with the anal-

ysis based on the TrapZeros multimodal function) and reduce the probability of
global convergence.
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1 Initialize population size µ
repeat for t generations:

2 select λ
2 pairs of parents from the population using Tournament selection

repeat λ
2 times:

3a select a bit at random in Parent 1
3b select a bit at random in Parent 2
3c swap values in the selected bits
4 after the recombination, keep α best species in the population,

replace the rest with the best species from the pool

Table 1: (µ+ λ)EA1BS

2 Analyzed Algorithm:(µ + λ)EA1BS

The genetic operator that we consider in this paper is not the usual mutation
operator. The k-Bit-Swap genetic operator (KBS) was introduced in [TSMH10].
It contains some features of both mutation and uniform crossover and recom-
bines information between two parents in a random manner. In this article we
use 1-Bit-Swap (1BS), which picks exactly 1 bit from each parent uniformly at
random.

See Table 1 for the pseudocode of the algorithm.

Tournament selection consists of picking two species at random and putting
the fitter of the pair into the mating pool.

3 Model Setup and Assumptions

The main quantity we analyze in this article is the first hitting time of the global
solution of the test problem:

τRR
A = min{t ≥ 0 : f(α) = n}

where A is the set of all possible populations that include a global solution. We
want to find EτRR, the expectation of this time parameter, for the (µ+ λ) EA
with 1BS as the only genetic operator.

3.1 Improvement process

We start with the pessimistic assumption that each bin κ starts with an equal
number of 0s and 1s, which implies that the starting fitness of all elements of
the population is 0. As the Royal Road fitness function makes incremental im-
provements impossible to see, in order to measure the progress of the algorithm

3



we introduce, in addition to the fitness function, an auxiliary function, in this
case OneMax (where the fitness of a string is simply a count of the number of
1s in it; for further reference see e.g. [CHS+09]). We denote the value of the
auxiliary function for a bin κ as Vκ, which can theoretically have values between
0 and M , although in practice they all start at M/2 because of our assumption
above. Since only 1 bit is changed in a string at each iteration, only one bin can
evolve at a time. In a slight abuse of notation, we refer to that bin as the ‘active
bin’ and index it as κ. Within a bin, the number of improvements that have
already been made (i.e., the number of bits that were 0 and have already been
changed into 1s) is denoted by the variable l, which starts at 0 and increases to
M/2.

We restrict our attention to elite pairs in the recombination pool, i.e. pairs in
which both parents are currently elite species. This is a limitation of our analysis
that means that we underestimate the chance of success. The probability of
selecting an elite pair in the recombination pool is:

Psel(α) =
α2(α+ 2(µ− α))2

µ4
=

(α(2µ− α))2

µ4

where α is the number of elite species in the population.
Having selected the pair, the probability that as a results of swapping bits

between them, a better species evolves is:

Pswap =
2(M2 − l)(n2 + κM

2 + l)

n2
=

(M − 2l)(n+ κM + 2l)

2n2

This probability comes from the fact that we want to select any 0 in bin κ in one
of the parents and a 1 anywhere in the other parent. Obviously, as the number
of 1s in both parents grows, this probability grows too. In Section 4.1 we also
use the probability of failure:

PF = 1− Pswap

3.2 Population and elitism assumptions

We assume that each generation currently elite species in the population are
distributed uniformly:

α ∼ Uniform
( 1

µ

)

This is a static model, i.e. this distribution does not change throughout the
run of the algorithm; we will consider a dynamic model for this distribution in
future work. We also assume that the rate of elitism (the number of species
saved for the next generation) is high enough, that is, high enough to keep all
elite species.
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4 Derivation of the expectation of convergence

time

We present three main results: exact, approximate and asymptotic. The latter
two are necessary, since the complete one does not have a closed form.

4.1 Exact expression

We start with introducing the probability of failure to improve Vκ:

P (G0) =

λ
2
∑

j=0

P (G0|Hj)

µ
∑

α=1

P (Hj |α)P (α) (1)

where Hj is jth elite pair in the recombination pool λ, and α is the number of
elite species in the population µ.

The probability to fail to improve a bit in a bin given l improvements so far
is:

P (G0l) =
1

µ

λ
2
∑

j=0

(2n2 − (M − 2l)(n+ κM + 2l)

2n2

)j
(

λ
2

j

)

·

µ
∑

α=1

( (α(α + 2µ(µ− α)))2

µ4

)j(

1−
(α(α + 2µ(µ− α)))2

µ4

)
λ
2 −j

=
1

µ

λ
2
∑

j=0

P j
F

(

λ
2

j

) µ
∑

α=1

(Psel(α))
j(1− Psel(α))

λ
2 −j

=
1

µ

µ
∑

α=1

λ
2
∑

j=0

(

λ
2

j

)

(PFPsel(α))
j(1− Psel(α))

λ
2 −j

=
1

µ

µ
∑

α=1

(1− Psel(α)Pswap)
λ
2 (2)

The last step is due to the Binomial expansion:
∑n

k=0

(

n
k

)

akbn−k = (a+ b)n.
Therefore, the probability of an increase in the auxiliary function is:

P (Gl) = 1− P (G0l) = 1−
1

µ

µ
∑

α=1

(1− Psel(α)Pswap)
λ
2

The expected time until the next improvement of the auxiliary function of
a bin κ is:

ETκ =

M
2 −1
∑

l=0

1

P (Gl)
(3)
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and, finally, summing over all κ from 1 to K we obtain (since G depends on
both l and κ):

Eτ(µ+λ)EA1BS
=

K
∑

κ=1

M
2 −1
∑

l=0

1

P (Gl,κ)

=
K
∑

κ=1

M
2 −1
∑

l=0

1

1− 1
µ

∑µ
α=1(1 − (α(2µ− α))2Pswap)

λ
2

=

K
∑

κ=1

M
2 −1
∑

l=0

1

1− 1
µ

∑µ
α=1(1 −

(α((2µ−α)))2(M−2l)(n+κM+2l)
2µ4n2 )

λ
2

(4)

The benefit of larger population sizes is clear in the 1
µ
term in front of the sums

in the denominator. Also, increases in the size of λ lead to reductions in the
probability of failure.

We test this expression numerically for different values of n, µ, λ (see Ap-
pendix C). Unfortunately, this expression does not seem to exist in closed form,
so we instead go ahead with finding an approximation to it in the next subsec-
tion.

4.2 Approximate and asymptotic expressions

P (G0l) =
1

µ

µ
∑

α=1

(

1−
(α(α + 2(µ− α)))2(M − 2l)(n+ κM + 2l)

2µ4n2

)
λ
2

=
1

µ

µ
∑

α=1

(

1−
(α(2µ− α))2(M − 2l)(n+ κM + 2l)

2µ4n2

)
λ
2

≈
1

µ

µ
∑

α=1

e
−

λ(α(2µ−α))2(M−2l)(n+κM+2l)

4µ4n2 ≈
1

µ

∫ µ

1

e
−

(

α(2µ−α)
√

γ

)2

dα (5)

The last step in the summand was due to limn→∞(1 − 1
n
) = 1

e
. Note that

γ = 4µ4n2

λ(M−2l)(n+κM+2l) , and, assuming that µ = λ, the upper bound on γ is

4µ4n2

λ(M−2l)(n+kM+2l) <
4µ4n2

3λn = O(µ3n). although for monotonically decreasing

functions, such as this one, by the integral test the sum is larger than the
corresponding integral; for µ << n the sum is closely approximated by the
integral.

We denote I1 =
∫ µ

1
f(α)dα =

∫ µ

1
e
−

(

α(2µ−α)
√

γ

)2

dα. Expanding the function
inside the integral as a Taylor series around α0 = 1 up to the second term, we

get (since f ′(α0) = − 4(2µ−1)(µ−1)

e
(
2µ−1
√

γ
)2

γ

):

f(α) ≈ e
−( 2µ−1

√
γ

)2
−

4(2µ− 1)(µ− 1)(α− 1)

e
( 2µ−1

√
γ

)2
γ

(6)
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Therefore, the integral turns into:

I1 =

∫ µ

1

f(α)dα ≈

∫ µ

1

(

e
−( 2µ−1

√
γ

)2
−

4(2µ− 1)(µ− 1)(α− 1)

e
( 2µ−1

√
γ

)2
γ

)

dα

= e
−( 2µ−1

√
γ

)2
(µ− 1)

[

1−
2(2µ− 1)(µ− 1)2

γ

]

(7)

The probability of failure is approximately (with the assumptions specified
above):

P (G0l) ≈
e
−( 2µ−1

√
γ

)2
(µ− 1)

[

1− 2(2µ−1)(µ−1)2

γ

]

µ

Accordingly, the probability of a successful swap is:

P (Gl) ≈ 1−
e
−( 2µ−1

√
γ

)2
(µ− 1)

[

1− 2(2µ−1)(µ−1)2

γ

]

µ

Using the sum of expectations of Geometric random variables with different
parameters, the expected time until filling a bin, i.e. improvement of the fitness
function, is:

ETκ =

M
2 −1
∑

l=0

γ

γ − γe
−( 2µ−1

√
γ

)2
+ 2(2µ− 1)(µ− 1)2e

−( 2µ−1
√

γ
)2

(8)

We make two approximations here. First, we use a Riemanian sums approxi-
mation to obtain [0, 1] bounds on the integral, and then expand the integrand in
Taylor series with 2 terms around the midpoint to obtain a good approximation
of the integral. The Riemanian sums approximation is defined by:

lim
n→∞

n
∑

j=1

f(xj) = n

∫ 1

0

f(nx)dx+ o(n)

and γ is transformed accordingly:

γ =
4µ4n2

(M − 2(M2 − 1)l)(n+ κM + (M2 − 1)l)

Then:

I2 =

∫ 1

0

γdl

γ − γe
−( 2µ−1

√
γ

)2
+ 2(2µ− 1)(µ− 1)2e

−( 2µ−1
√

γ
)2

(9)

Therefore, the expected first hitting time until the evolution of the bin κ is
(the rather long Taylor series expansion of the integrand is given in the Appendix
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A):

ETκ ≈
(M

2
− 1
)

∫ 1

0

γdl

γ − γe
−( 2µ−1

√
γ

)2
+ 2(2µ− 1)(µ− 1)2e

−( 2µ−1
√

γ
)2

=
4µ4n2(M2 − 1)

λ(M2 + 1)(M2 + n+ κM − 1)
[

2(2µ−1)(µ−1)2

σ1
+ 4µ4n2

λ(M
2 +1)σ2

− 4µ4n2

λ(M
2 +1)σ2σ1

]

(10)

where:

σ1 = e
λ(2µ−1)2( M

2
+1)σ2

4µ4n2

σ2 =
M

2
+ n+ κM − 1

Note that σ1 has the interesting property (given µ = λ) that:

lim
n→∞

e
λ(2µ−1)2( M

2
+1)( M

2
+n+κM−1)

4µ4n2 = lim
n→∞

e
M(M+n+KM)

µn2 = lim
n→∞

e
M
µn

+O

(

M2

µn2

)

= 1

which means, that for sufficiently large values of n and µ the second and the
third terms in the square brackets cancel each other out, and the first term is
just 2(2µ− 1)(µ− 1)2.

Finally, summing over all κ, the number of bins in the string, we get the
approximation of the convergence time of the (µ + λ) algorithm on RR test
function:

EτRR
(µ+λ)EA1BS

≈
2µ4n2(M − 2)

λ(M + 2)(2µ− 1)(µ− 1)2

K−1
∑

κ=0

1
M
2 + n− 1 + κM

=
2µ4n2(M − 2)

λM(M + 2)(2µ− 1)(µ− 1)2

[

ψ0

( M
2 + n− 1 +M +KM

M

)

− ψ0

( M
2 + n− 1

M

)]

≈
2µ4n2(M − 2)

λM(M + 2)(2µ− 1)(µ− 1)2
log
(

1 +
2KM

M + 2n

)

(11)

where ψ0 is a Digamma function (see e.g. [AS65,GKP95]). In the derivation of
the asymptotic expression for this bound, all population-related terms cancel
out (since µ = λ and both numerator and denominator have the highest term
µ4), and the order of convergence is

EτRR
(µ+λ)EA1BS

= O

(

n2 log
(

1 + KM
M+n

)

M

)

(12)

which seems to be a comparable result compared to those available in literature
covering fitness functions with plateaus of fitness (e.g. [HY02,CHS+09,SW03]).
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5 Conclusions and Future Work

We have derived three expressions for convergence of an elitist (µ+λ)EA1BS on
Royal Roads test function: exact, approximate and asymptotic. Although the
exact expression for the expected convergence time clearly shows the benefit of
increase in the population (at least when the population is relatively small), the
approximate result has an equal order of population and asymptotic has none
at all due to cancellation.

An important assumption for the approximation of EτRR
(µ+λ)EA1BS

was that

µ << n, but we never specified the relation, unlike in [CTCY11]. This is
something to look at in the future. Since the effect of the population is known
to be problem-specific, we will be able to get good insights into it for unimodal
functions with plateaus, such as Royal Roads.

We have performed our analysis assuming Uniform distribution of elite species
in the population, something noone seems to have done in EA literature before.
This is a static approach to convergence (i.e. the distribution assumption does
not change throughout the run of the algorithm). We would like to look at the
dynamics of the elite species and their effect on the probability of success, P (Gl)
and expected convergence time.
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A Taylor series approximation of the integrand

We give the expression for the Equation 10 here due to its length. It’s Taylor
series expansion of the integrand around midpoint of the interval (0.5)

φ(l) ≈
4µ2n2

λ(M2 + 1)σ1σ3
+ s3

(

s3

{

s1
σ2σ4

−
s2

µ4n2σ2(M
2

+1)

σ3
− 16(M−2)

σ2σ
2
3(

M
2 +1)

}

− s3
(16M−32)σ5

σ4σ
2
3

+ ϕ1

(M2 + 1)σ2
1σ3

+
4(M − 2)σ5
σ1σ2

3σ4

)

· (l −
1

2
)

where

σ1 =
2(µ− 1)(µ− 1)2

σ2
+

4µ2n2

λ(M2 + 1)σ3
−

4µ4n2

λσ2σ3(
M
2 + 1)

σ2 = e
λ(2µ−1)( M

2
+1)σ3

4µ4n2 , σ3 =
M

2
+n+kM −1, σ4 =

(M

2
+1
)2

, σ5 = n+kM −2

s1 = 16(M − 2), s2 = 4λ(2µ− 1)2((M − 2)(
M

2
+ 1)− σ3(M − 2)), s3 =

µ4n2

λ

ϕ1 =
2(2µ− 1)3(µ− 1)2(2M + 2n+ 2kM − nM − kM2 − 4)

s3σ2

B Additional Derivation Details

To derive expressions in Section 4.1, we extensively used properties of indepen-
dent Geometric RVs that are not identically distributed, which is also known
as Coupon collector’s problem (see e.g. [GKP95]): if Xi ∼ Geom(pi) it ex-
pectation is E[Xi] =

1
pi
. Therefore, if Y =

∑n
i=1Xi, EY =

∑n
i=1 E[Xi] =

1
p1

+ 1
p2

+ . . .+ 1
pn

.
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n K M µ λ EτRR
(µ+λ)EA1BS

τ̃(µ+λ)EA1BS

32 4 8

4 4 145 315.31
10 10 72.4 268.22
20 20 44.2 192.29
30 30 34.5 173.56

64 8 8

4 4 570.62 612.46
10 10 279.88 497.93
20 20 153.46 454.47
30 30 112.30 372.04

128 16 8

4 4 2264.36 1365
10 10 1048 1239
20 20 570.44 1091.5
30 30 401.99 949.4

Table 2: Theoretical and computational bounds for (µ+ λ)EARR
1BS

For Equation 1 we use the Law of total probability twice: first, conditioning
on Hj , then on α:

P (A) =

m
∑

i=1

P (A|Bi)P (Bi) =

m
∑

i=1

P (A|Bi)

n
∑

j=1

P (Bi|Cj)P (Cj)

C Numerical results to verify Equation 4

Column τ̃(µ+λ)EA1BS
was obtained by running the algorithm with different pa-

rameters 20 times, each run was 2000 generation each. The earliest achievement
of the global minimum for each run was saved and then averaged over.
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