
Beyond Trees: Adopting MITI to Learn Rules
and Ensemble Classifiers for Multi-instance Data

Luke Bjerring and Eibe Frank

Department of Computer Science, University of Waikato
{lb54,eibe}@cs.waikato.ac.nz

Abstract. MITI is a simple and elegant decision tree learner designed
for multi-instance classification problems, where examples for learning
consist of bags of instances. MITI grows a tree in best-first manner by
maintaining a priority queue containing the unexpanded nodes in the
fringe of the tree. When the head node contains instances from posi-
tive examples only, it is made into a leaf, and any bag of data that is
associated with this leaf is removed. In this paper we first revisit the
basic algorithm and consider the effect of parameter settings on classi-
fication accuracy, using several benchmark datasets. We show that the
chosen splitting criterion in particular can have a significant effect on ac-
curacy. We identify a potential weakness of the algorithm—subtrees can
contain structure that has been created using data that is subsequently
removed—and show that a simple modification turns the algorithm into
a rule learner that avoids this problem. This rule learner produces more
compact classifiers with comparable accuracy on the benchmark datasets
we consider. Finally, we present randomized algorithm variants that en-
able us to generate ensemble classifiers. We show that these can yield
substantially improved classification accuracy.

1 Introduction

Multi-instance classification differs from standard propositional classification in
that examples for learning consist of bags of instances. Potential application
domains are drug activity prediction, where instances can be feature vectors
describing different conformations of a molecule [5], and content-based image
classification, where they are associated with different regions in an image [13].
In either case, a class label—indicating, e.g., whether a molecule is “active” or
“inactive”—is available only for the entire example (i.e. bag), not the individual
instances it contains, which renders this learning setting a challenging one.

In this paper we consider induction of decision trees and classification rules
for multi-instance problems, and also consider ensemble learning. Decision tree
induction is a popular learning method in standard propositional problems be-
cause of its computational efficiency and the interpretability of the output it
generates. It can also yield highly competitive classification accuracy when used
to learn ensembles. In this paper, we first revisit an existing decision tree in-
duction method for multi-instance learning [2], called MITI, in Section 2, and

evaluate its performance on a collection of benchmark datasets based on differ-
ent configurations of the algorithm. Then, in Section 3, we show how we can
apply a simple modification to this algorithm to yield a rule learner, which we
call MIRI, that yields a compact set of classification rules for multi-instance
problems. Finally, in Section 4, we show how accurate ensembles can be learned
using randomisation, and summarise our main findings in Section 5.

2 The MITI Algorithm

The standard assumption in multi-instance learning—based on classification
problems with two classes, positive and negative—is that a bag is positive if
and only if it contains a positive instance, and negative otherwise [5, 12]. The
key problem is that instance-level class labels are unknown for positive bags. All
instances in negative bags must necessarily be true negative instances—otherwise
the bag-level class label could not be negative. In contrast, it is possible that all
but one of the instances in a positive bag are in fact false positives.

A common learning strategy under the standard assumption is to identify
regions in instance space where positive bags overlap, i.e. regions of the instance
space that contain positive instances from a non-trivial number of positive bags.
This basic strategy was employed in the two oldest methods for multi-instance
learning: in [5] a hyperrectangle is learned to describe the region where posi-
tive bags overlap and in [12] the maximum diverse density approach identifies
parameters of a probabilistic model that is centered in such a region.

The multi-instance tree inducer (MITI) proposed by Blockeel et al. [2] is a
learning algorithm based on the same standard assumption. It implements the
top-down decision tree learning approach known from propositional tree inducers
such as C4.5 [18], with two key modifications: (a) nodes are expanded in best-
first order guided by a heuristic that aims to identify pure positive leaf nodes
as quickly as possible, and (b) whenever a pure positive leaf node is created, all
positive bags containing instances in this leaf node are deactivated.

A pure positive leaf node in this context is a node that only contains in-
stances from positive bags. The assumption underlying this approach is that an
instance’s presence in a pure positive leaf is a strong indication that it is a true
positive instance, and that all instances in the same bag that are not in the leaf
should be eliminated from further consideration in the learning process because
they are potentially false positives.

Pseudo code for MITI is shown in Algorithm 1. The algorithm is as originally
presented in [2], with one small difference. On some of the datasets considered
in our study, it can happen that the current node cannot be split any further
because it contains identical instances from bags with different class labels. In
that case, a leaf node is created based on the majority class.

Standard propositional tree induction normally proceeds in depth-first fash-
ion, which can be implemented in a non-recursive fashion by storing unexpanded
nodes in a last-in first-out (LIFO) queue. In MITI, this LIFO queue is replaced
by a priority queue in which nodes are sorted in descending order according to

Algorithm 1 Pseudo code for MITI, based on [2].
let Q = root node
while Q is not empty do

remove the first node N from Q
if N is pure positive then

make N a positive leaf and deactivate all bags with instances in N
else if N is pure negative then

make N a negative leaf
else

find the best split S for N
if N cannot be split then

make N a leaf with majority label and deactivate bags if necessary
else

split N according to S and add the child nodes of N to Q
end if

end if
sort Q

end while

the proportion of positive instances they contain. When calculating this propor-
tion, each instance is weighted by 1/|B|, where |B| is the size of the bag that
contains the instance, to give each bag the same total weight, namely 1. Assum-
ing wp is the sum of weights of “positive” instances in the node concerned (note
that this includes any potential false positives in the node), and wn is the sum
of weights of negative instances, the ratio

wp

(wp+wn+k) is used to sort the nodes

in the priority queue, where k is a parameter to the algorithm. This measure is
called the tozero(k) estimate in [2].

Given numeric attributes, MITI applies binary splits to divide the data into
two subsets at each internal node. Split selection is another important aspect
of tree induction. [2] considers several measures to identify the best split at a
particular node in the tree, but finds negligible differences for most of them. In
the following, we consider two of the split selection criteria from [2]: max-bepp,
which uses the maximum of the two estimated proportions of positives for the
two subsets created by a split as the split quality score, and the standard Gini
index, applied with the same estimate of the proportion of positives. Note that
in the Prolog implementation of MITI kindly provided by the authors of [2], the
Gini index is calculated without taking subset weights into account—the Gini-
based impurity scores from each of the two subsets concerned are combined
using a simple unweighted average. In this paper, we use branch weights in the
standard fashion to combine the two subset scores for a split when calculating
its Gini index.

2.1 Experimental Results

In [2], Blockeel et al. evaluate classification accuracy of MITI on synthetic
data and two real-world multi-instance domains— the musk and mutagenesis
problems—but splitting criteria are only compared on the synthetic data. In
this section, we present a more extensive evaluation of MITI on benchmark
data, including data from image classification problems, where we consider two
splitting criteria (max-bepp and Gini index) and two values for the parameter k
in the tozero(k) heuristic: 5, the default value from [2], and 0, which means that

an unbiased estimate of the proportion of positives is applied. We also report
tree size, which gives an indication of interpretability and is not considered in [2].

All experimental results presented in this paper are based on stratified 10-
fold cross-validation, repeated 10 times, to yield 100 performance estimates for
each dataset/algorithm combination. Tables show average accuracy as well as
standard deviation across the 100 estimates. To test for statistical significance
of individual differences, the corrected resampled paired t-test [16] is used, which
is a conservative version of the standard paired t-test that is adjusted for de-
pendency of estimates due to data reuse. This test is the standard test available
in the Experimenter facility available in the WEKA workbench [10], which we
used for the experiments. The significance level was left at the default value 0.05.
Algorithms were implemented in Java and integrated into WEKA.

Table 1 shows estimated classification accuracy for the datasets included in
our experiments. Table 2 shows tree size. The datasets used are those employed
in [7].1 These include mutagenicity prediction [19]—which was originally con-
sidered for multi-instance tree and rule learning in [21]—based on three differ-
ent representations of molecules as bags of instances (muta-atoms, muta-bonds,
muta-chains), the well-known trains problem from ILP [15] (eastwest, westeast),
the two musk datasets [5], the thioredoxin protein identification task [20], and
two groups of content-based image classification datasets (elephant, fox, tiger [1]
and bikes, cars, people respectively, the latter group with Ohta-based features as
in [14], derived from the GRAZ02 dataset [17]). We also included the synthetic
maron problem [12, 8]. In this problem, instances are uniformly distributed in a
2D space and bags are classified as positive if they contain at least one instance
that is located in a small area in the center of this space.

Considering classification accuracy, we can see that adjusting the value of the
parameter k is important when using the special-purpose max-bepp split selec-
tion heuristic from [2] in MITI. Using the raw estimated proportion of positives
(k=0) yields significantly more accurate classifiers on the thioredoxin problem,
but applying a biased estimate of proportion (k=5) produces significantly higher
accuracy on all but one of the image classification problems. In contrast, the re-
sults obtained using the Gini index appear less sensitive to the choice of k, but
k = 0 yields higher estimated accuracy for all datasets apart from musk1, with
two significant differences (not shown in the table)—on cars and thioredoxin re-
spectively. The results for the Gini index with k = 0 are the best ones overall:
this method dominates the max-bepp baseline in 12 out of 15 cases and yields
statistically significant improvements in two cases. The results provide evidence
that (a) biasing the estimate of proportion is generally detrimental when using
the standard Gini index in MITI, and (b) the special-purpose max-bepp heuristic
is generally inferior to the Gini index.

The results in Table 2 reinforce this message: trees grown using the Gini
index with k = 0 are often substantially smaller than those generated using the
other three variants. This also has a strong impact on runtime (not shown here)
because the smaller trees can be grown more quickly.

1 Excluding the suramin data, which contains missing values.

Dataset MITI MITI MITI MITI
max-bepp Gini index max-bepp Gini index

k=5 k=5 k=0 k=0
eastwest 55.5±32.5 60.5± 34.3 67.0±32.7 62.5± 35.1
westeast 30.5±31.7 52.5± 34.4 47.0±26.4 58.5± 35.6
musk1 70.4±16.5 83.3± 12.7 ◦ 60.3±14.5 82.2± 12.7 ◦
musk2 71.0±15.3 73.2± 13.1 62.7±14.5 74.4± 14.1
muta-atoms 80.2± 8.2 82.0± 8.3 80.5± 8.4 84.3± 7.9
muta-bonds 80.6± 7.9 81.2± 8.3 85.7± 8.8 81.9± 8.4
muta-chains 83.4± 7.7 84.4± 7.2 83.5± 8.5 87.2± 8.5
maron 50.0±10.1 55.6± 17.4 48.6±22.4 56.2± 22.9
elephant 77.6± 9.4 77.4± 9.3 72.0±10.5 77.9± 9.5
fox 61.7± 8.7 60.8± 9.6 49.7±11.0 • 61.7± 10.4
tiger 74.7±10.0 70.3± 10.6 62.8±10.9 • 74.0± 9.8
bikes 76.5± 5.2 74.6± 5.0 68.4± 5.0 • 76.1± 5.1
cars 67.9± 4.3 63.7± 5.0 58.2± 5.8 • 69.6± 4.9
people 73.4± 5.6 73.0± 4.8 66.1± 5.7 • 74.8± 5.3
thioredoxin 35.7±11.0 62.7± 14.5 ◦ 80.0± 8.1 ◦ 82.1± 9.6 ◦

◦, •: statistically significant compared to 2nd column

Table 1. Classification accuracy for different parameter settings in MITI.

Dataset MITI MITI MITI MITI
max-bepp Gini index max-bepp Gini index

k=5 k=5 k=0 k=0
eastwest 25.8± 6.5 10.6± 4.3 • 11.0± 1.9 • 10.0± 3.2 •
westeast 36.8± 5.3 23.4± 6.0 • 14.8± 3.0 • 12.8± 3.1 •
musk1 20.1± 2.2 20.6± 2.2 50.4± 2.2 ◦ 22.8± 3.6 ◦
musk2 43.1± 16.0 41.3±13.2 44.7± 2.2 33.1± 3.7
muta-atoms 261.7± 16.9 163.1±10.0 • 62.7± 3.5 • 62.5± 4.3 •
muta-bonds 286.4± 30.5 157.8±11.4 • 67.9± 4.2 • 62.2± 6.0 •
muta-chains 419.7± 44.5 198.1±11.4 • 90.4± 7.5 • 55.6± 7.5 •
maron 902.5± 32.2 177.7±34.9 • 30.5± 2.4 • 17.5± 3.0 •
elephant 46.6± 22.0 218.7±39.0 ◦ 102.0± 2.7 ◦ 32.3± 3.5
fox 166.5± 50.7 167.4±18.5 107.8± 3.3 • 51.2± 4.8 •
tiger 55.8± 16.8 160.2±20.2 ◦ 79.5± 5.0 ◦ 32.4± 4.1 •
bikes 248.9± 83.1 634.7±96.3 ◦ 288.3±10.3 84.4± 4.2 •
cars 219.4± 70.6 474.3±42.3 ◦ 387.4±15.6 ◦ 110.2± 5.5 •
people 165.9± 45.4 662.7±61.5 ◦ 285.4±14.8 ◦ 90.2± 5.3 •
thioredoxin 2202.2±207.5 250.4±43.7 • 42.2± 3.3 • 35.9± 5.7 •

◦, •: statistically significant compared to 2nd column

Table 2. Tree size for different parameter settings in MITI.

The results on the maron data are particularly noteworthy because here the
standard multi-instance assumption is known to hold by construction. Note that
the max-bepp split selection criterion requires only one of the two subsets created
by a split to exhibit high purity for it to be rated highly. The other subset can be
poor and may thus need to be expanded into a large subtree—unless positive data
in this subset can be successfully deactivated before this happens. In contrast,
the Gini index combines impurity scores from both subsets in a weighted fashion.

3 MIRI: Using MITI to Learn Rule Sets

Whenever a positive leaf node is created, the MITI algorithm disables all in-
stances of all bags that are associated with this leaf: any positive bag that has
at least one positive instance in the leaf is disabled. The corresponding data is
removed from all unexpanded nodes waiting in the priority queue and will thus

not influence subsequent tree growth. However, tree structure that has already
been created is left untouched. Conceptually, this is a potential drawback of the
algorithm because data is removed from partially grown subtrees elsewhere in
the overall tree structure. Splitting and node selection decisions that generated
those existing incomplete subtrees should be revised to accommodate the new
data distribution. At the very least, one would expect this to produce a more
compact classifier because the amount of relevant training data is reduced.

Implementing this idea yields an algorithm whose output can be more natu-
rally represented as a set of classification rules: when a positive leaf is encoun-
tered in the basic MITI algorithm, all positive bags associated with the leaf are
removed from the training data, the path from the root node to this leaf node
is turned into an if-then rule, and the algorithm is restarted on the remaining
data. The tree structure is discarded and grown from scratch on the reduced
data. We call this algorithm MIRI, for multi-instance rule induction.

Clearly, this approach will not generate any output that is due to potentially
suboptimal split and node selection decisions based on outdated data because
the entire tree structure is discarded after a positive leaf node has been turned
into an if-then rule. When no positive leaf node can be created, the algorithm
stops and appends a final default rule to the rule set that predicts the negative
class. This will normally only happen when all positive data has been exhausted
because the priority queue used in the best-first expansion method is ordered
based on the proportion of positive data in each node located in the queue.
Consequently it is appropriate to create a “catch-all” rule that simply predicts
the negative class when the first negative leaf node is encountered.

There are pathological scenarios where positive data remains that is not
covered by any positive rule, namely when there are identical instances that are
located in both positive and negative bags. In that case it can happen that a
node has to be turned into a leaf node even if it contains both positive and
negative data. If the sum of weights for the negative instances in this node is
greater than the sum of weights for the positive instances, then the node is turned
into a negative leaf and the algorithm stops. On the other hand, if the positive
data outweighs the negative data, the node is turned into a positive leaf and the
associated positive bags are deactivated in the standard manner. This heuristic
does not appear to cause problems on the benchmark datasets we consider.

The algorithm just described implements the standard separate-and-conquer
rule learning strategy, where a rule is generated, the data covered by this rule
is removed (i.e. separated out), and the remaining data is used to generate
further rules. In contrast to most separate-and-conquer rule learners, a partial
tree structure is induced to find the next rule to add to the rule set. In the
context of propositional rule learning, where each example for learning consists
of a single instance, this strategy is used in the rule learner PART [9], which
generates a partial decision tree using the C4.5 tree learner [18].

It appears wasteful to generate a partial tree just to subsequently discard it.
In practice, on the datasets we consider, MIRI’s runtimes are within an order
of magnitude of MITI’s ones (which never requires more than a few seconds

Classification accuracy Classifier size
Dataset MITI MIRI MITI MIRI
eastwest 62.5±35.1 69.0±33.9 13.1± 4.7 7.9± 2.1 •
westeast 58.5±35.6 67.0±32.7 21.2± 6.0 11.6± 2.0 •
musk1 82.2±12.7 80.6±12.6 23.6± 3.8 21.8± 3.4 •
musk2 74.4±14.1 75.1±12.9 47.4± 7.9 36.4± 5.3 •
muta-atoms 84.3± 7.9 82.9± 8.3 241.7±27.9 95.2±11.2 •
muta-bonds 81.9± 8.4 81.6± 7.9 270.1±48.3 98.6±13.7 •
muta-chains 87.2± 8.5 83.3± 8.2 233.5±59.5 81.2±14.6 •
maron 56.2±22.9 59.6±25.1 54.3±16.7 18.7± 4.3 •
elephant 77.9± 9.5 78.7± 9.3 75.2±16.1 31.9± 3.5 •
fox 61.7±10.4 59.9±10.8 166.1±34.0 61.1± 6.1 •
tiger 74.0± 9.8 75.7± 9.9 66.4±17.3 31.4± 3.9 •
bikes 76.1± 5.1 76.5± 5.0 295.4±33.7 102.2± 7.0 •
cars 69.6± 4.9 67.9± 4.5 435.3±48.6 145.1±10.9 •
people 74.8± 5.3 73.5± 4.9 326.2±36.5 115.7± 8.2 •
thioredoxin 82.1± 9.6 82.9± 8.5 84.3±27.7 48.0±13.2 •

◦, •: statistically significant difference

Table 3. Accuracy and classifier size for MITI and MIRI (k = 0, Gini index).

to generate a tree when using k = 0 and the Gini index): MIRI is never more
than five times slower. The best-first node expansion strategy is very effective
in homing in on positive leaf nodes, which means that little additional tree
structure is generated before a rule can be obtained. In the best case, only one
path is created because only nodes leading to the relevant leaf node are expanded.
Note also that many challenging multi-instance problems exhibit large bags of
instances, which means that creation of a rule removes a substantial amount of
instance-level data that will not need to be considered in subsequent iterations.

3.1 Experimental Results

Table 3 shows classification accuracy and classifier size for MITI and MIRI.
Classifier size is measured by counting the number of tests in all positive rules
included in the classifier. In MITI, positive rules correspond to leafs with a
positive classification. In both cases, k = 0 was used (no bias in the estimated
proportion of positives), and the Gini index was applied for split selection.

The results paint a clear picture: there is no statistically significant difference
in classification accuracy between MITI and MIRI on the benchmark datasets
we consider, but the classifiers learned by MIRI are significantly more compact
in all cases. Hence, MIRI’s ability to discard structure grown from outdated data
does not have a significant impact on classification accuracy. Nevertheless, for
data mining practitioners who are concerned with interpretability of the output,
MIRI appears to provide a useful alternative to MITI.

4 Building Ensemble Classifiers

Although individual decision trees and rule sets can provide valuable insight
into the structure underlying a dataset, and are thus an important tool for
descriptive data mining, they are known to be inferior to ensemble classifiers
in predictive tasks. A well-known strategy for generating an ensemble classifier

is randomisation [6], in which the learning algorithm is randomised such that
different classification models can be obtained from the same dataset, thereby
yielding an ensemble. Predictions are then commonly obtained by voting.

In the propositional context, the random forest method [3] has proven partic-
ularly successful. Consequently we apply the basic strategy of this method to the
multi-instance learning algorithms discussed above and evaluate whether similar
gains in predictive accuracy can be obtained. In the random forest method, a
decision tree learner is randomised by introducing non-determinism in the at-
tribute selection step that is performed at each node. More specifically, rather
than choosing the best split amongst all m available attributes, l attributes are
selected at random first, where this randomly chosen subset can be different for
each node, and then the best split amongst those l attributes is picked (where
split quality is measured using a standard criterion such as the Gini index).

We can directly apply this method in MITI, and, consequently, also in MIRI.
Large values of l decrease randomness and thus diversity, small values increase
diversity but may yield ensemble members that are individually not very accu-
rate. Both, accuracy of individual ensemble members and their diversity, will
affect the accuracy of the final vote-based ensemble classifier.

4.1 Experimental Results

We generated empirical results using 100 ensemble members based on two val-
ues of l by applying WEKA’s RandomCommittee method in conjunction with
both MITI and MIRI as the base learner, yielding four configurations in total.
Recent versions of WEKA allow parallel computation of ensemble members us-
ing RandomCommittee on multiple cores and this was exploited to obtain the
results in a timely manner. The Gini index was used in MITI and MIRI and an
unbiased estimate of positive proportion was applied (k = 0). The two values
for l we consider are l = 1, which implies completely random attribute selection,
and l =

√
m + 1, where m is the number of attributes in the dataset concerned,

yielding a semi-random strategy. Results are provided in Table 4.
These results show that there is no noteworthy difference between MITI and

MIRI ensembles in the case of semi-random attribute selection. However, when
selecting attributes completely randomly, the MIRI-based ensemble performs
worse. Thus selecting informative attributes appears more important when MIRI
is used. Comparing semi-random selection with completely random selection, we
can see that the latter strategy generally performs worse. The win/loss ratio is
10/4 in favour of semi-random selection in the case of MITI, although none of
the differences are individually statistically significant. The semi-random selec-
tion method appears to have an edge on the datasets with a larger number of
attributes (the image datasets and the musk problems) but on the datasets with
a small number of attributes (maron and mutagenesis) there is no advantage.
This makes sense intuitively: when there are many attributes, it is less likely
that any one of them will be relevant to the classification.

Comparing these results to the ones in Tables 3 for individual trees and rule
sets, we can see that the ensemble approach yields substantial improvements

Dataset MITI MITI MIRI MIRI
Ensemble Ensemble Ensemble Ensemble

semi-r. random semi-r. random
eastwest 72.5±31.3 72.5±27.9 75.5±32.2 72.5±29.6
westeast 37.5±32.9 31.5±33.1 48.5±34.4 30.5±33.3
musk1 86.5±11.5 80.7±12.6 85.0±11.7 78.6±12.3 •
musk2 79.1±10.9 74.2±12.5 77.5±11.7 72.4±13.1
muta-atoms 85.3± 7.9 86.9± 7.7 85.4± 7.7 87.5± 7.1
muta-bonds 85.4± 7.5 86.3± 7.6 85.0± 7.5 85.7± 7.4
muta-chains 87.7± 8.6 87.1± 8.4 85.6± 8.4 86.4± 7.6
maron 56.2±22.9 66.4±22.7 59.6±25.1 60.6±21.5
elephant 88.5± 7.1 87.7± 6.8 86.9± 7.7 82.8± 8.5
fox 68.3± 8.8 61.4±10.7 66.3± 8.7 55.8±10.4 •
tiger 82.8± 8.1 80.6± 8.4 83.2± 8.2 78.5± 9.7
bikes 84.1± 4.8 83.4± 4.6 84.9± 4.8 82.9± 4.8
cars 77.8± 4.1 76.3± 4.4 77.9± 4.1 74.6± 4.7 •
people 81.9± 4.1 82.2± 4.0 82.4± 4.0 81.3± 4.1
thioredoxin 90.4± 6.1 89.4± 5.5 87.9± 7.0 86.9± 4.7

◦, •: statistically significant compared to 2nd column

Table 4. Classification accuracy for MITI and MIRI ensembles.

most cases. Thus it is clear that the success of randomisation in the propositional
case translates into the realm of multi-instance problems.

It is also interesting to compare these results to those that can be obtained
with other high-performance multi-instance classifiers on the same datasets. As
an indicative baseline, we can draw on the results for various variants of the
well-known MILES method for multi-instance learning [4] that are presented
in [7], and the best results for two simple propositionalisation methods that
can also be found in [7]. The estimated accuracies for the muta-atoms, muta-
chains, thioredoxin, elephant, fox, bikes and cars datasets obtained from the
semi-random MITI ensembles are greater than the best ones in [7], which were
generated under exactly the same experimental conditions. The only real-world
dataset where accuracy is noticeably below the best result in [7] is musk2.

On the elphant, fox, tiger and musk datasets, we can also compare to the
results in [11], which are for the so-called MIForest method (Table 1 in [11]).
This method generates a random forest ensemble for multi-instance learning
using optimisation based on deterministic annealing. The estimated accuracy
for our semi-random MITI ensemble is greater for four of the five datasets,
indicating that our method is indeed competitive.

5 Conclusions

In this paper we have (a) presented a comparison of multi-instance decision trees
learned by different MITI configurations on a collection of benchmark datasets,
(b) shown how a simple modification enables us to learn rule sets rather than
trees—yielding the MIRI algorithm—and (c) considered the effect of randomi-
sation for ensemble learning using both MITI and MIRI.

Our results provide evidence that the standard Gini index is an appropriate
splitting criterion for MITI, in particular if an unbiased estimate is used for
the proportion of positives (k = 0): trees are generally more accurate and com-
pact than those learned using the special-purpose max-bepp criterion. We have

also shown that MIRI generates even more compact classifiers than MITI while
maintaining comparable accuracy. Finally, we obtained highly competitive clas-
sification accuracy by applying randomisation to generate MITI and MIRI-based
ensembles.

References

1. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for
multiple-instance learning. In: NIPS. pp. 561–568. MIT Press (2003)

2. Blockeel, H., Page, D., Srinivasan, A.: Multi-instance tree learning. In: ICML. pp.
57–64. ACM (2005)

3. Breiman, L.: Random forests. ML 45(1), 5–32 (2001)
4. Chen, Y., Bi, J., Wang, J.Z.: MILES: Multiple-instance learning via embedded

instance selection. IEEE PAMI 28(12), 1931–1947 (2006)
5. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance

problem with axis-parallel rectangles. AI 89(1–2), 31–71 (1997)
6. Dietterich, T.: An experimental comparison of three methods for constructing en-

sembles of decision trees: Bagging, boosting, and randomization. ML 40(2), 139–
157 (2000)

7. Foulds, J., Frank, E.: Revisiting multiple-instance learning via embedded instance
selection. In: AUS-AI. pp. 300–310. Springer (2008)

8. Foulds, J.R., Frank, E.: Speeding up and boosting diverse density learning. In: DS.
pp. 102–116. Springer (2010)

9. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization.
In: ICML. pp. 144–151. Morgan Kaufmann (1998)

10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

11. Leistner, C., Saffari, A., Bischof, H.: MIForests: multiple-instance learning with
randomized trees. ECCV pp. 29–42 (2010)

12. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In:
NIPS. pp. 570–576. MIT Press (1998)

13. Maron, O., Ratan, A.L.: Multiple-instance learning for natural scene classification.
In: ICML. pp. 341–349. Morgan Kaufmann (1998)

14. Mayo, M.: Effective classifiers for detecting objects. In: CIRAS (2007)
15. Michie, D., Muggleton, S., Page, D., Srinivasan, A.: To the international computing

community: A new East-West challenge. Tech. rep., Oxford University (1994)
16. Nadeau, C., Bengio, Y.: Inference for the Generalization Error. ML 52(3), 239–281

(2003)
17. Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic object recognition with

boosting. IEEE PAMI 28(3), 416–431 (2006)
18. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
19. Srinivasan, A., Muggleton, S., King, R., Sternberg, M.: Mutagenesis: ILP experi-

ments in a non-determinate biological domain. In: ILP. pp. 217–232. GMD (1994)
20. Wang, C., Scott, S., Zhang, J., Tao, Q., Fomenko, D., Gladyshev, V.: A study in

modeling low-conservation protein superfamilies. Tech. rep., Department of Comp.
Sci., University of Nebraska-Lincoln (2004)

21. Zucker, J., Chevaleyre, Y.: Solving multiple-instance and multiple-part learning
problems with decision trees and decision rules. Application to the mutagenesis
problem. In: Proc Conf of the Canadian Society for Computational Studies of
Intelligence. pp. 204–214 (2001)

