Skip to main content

Realistic Smile Expression Recognition Using Biologically Inspired Features

  • Conference paper
AI 2011: Advances in Artificial Intelligence (AI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7106))

Included in the following conference series:

Abstract

A robust smile recognition system could be widely used for many real-world applications. In this paper, we introduce biologically inspired model (BIM) into the building of realistic smile classification system for solving challenging realistic tasks. To improve the performance of BIM, we develop a modified BIM (MBIM), which utilizes a more efficient pooling operation and boosting feature selection. Experiments demonstrate the effectiveness of themodifications and adjustments of BIM. By testing on the challenging realistic database, GENKI, our method is proved to be superior to some other state-of-the-art smile classification algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Niblack, W., Barber, R., Equitz, W., Fickner, M., Glasman, E., Petkovic, D., Yanker, P.: The QBIC Project: Querying Images By Content Using Color, Texture and Shape. In: Proc. Storage and Retrieval for Image and Video Databases, SPIE, vol. 1908, p. 173 (1993)

    Google Scholar 

  2. Schiele, B., Crowley, J.: Recognition Without Correspondence Using Multidimensional Receptive Field Histograms. International J. of Computer Vision 36(1), 31–35 (2000)

    Article  Google Scholar 

  3. Lowe, D.G.: Distinctive Image Features from Dcale-Invariant Key-Points. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  4. Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE Trans. on PAMI 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  5. Lazebnik, S., Schmid, C., Ponce, J.: A Sparse Texture Representation Using Local Affine Regions. Technical Report, Beckman Institute, University of Illinois (2004)

    Google Scholar 

  6. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: IEEE International Conference of CVPR, pp. 886–893. IEEE Press, California (2005)

    Google Scholar 

  7. Leung, T., Malik, J.: Representing and Recognizing the Visual Appearance of Materials Using Three-Dimensional Textons. International J. of Computer Vision 43(1), 29–44 (2001)

    Article  MATH  Google Scholar 

  8. Csurka, G., Bray, C., Dance, C., Fan, L.: Visual Categorization with Bags of Keypoints. In: ECCV International Workshop on Statistical Learning in Computer Vision, Prague, pp. 1–22 (2004)

    Google Scholar 

  9. Riesenhuber, M., Poggio, T.: Hierarchical Models of Object Recognition in Cortex. Nature Neuroscience 2(11), 1019–1025 (1999)

    Article  Google Scholar 

  10. Serre, T., Wolf, L., Poggio, T.: Object Recognition with Features Inspired By Visual Cortex. In: IEEE International Conference of Computer Vision and Pattern Recognition, pp. 994–1000. IEEE Press, California (2005)

    Google Scholar 

  11. The MPLab GENKI Dataset: GENKI-R2009 a Subset, http://mplab.ucsd.edu

  12. Hubel, D., Wiesel, T.: Receptive Fields of Single Neurons in the Cat’S Striate Cortex. Journal of Physiology 148, 574–591 (1959)

    Article  Google Scholar 

  13. Hubel, D., Wiesel, T.: Receptive Fields and Functional Architecture in Two Nonstriate Visual Areas (18 And 19) of the Cat. Neurophys. 28, 229–289 (1965)

    Google Scholar 

  14. Berkes, P., Wiskott, L.: Slow Feature Analysis Yields a Rich Repertoire of Complex Cell Properties. Journal of Vision 5, 579–602 (2005)

    Article  MATH  Google Scholar 

  15. Afraz, D.A., Bondar, I.V., Giesem, A.: Norm-Based Face Encoding by Single Neurons in the Monkey Infer Temporal Cortex. Nature 442, 572–575 (2006)

    Article  Google Scholar 

  16. Mutch, J., Lowe, D.G.: Multiclass Object Recognition with Sparse, Localized Features. In: IEEE International Conference on CVPR, pp. 11–18. IEEE Press, New York (2006)

    Google Scholar 

  17. Mutch, J., Lowe, D.G.: Object Class Recognition and Localization Using Sparse Features with Limited Receptive Fields. International Journal of Computer Vision 80(1), 45–57 (2008)

    Article  Google Scholar 

  18. Serre, T., Wolf, L.: Robust Object Recognition with Cortex-Like Mechanisms. IEEE Trans. Pattern Analysis and Machine Intelligence 29(3), 411–426 (2007)

    Article  Google Scholar 

  19. Poggio, T., Bizzi, E.: Generalization in Vision and Motor Control. Nature 431(7010), 768–774 (2004)

    Article  Google Scholar 

  20. Kanade, T., Cohn, J., Tian, Y.: Comprehensive Database for Facial Expression Analysis. In: IEEE 4th International Conference on Face and Gesture Recognition, pp. 46–53. IEEE Press (2000)

    Google Scholar 

  21. Michael, J.L., Shigeru, A., Miyuki, K., Jiro, G.: Coding Facial Expressionswith Gabor Wavelets. In: 3rd IEEE International Conference on Automatic Face and Gesture Recognition, pp. 200–205. IEEE Press, Nara, Japan (1998)

    Google Scholar 

  22. Viola, P., Michael, J.J.: Robust Real-Time Face Detection. International Journal of Computer Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

  23. Littlewort, G., Bartlett, M.S., Fasel, I., Susskind, J., Movellan, J.: Dynamics of Facial Expression Extracted Automatically from Video. Image and Vision Computing 24(6), 615–625 (2006)

    Article  Google Scholar 

  24. Bai, Y., Guo, L., et al.: A Novel Feature Extraction Method Using Pyramid Histogram of Orientation Gradients for Smile Recognition. In: Proceedings of IEEE ICIP. IEEE Press, Cairo (2009)

    Google Scholar 

  25. Yoav, F., Robert, E.S.: A Decision-Theoretic Generalization of On-Line Learning and an Application To Boosting. Journal of Computer and System Sciences 55, 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Song, D., Tao, D.C.: Biologically Inspired Feature Manifold for Scene Classification. IEEE Transactions on Image Processing 19(1), 174–184 (2010)

    Article  MathSciNet  Google Scholar 

  27. Huang, Y.Z., Huang, K.Q., Wang, L.G., Tao, D.C., Tan, T.N., Li, X.L.: Enhanced Biologically Inspired Model. In: IEEE International Conference on CVPR. IEEE Press, Alaska (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, C., Mao, H., Jin, L. (2011). Realistic Smile Expression Recognition Using Biologically Inspired Features. In: Wang, D., Reynolds, M. (eds) AI 2011: Advances in Artificial Intelligence. AI 2011. Lecture Notes in Computer Science(), vol 7106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25832-9_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25832-9_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25831-2

  • Online ISBN: 978-3-642-25832-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics